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Abstract

A mathematical model of a physical system is never perfect; therefore, robust control laws are
necessary for guaranteed stabilization of the nominal model and also “nearby” systems, including
hopefully the actual physical system. We consider the computation of a robust control law for
large-scale finite dimensional linear systems and a class of linear distributed parameter systems.
The controller is robust with respect to left coprime factor perturbations of the nominal system.
We present an algorithm based on balanced proper orthogonal decomposition to compute the
nonstandard features of this robust control law. Convergence theory is given, and numerical
results are presented for two partial differential equation systems.

1 Introduction

Since a mathematical model of a system is not a perfect description of the system, it is desirable
for a control law to not only stabilize the mathematical model but also “nearby” systems. In this
paper, we consider computing a control law for a distributed parameter system that stabilizes the
nominal system and also left coprime factor perturbations of the system. The robustly stabilizing
control, the central controller, is a solution to this problem and was given for finite dimensional
systems by Glover and McFarlane in [19]; for infinite dimensional systems with bounded finite rank
inputs and outputs, the solution can be found in [15]. For an example of the central controller
applied to a PDE system, see [8].

Computing control laws for infinite dimensional systems often starts with discretizing the system
with a convergent approximation scheme. Matrix approximations of the original system operators
arise, and these matrices can be very large scale for many important applications, such as those
in fluids. Much recent research has focused on developing algorithms to solve large-scale matrix
Lyapunov and Riccati equations associated with control design for linear systems (among other
applications); see Section 3 below for details and references. However, the authors are not aware of
any work that computes the robust control law from the central controller for a large-scale system.
To address these problems, we use balanced proper orthogonal decomposition (POD) methods.

Balanced POD is an algorithm introduced by Rowley [29] for approximate balanced model
reduction of linear systems. The algorithm is also related to balanced model reduction algorithms
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proposed by Willcox and Peraire [41] and Lall, Marsden, and Glavaški [27]. Rowley’s balanced POD
algorithm is similar to the method of snapshots for standard POD computations [38], however it
uses two datasets. In the present work, we require the balanced POD of time varying data taking
values in a Hilbert space as described in [36, 31, 33]. We give a brief overview of the algorithm
for this case in Section 4; for more information on the algorithm, see the above references. Also,
for recent examples of the application of balanced POD for model reduction, see [1, 3, 7, 24].
Furthermore, we note that balanced POD can also be used to provide an optimal reconstruction of
two general datasets [33] in an analogous way that standard POD can reconstruct a single dataset,
e.g., [23].

In Section 5, we develop a balanced POD algorithm to compute the central controller for a class
of linear partial differential equation (PDE) systems. The main computational cost of the algorithm
is computing solution snapshots of linear PDEs. These computations can be performed with existing
software and one can also take advantage of existing techniques such as special discretization
schemes, domain decomposition methods, adaptive mesh refinement, and parallel algorithms. Also,
since the algorithm is based on simulation data rather than matrix approximations, we bypass the
potential difficulty of extracting matrices from existing simulation code. The algorithm described
in this paper is new and is applicable to both large-scale finite dimensional systems and a class of
infinite dimensional systems.

2 Robust Central Controller for Left Coprime Factor Perturba-
tions

We consider robust feedback control design for a general infinite dimensional system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

holding over a real Hilbert space X with inner product (·, ·) and corresponding norm ‖f‖ = (f, f)1/2.
Throughout this work, we assume the operator A : D(A) ⊂ X → X generates a C0-semigroup,
and the control input operator B : Rm → X and the observation operator C : X → Rp are both
bounded and finite rank. The last assumption implies that the operators B and C must take the
form

Bu =
m∑
j=1

uj bj , Cx = [ (x, c1), . . . , (x, cp) ]T , (2)

for some vectors b1, . . . , bm and c1, . . . , cp in X (see [40, Theorem 6.1]). We note that the algorithm
presented here for the robust controller computations is more efficient when m and p are relatively
small; this is true of most large-scale algorithms for control and model reduction computations.

We assume (A,B,C) is exponentially stabilizable and detectable so that the transfer function
G(s) = C(sI − A)−1B has a normalized left coprime factorization G = M̃−1Ñ ; see [15, Lemma
9.4.10]. We consider the following robust control problem: Given a robustness margin ε > 0, find
a controller Kc(s) stabilizing G(s) and all “nearby” plants G∆(s) of the form

G∆ = (M̃ + ∆M )−1(Ñ + ∆N ),

where the perturbation ∆ = [∆M ∆N ] satisfies ‖∆‖∞ < ε. Here, the applied norm is the H∞
norm, which is the largest singular value of the function evaluated along the imaginary axis.

The solution to this problem can be found in Section 9.4 of Curtain and Zwart’s book [15]. Let
the operators Π : X → X and P : X → X be the unique self-adjoint, nonnegative solutions to the
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control and filter algebraic Riccati equations (AREs)

A∗Π + ΠA−ΠBB∗Π + C∗C = 0, (3)

AP + PA∗ − PC∗CP +BB∗ = 0, (4)

where the asterisk (∗) denotes the Hilbert adjoint operator. There is a parameterized family of
controllers solving the above problem; the central controller is given in state space form by [15,
Theorem 9.4.16]

u(t) = −Kxc(t), ẋc(t) = Acxc(t) + σ−2W ∗Fy(t),

where

K = B∗Π, Ac = A−BK − σ−2W ∗FC,

F = PC∗, W ∗ =
[
I + (1− σ−2)ΠP

]−1
,

σ =
(
1− ε2

)1/2
, 0 < ε < εmax.

Here, the maximum robustness margin εmax can be found exactly and is given by [15, Corollary
9.4.12]:

εmax =
[
1 + λmax(PΠ)

]−1/2
, (5)

where λmax(T ) denotes the largest eigenvalue of the operator T . This extends the finite dimensional
results of Glover and McFarlane [19] to an infinite dimensional case.

For finite dimensional systems, the central controller described above can be computed by
using existing solvers for the algebraic Riccati equations (3) and (4). For infinite dimensional
systems, a standard approach to control design is to approximate the infinite dimensional operators
by matrices and design an approximate control law; see, e.g., [6, 12, 18]. However, for many
infinite dimensional equations the approximating matrices are of high dimension and conventional
computational approaches are difficult, if not impossible, to apply. For the central controller design
above, we have the following computational challenges for large-scale systems:

1. Compute the solutions Π and P of the algebraic Riccati equations (3) and (4).

2. Compute the maximum robustness margin εmax in (5).

3. Compute W ∗F =
[
I + (1− σ−2)ΠP

]−1
F .

In this paper, we focus on using a balanced POD algorithm to treat the second and third challenges.
Before we describe the algorithm, we provide background on computing solutions of algebraic

Riccati equations in Section 3 and balanced POD in Section 4.

3 Riccati Equation Algorithm

There are three main existing classes of algorithms for large-scale or infinite dimensional Riccati
equations of the form (3).

Three Algorithm Classes for Riccati Equations

1. Apply Newton’s method to the (quadratic) Riccati equation and solve the resulting (linear)
Lyapunov equations using special techniques; see, e.g., [5, 28, 17].

2. Solve the related Chandrasekhar equations, a nonlinear system of differential equations that
must be integrated to steady state; see, e.g., [5, 9, 11].
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3. Reduce the infinite dimensional model and solve the resulting low order matrix Riccati equa-
tion; see, e.g., [2, 4, 25].

Although all three approaches can be successful, the first approach is convergent and is generally
accepted to be the most accurate; the Chandrasekhar equations can lose accuracy when integrated
to steady state [5], and the “reduce-then-design” approach can either have lower accuracy (see [10]
for an example) or fail as it has no guarantees of accuracy or convergence.

In this work, we use the first approach coupled with a trapezoid snapshot algorithm for infinite
dimensional Lyapunov equations developed in [34] (see also [32, 16, 35, 39]). The Lyapunov solver
was first proposed for the matrix case by Saad in [30]. We use the standard Kleinman-Newton
iteration [26, 13] as opposed to the modified Kleinman-Newton iteration proposed by Banks and
Ito in [5]; Feitzinger, Hylla, and Sachs have recently shown in [17] that errors can accumulate in
the modified iteration if the Lyapunov equations are solved inexactly (which is unavoidable except
for simple problems).

3.1 Riccati Equation Snapshot Algorithm Details

We now describe our computational approach for the Riccati equations (3) and (4).
For this work, we do not require the entire solution operators Π : X → X and P : X → X

of the Riccati equations; instead, we only require the computation of the feedback gain operators
K = B∗Π and F = PC∗. More specifically, we require the functional gains for the operators K
and F . These are defined using the above representations (2) of B and C as follows. Since B takes
the form Bu =

∑m
j=1 uj bj , it can be checked that B∗x = [ (x, b1), . . . , (x, bm) ]T . Therefore, for any

x ∈ X,

Kx = B∗Πx

= [ (Πx, b1), . . . , (Πx, bm) ]T

= [ (x,Π b1), . . . , (x,Π bm) ]T ,

since Π is self-adjoint. Thus, Kx = [ (x, k1), . . . , (x, km) ]T , where kj = Π bj ∈ X are the functional
gains for K. Similarly, Fy =

∑p
i=1 yi fi, where fi = Pci are the functional gains for F .

The Kleinman-Newton iteration applied to the Riccati equation (3) yields the sequence of
Lyapunov equations

(A−BK`)
∗S` + S`(A−BK`) +K∗`K` + C∗C = 0. (6)

The sequence K`+1 = B∗S` converges at a quadratic rate to K for any stabilizing initial guess K0

[13].
We do not require the entire solution S` : X → X of each Lyapunov equation. As above, it can

be shown that
K` x = [ (x, S` b1), . . . , (x, S` bm) ]T .

Therefore, at each iteration we need only compute S` bj for j = 1, . . . ,m. We compute these
products using a snapshot algorithm.

Consider a general infinite dimensional Lyapunov equation

A∗0S + SA0 + E∗E = 0, (7)

where A0 generates an exponentially stable C0-semigroup eA0t and E : X → Rq is given by
Ex = [ (x, e1), . . . , (x, eq) ]T with each ei ∈ X. It is well known that the solution S : X → X is
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given by

Sx =

∫ ∞
0

eA
∗
0tE∗EeA0tx dt.

Using the above representation of E, it can be shown [32, 34] that the solution may also be
represented by

Sx =

∫ ∞
0

q∑
i=1

(
x, zi(t)

)
zi(t) dt, (8)

where zi(t) = eA
∗
0tei is the solution of the infinite dimensional linear differential equation

żi(t) = A∗0zi(t), z(0) = ei. (9)

This representation leads to the following snapshot algorithm.

Snapshot algorithm [32, 34] to approximate Sx, where S solves the Lyapunov equa-
tion (7)

1. For i = 1, . . . , q, compute approximation zNi (t) of the solutions zi(t) of the differential equa-
tions (9).

2. Replace zi(t) with zNi (t) in the integral representation of Sx in (8) and approximate the
integral (by quadrature or some other method).

If
∫∞

0 ‖z
N
i (t)− zi(t)‖2 dt→ 0 for each i, then the resulting approximation converges to Sx [34].

The approximate solutions zNi (t) of the differential equations (9) need not be stored to approx-
imate Sx. Instead, a time stepping method can be used to approximate the differential equation
and the approximation to the integral can be updated while simultaneously integrating the dif-
ferential equations. For example, using a piecewise linear approximation to zi(t) in time leads to
the trapezoid rule to time step the differential equation and the following approximation to the
integral.

Trapezoid snapshot algorithm [34] to approximate Sx, where S solves the Lyapunov
equation (7)

1. For i = 1, . . . , q, approximate the solution of the differential equations (9) with the trapezoid
rule:

(I −∆tA∗0/2)zi,n+1 = (I + ∆tA∗0/2)zi,n,

where I is the identity operator.

2. Update the approximation to Sx:

[Sx]i,n+1 = [Sx]i,n + ∆t
[
(x, zi,n+1)/3 + (x, zi,n)/6

]
zi,n+1

+ ∆t
[
(x, zi,n+1)/6 + (x, zi,n)/3

]
zi,n.

[Sx]n+1 =

q∑
i=1

[Sx]i,n+1.

This updating procedure can be stopped when the norm of the update to Sx (unscaled by ∆t) is
below a certain tolerance. We note that we used a constant time step for simplicity; this is not
necessary in general.

For the Lyapunov equations arising in the modified Kleinman-Newton iterations (6), note that
A∗0 in the Lyapunov equation (7) is replaced by (A − BK`)

∗. Thus, in the trapezoid snapshot
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algorithm, we must invert operators of the form As−BsKs, where As = I−∆tA∗/2, Bs = −∆tK∗i /2
and Ks = B∗. To compute (As−BsKs)

−1z we use the Sherman-Morrison-Woodbury formula (see,
e.g., [21]):

(As −BsKs)
−1z = (I +A−1

s Bs(I −KsA
−1
s Bs)

−1Ks)A
−1
s z.

Also, the operator E in the Lyapunov equation (7) is replaced by [K`;C]. Therefore, the vectors
{e1, . . . , eq} in the definition of E should be replaced by {k`,1, . . . , k`,m, c1, . . . , cp}, where K`x =
[(x, k`,1), . . . , (x, k`,m)]T .

4 Balanced POD

Recall that the goals of this work are to (a) compute the maximum robustness margin εmax, and (b)
compute W ∗F . Note that (a) requires the computation of the maximum eigenvalue of the product
of the Riccati solutions, while (b) requires the inversion of an operator involving the product of the
Riccati solutions.

Below, we perform these computations using the balanced POD of solution data for differential
equations associated with the algebraic Riccati equations (3) and (4). The details of these com-
putations are presented in Section 5. In this section, we describe balanced POD of time varying
Hilbert space valued data in detail.

Let {zi}qi=1 ⊂ L2(Iz;X) and {wj}sj=1 ⊂ L2(Iw;X), where Iz ⊂ (−∞,∞) and Iw ⊂ (−∞,∞)

are two possibly different intervals (finite or infinite). Here, L2(I;X) is the space of functions w
such that w(t) ∈ X for all t ∈ I and whose X norm is square integrable, i.e.,

‖w‖L2(I;X) =

(∫
I
‖w(t)‖2 dt

)1/2

<∞.

We define the balanced POD of the two datasets above in terms of the POD operator of each
dataset.

Definition 1. Let {zi}qi=1 ⊂ L2(Iz;X) and {wj}sj=1 ⊂ L2(Iw;X) be given datasets. Define the
(compact) POD operators ZC : X → X and ZB : X → X by

ZCx =

∫
Iz

q∑
i=1

(
x, zi(t)

)
zi(t) dt, ZBx =

∫
Iw

s∑
j=1

(
x,wj(t)

)
wj(t) dt.

Let {λk} and {ψk} ⊂ X be the eigenvalues and eigenvectors of the product ZCZB, and let {λk} and
{ϕk} ⊂ X be the eigenvalues and eigenvectors of ZBZC . We call {λk, ϕk, ψk} the balanced POD
eigenvalues and modes of the two datasets if the eigenvectors are scaled such that (ϕj , ψi) = δij.

It is shown in [33] that the eigenvalues of ZCZB and ZBZC are the same, and the eigenvalues
can be ordered λ1 ≥ λ2 ≥ · · · ≥ 0.

Again, we note that balanced POD is most often used as a balanced truncation model reduction
algorithm for an exponentially stable linear system of the form (1). In this case, the balanced POD
modes yield the balancing transformation for the linear system [29, 36, 31]. For the application
here, we do not reduce the linear system; instead, we use balanced POD to extract the eigenvalues
and eigenvectors of the Riccati operator products ΠP and PΠ. We then use these to approximate
the maximum robustness margin and the product W ∗F needed for the robust central controller
construction.
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4.1 Approximating the Balanced POD

Next, we briefly review a quadrature method for computing the balanced POD eigenvalues and
modes. This method was proposed by Rowley [29] for the finite dimensional Hilbert space X = Rn

and extended to a general real Hilbert space in [36]. Convergence theory and an alternate approach
for the balanced POD approximations can be found in [31].

The POD operators can be approximated using time snapshots of the states wj(t) and zi(t).
Specifically, approximate the time integrals with the quadratures

ZCx ≈ ZN
C x =

q∑
i=1

nz∑
k=1

β2
k zi(tk)

(
x, zi(tk)

)
,

ZBx ≈ ZN
B x =

s∑
j=1

nw∑
`=1

γ2
` wj(t`)

(
x,wj(t`)

)
.

Here, {β2
k} and {γ2

` } are quadrature weights corresponding to the sets of quadrature points {tk}
and {t`}; different quadrature points and weights can be used for each wj and zi if desired.

Define “vectors” of weighted snapshots

z̃ = [β1z1(t1), . . . , βnzz1(tnz), . . . , β1zq(t1), . . . , βnzzq(tnz) ]T ∈ XNz ,

w̃ = [ γ1w1(t1), . . . , γnww1(tnw), . . . , γ1ws(t1), . . . , γnwws(tnw) ]T ∈ XNw ,

where Nz = qnz, Nw = snw, and XN = X × · · · ×X (N times). The approximate POD operators
can be expressed as ZN

C = (RN
C )∗RN

C and ZN
B = RN

B (RN
B )∗, where the operators RN

C : X → RNz

and RN
B : RNw → X are defined by

RN
C x = [ (x, z̃1), . . . , (x, z̃Nz) ]T , RN

B a =

Nw∑
i=1

ai w̃i,

and their adjoint operators (RN
C )∗ : RNz → X and (RN

B )∗ : X → RNw are given by

(RN
C )∗a =

Nz∑
i=1

ai z̃i, (RN
B )∗x = [ (x, w̃1), . . . , (x, w̃Nw) ]T .

The eigenvalues and eigenvectors of the operator product ZN
C Z

N
B =

(RN
C )∗RN

CR
N
B (RN

B )∗ can be found by computing the singular values and singular vectors of the
bounded linear operator RN

CR
N
B : RNw → RNz . This operator can be represented by the Nz ×Nw

matrix Γ with entries Γij = (w̃j , z̃i). Let σN1 ≥ σN2 · · · ≥ 0 be the singular values of Γ with
corresponding orthonormal singular vectors {uNk } and {vNk } such that

ΓuNk = σNk v
N
k , ΓT vNk = σNk u

N
k .

Then (compare Proposition 1 below) for all k with σNk nonzero, the eigenvalues {λNk } and eigen-
vectors {ψN

k } ⊂ X and {ϕN
k } ⊂ X of ZN

C Z
N
B and ZN

B Z
N
C , respectively, are given by

λNk = (σNk )2, ϕN
k = (σNk )−1/2RN

B uNk , ψN
k = (σNk )−1/2 (RN

C )∗ vNk .
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5 Balanced POD Algorithm for the Central Controller

We now present the balanced POD algorithm to approximate the maximum robustness margin

εmax =
[
1+λmax(PΠ)

]−1/2
, and also approximate W ∗F =

[
I+(1−σ−2)ΠP

]−1
F . As noted earlier,

both of these quantities involve the product of the solution operators to the Riccati equations (3)
and (4). Throughout this work we use a superscript N on a quantity to denote an approximation
of that quantity.

Step 1: The first step in the algorithm is to compute approximations {kNj }mj=1 and {fNi }
p
i=1 of

the functional gains {kj}mj=1 and {fi}pi=1 for the operators K = B∗Π and F = PC∗, where Π and
P solve the Riccati equations (3) and (4). One approach for these computations was described in
Section 3, but any algorithm may be used.

Step 2: Now rewrite the solutions of the Riccati equations (3) and (4) in terms of solutions of
linear infinite dimensional differential equations. This is done as follows. First, as is well known,
the Riccati equations can be rewritten as the Lyapunov equations

(A−BK)∗Π + Π(A−BK) +K∗K + C∗C = 0,

(A− FC)P + P (A− FC)∗ + FF ∗ +BB∗ = 0.

As mentioned in Section 3, the solutions of these Lyapunov equations (i.e., the Riccati operators
Π and P ) can be written

Πx =

∫ ∞
0

m+p∑
i=1

(
x, zi(t)

)
zi(t) dt,

Px =

∫ ∞
0

m+p∑
j=1

(
x,wj(t)

)
wj(t) dt,

where each zi(t) and wj(t) are the unique solutions of the linear evolution equations

żi(t) = (A−BK)∗zi(t), zi(0) = z0
i , (10)

ẇj(t) = (A− FC)wj(t), wj(0) = w0
j , (11)

with the initial conditions given by

z0
i = ki, i = 1, . . . ,m, z0

i = ci, i = m+ 1, . . . ,m+ p,

w0
j = fj , j = 1, . . . , p, w0

j = bj , i = p+ 1, . . . ,m+ p.

Here, {bj}mj=1 and {ci}pi=1 are given in the representation (2) of the operators B and C.

Step 3: Compute approximations {zNi }
m+p
i=1 and {wN

j }
m+p
j=1 of the solutions {zi}m+p

i=1 and {wj}m+p
j=1

to the above differential equations.
Note that these differential equations also appear in the snapshot approach of Section 3 for

approximating the functional gains in Step 1; however, at each step in the Kleinman-Newton
iteration the gains in the differential equations are updated. Therefore, if the snapshot approach
is used in Step 1, then the differential equation solution data from the last Kleinman-Newton step
can be used here (assuming the gains are sufficiently converged).

Step 4: Compute the balanced POD eigenvalues {λNk } and modes {ϕN
k , ψ

N
k } of the above

solution data. We outlined one approach to these computations in Section 4, however any method
may be used. Recall that the balanced POD eigenvalues and modes for the exact solution data
give the the eigenvalues {λk} and eigenvectors {ϕk, ψk} of the operator products ΠP and PΠ.
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Step 5: Approximate the maximum robustness margin

εmax =
[
1 + λmax(PΠ)

]−1/2
by εNmax =

[
1 + λN1

]−1/2
.

Step 6: To approximate the operator product W ∗F , recall that Fy =
∑p

j=1 yjfj , where each
fj ∈ X is a functional gain for F . Thus, W ∗Fy =

∑p
j=1 yj(W

∗fj), and we need only approximate
the products W ∗fj for j = 1, . . . , p to form W ∗F .

For α = −(1 − σ−2), where σ = (1 − ε2)1/2 and 0 < ε < εNmax, we approximate W ∗x =
(I − αΠP )−1x by

W ∗x ≈ ξNr = x+
r∑

k=1

αλNk
1− αλNk

(x, ϕN
k )ψN

k . (12)

The origin of this approximation is discussed in the next section.
Notes:

• Using the definition of α, it can be shown that 0 < 1−αλNk < 1, and therefore αλNk /(1−αλNk )
is never infinite. However, as ε→ εNmax, 1−αλN1 approaches zero and therefore the first term
in the expression for ξNr becomes infinitely large.

• If the eigenvalues {λNk } decay quickly enough, a small value of r will give a good approximation
to the entire series.

• Below, we show that if the approximate solutions of the differential equations in step 3
converge, then εNmax → εmax and ξNr →W ∗x as N, r →∞.

6 Convergence Theory

Let {zi}qi=1 and {wj}sj=1 be finite collections of functions in L2(Iz;X) and L2(Iw;X), respectively.
Let Π be the POD operator for {zi} and let P be the POD operator for {wj}. These may be
arbitrary square integrable functions, however our primary interest is with the functions {zi} and
{wj} in Step 2 of the algorithm in Section 5 above; note that these functions are defined on the
interval Iz = Iw = (0,∞).

Define C : X → L2(Iz;R
q) and B : L2(Iw;Rs)→ X by

[Cx](t) =
[ (
x, z1(t)

)
, . . . ,

(
x, zq(t)

) ]T
, Bu =

∫
Iw

s∑
j=1

uj(τ)wj(τ) dτ.

The adjoint operators C∗ : L2(Iz;R
q)→ X and B∗ : X → L2(Iw;Rs) are given by

C∗y =

∫
Iz

q∑
j=1

yj(τ) zj(τ) dτ, [B∗x](t) =
[ (
x,w1(t)

)
, . . . ,

(
x,ws(t)

) ]T
.

It is straightforward to check that the individual POD operators can be factored as Π = C∗C and
P = BB∗.

As in [33], define the balanced POD operator H : L2(Iw;Rs) → L2(Iz;R
q) for {zi, wj} by

H = CB. Let σ1 ≥ σ2 ≥ · · · ≥ 0 be the singular values of H with corresponding orthonormal
singular vectors {uk, vk} satisfying

Huk = σkvk, H∗vk = σkuk. (13)
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We also have the singular value expansion

Hu =
∑
k≥1

σk (u, uk) vk, (14)

where we understand the sum to terminate if the singular values become zero. The following result
[33, Proposition 2] relates the balanced POD eigenvalues and modes to the singular values and
singular vectors of the balanced POD operator.

Proposition 1. Let {zi}qi=1 and {wj}sj=1 be finite collections of functions in L2(Iz;X) and L2(Iw;X),
respectively, with balanced POD eigenvalues {λk} and balanced POD modes {ϕk, ψk}. For any k
for which σk is nonzero, the balanced POD eigenvalues and corresponding balanced POD modes are

λk = σ2
k, ϕk = σ

−1/2
k Buk, ψk = σ

−1/2
k C∗ vk. (15)

Furthermore, the singular vectors are orthonormal and can be expressed as

uk = σ
−1/2
k B∗ ψk, vk = σ

−1/2
k Cϕk. (16)

We are concerned with approximating the solution ξ of the equation

(I − αΠP ) ξ = x, (17)

for a real number α and x ∈ X. Suppose α−1 is not an eigenvalue of ΠP . Then (I − αΠP )−1 is a
bounded linear operator on X, and (17) has a unique solution ξ ∈ X given by ξ = (I − αΠP )−1x.
We express ξ in terms of the balanced POD eigenvalues and modes of the data below.

Lemma 1. Let the above assumption hold and let x ∈ X. If α is a nonzero real number such that
α−1 is not an eigenvalue of ΠP , then ξ = (I − αΠP )−1x can be expressed as

ξ = (I − αΠP )−1x = x+
∑
k≥1

αλk
1− αλk

(x, ϕk)ψk. (18)

Remark: This expression for ξ can be formally derived from the equation (I − αΠP ) ξ = x
by setting ΠP = C∗HB∗, replacing H with its singular value expansion (14), and finding that ψ
must take the form ξ = x+

∑
k≥1 akψk for certain constants ak. Substituting this expression back

into the equation for ξ yields values for ak and the result (18). However, below we give a slightly
simpler alternate proof.

Proof. First, we show the series converges. Let ξn be the right hand side of (18) with only the first
n terms in the series. Using (15), we have

ξn − ξm =
n∑

k=m

αλk
1− αλk

(x, ϕk)ψk =
n∑

k=m

ασk
1− αλk

(x,Buk)C∗ vk.

Since ‖uk‖ = 1 and ‖vk‖ = 1, this implies

‖ξn − ξm‖ ≤ ‖B‖ ‖C∗‖
n∑

k=m

∣∣∣∣ ασk
1− αλk

∣∣∣∣ ≤ ‖B‖ ‖C∗‖ sup
`≥1

∣∣∣∣ α

1− αλ`

∣∣∣∣ n∑
k=m

σk.

Recall the balanced POD eigenvalues {λk} are the eigenvalues of ΠP . Therefore, since α−1 is not
an eigenvalue of ΠP , we have 1−αλk is nonzero. Also, since Π and P are compact, the eigenvalues
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{λ`} may only accumulate at zero; therefore, the supremum of |α/(1−αλ`)| is finite. Furthermore,
the sum of the singular values of H is finite since H is trace class [33, Proposition 1]. Therefore, for
m and n large enough,

∑n
k=m σk can be made as small as desired. This implies {ξn} is a Cauchy

series and therefore converges.
Let ξ equal the right hand side of (18). We will show (I−αΠP ) ξ = x so that ξ = (I−αΠP )−1x,

i.e., that (17) and (18) hold. Compute:

(I − αΠP ) ξ = (I − αΠP )

[
x+

∑
k≥1

αλk
1− αλk

(x, ϕk)ψk

]
= (I − αΠP )x+

∑
k≥1

αλk
1− αλk

(x, ϕk)ψk

−
∑
k≥1

α2λk
1− αλk

(x, ϕk) ΠPψk.

Since ΠPψk = λkψk, the two sums can be combined to give

(I − αΠP ) ξ = (I − αΠP )x+
∑
k≥1

[
αλk

1− αλk
−

α2λ2
k

1− αλk

]
(x, ϕk)ψk

= (I − αΠP )x+
∑
k≥1

αλk (x, ϕk)ψk.

Next, using ΠP = C∗HB∗, the expression (15) for the balanced POD eigenvalues and modes,
and the singular value expansion of H (14) gives

αΠPx = α
∑
k≥1

σk (B∗x, uk)C∗vk

= α
∑
k≥1

σ2
k (x, σ

−1/2
k Buk)σ

−1/2
k C∗ vk

= α
∑
k≥1

λk (x, ϕk)ψk.

(Here, as before we consider the above sum for αΠPx to terminate if the singular values become
zero.) This combined with the above gives (I − αΠP ) ξ = x.

Let {zNi }
q
i=1 and {wN

j }sj=1 be another finite collection of functions in L2(Iz;X) and L2(Iw;X),

respectively. Let ΠN = (CN )∗CN be the POD operator for {zNi } and let PN = BN (BN )∗ be the
POD operator for {wN

j }, where BN and CN are defined analogously to B and C above. Furthermore,

let {λNk , ϕN
k , ψ

N
k } be the balanced POD eigenvalues and modes for the data {zNi , wN

j }. Again, these
may be arbitrary square integrable functions, however our primary interest is with the functions
{zNi } and {wN

j } defined in Step 3 of the algorithm in Section 5 above.

For xN given in X, define ξNr ∈ X by

ξNr = xN +
r∑

k=1

αλNk
1− αλNk

(xN , ϕN
k )ψN

k . (19)

The result below gives that ξNr converges to ξ = (I −αΠP )−1x as the approximate data {zNi , wN
j }

converges to the data {zi, wj}. We also give the bound (20) below on the error ‖ξ−ξNr ‖ that shows
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the effect of using approximate data to form ξNr (the first three terms in the error bound) and the
effect of only using r terms in the series for ξNr as opposed to the full series (18) for ξ (the fourth
term in the bound).

Theorem 1. Let the above assumptions hold. If α−1 is not an eigenvalue of ΠP or ΠNPN for N
sufficiently large, then there exist positive constants C1,N , C2,N , and C3,N such that

‖ξ − ξNr ‖ ≤C1,N

( q∑
i=1

∫
Iz

‖zi(t)− zNi (t)‖2 dt
)1/2

+ C2,N

( s∑
j=1

∫
Iw

‖wj(t)− wN
j (t)‖2 dt

)1/2

+ C3,N ‖x− xN‖+ ‖xN‖
∑
k>r

∣∣∣∣ αλNk
1− αλNk

∣∣∣∣ ‖ϕN
k ‖ ‖ψN

k ‖ <∞. (20)

If xN → x in X, zNi → zi in L2(Iz;X) for i = 1, . . . , q, and wN
j → wj in L2(Iw;X) for j = 1, . . . , s,

then
lim

N,r→∞
ξNr = ξ = (I − αΠP )−1x.

Furthermore, if the balanced POD eigenvalues λ1, . . . , λr are distinct, then

lim
N→∞

ξNr = ξr := x+

r∑
k=1

αλk
1− αλk

(x, ϕk)ψk, (21)

and the norm error between ξ and ξr is bounded by

‖ξ − ξr‖ ≤ ‖x‖
∑
k>r

∣∣∣∣ αλk
1− αλk

∣∣∣∣ ‖ϕk‖ ‖ψk‖ <∞. (22)

Proof. Let ξN ∈ X be defined by ξN = (I −αΠNPN )−1xN , where N must be large enough so that
α−1 is not an eigenvalue of ΠNPN . We have ‖ξ − ξNr ‖ ≤ ‖ξ − ξN‖+ ‖ξN − ξNr ‖.

To bound the term ‖ξ−ξN‖, subtract the equations (I−αΠP )ξ = x and (I−αΠNPN )ξN = xN

(see [22, Lemma 4.1.14, page 64]) to obtain

ξ − ξN = (I − αΠNPN )−1

[
α (ΠP −ΠNPN ) ξ + (x− xN )

]
.

Therefore,

‖ξ − ξN‖ ≤ ‖(I − αΠNPN )−1‖
[
|α| ‖ΠP −ΠNPN‖ ‖ξ‖+ ‖x− xN‖

]
.

Next, ‖ΠP −ΠNPN‖ ≤ ‖Π‖‖P − PN‖+ ‖PN‖‖Π−ΠN‖. Factoring the POD operators gives

‖P − PN‖ ≤
(
‖B‖+ ‖BN‖

)
‖B−BN‖, ‖Π−ΠN‖ ≤

(
‖C‖+ ‖CN‖

)
‖C− CN‖.

Using the definitions of the operators B, BN , C, and CN , it can be shown1 that

‖Π−ΠN‖ ≤
(
‖C‖+ ‖CN‖

)( q∑
i=1

∫
Iz

‖zi(t)− zNi (t)‖2 dt
)1/2

, (23)

‖P − PN‖ ≤
(
‖B‖+ ‖BN‖

)( s∑
j=1

∫
Iw

‖wj(t)− wN
j (t)‖2 dt

)1/2

. (24)

1See [34] for more details and error bounds in the stronger trace norm.
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This gives the first three terms in the error bound (20) for ‖ξ − ξNr ‖ with

C1,N = |α| ‖(I − αΠNPN )−1‖ ‖PN‖ ‖ξ‖
(
‖C‖+ ‖CN‖

)
,

C2,N = |α| ‖(I − αΠNPN )−1‖ ‖Π‖ ‖ξ‖
(
‖B‖+ ‖BN‖

)
,

C3,N = ‖(I − αΠNPN )−1‖.

To produce the fourth term in the error bound (20) for ‖ξ − ξNr ‖, consider the second term in
the bound ‖ξ − ξNr ‖ ≤ ‖ξ − ξN‖+ ‖ξN − ξNr ‖. By Lemma 1,

ξN = xN +
∑
k≥1

αλNk
1− αλNk

(xN , ϕN
k )ψN

k .

Therefore,

‖ξN − ξNr ‖ ≤ ‖xN‖
∑
k>r

∣∣∣∣ αλNk
1− αλNk

∣∣∣∣ ‖ϕN
k ‖ ‖ψN

k ‖.

The same technique as in the proof of Lemma 1 shows that this bound is less than

‖BN‖ ‖(CN )∗‖ sup
`>r

∣∣∣∣ α

1− αλN`

∣∣∣∣∑
k>r

σNk , (25)

where {σNi } are the singular values of HN = CNBN . As before, since α−1 is not an eigenvalue of
the compact operator ΠNPN for N large enough, the quantity sup`>r |α/(1−αλN` )| is finite. Also,
since HN is trace class [33, Proposition 1], the quantity

∑
k>r σ

N
k is finite.

This proves the error bound (20).
Next, assume xN → x and each zNi → zi and wN

j → wj as N →∞. Again, using the definitions

of the operators B, BN , C, and CN , it can be shown that BN → B and CN → C in the operator
norm as N → ∞. Therefore, ΠN → Π and PN → P , and [22, Theorem 4.1.13, page 63] gives
(I−αΠNPN )−1 → (I−αΠP )−1 in the operator norm. This implies the constants C1,N , C2,N , and
C3,N converge to finite values as N → ∞, and the first two terms in the error bound (20) can be
made as small as desired for N large enough. Clearly, the third term in the error bound can also be
made as small as desired since xN → x and C3,N converges. Lastly, consider the above bound (25)
on the fourth term in the error bound (20). Again, since HN is trace class, the quantity

∑
k>r σ

N
k

can be made as small as desired for r large enough. This proves ξNr → ξ as N, r →∞.
Next, assume the balanced POD eigenvalues λ1, . . . , λr are distinct. The theory in [31] gives

that the convergence of each zNi → zi in L2(Iz;X) and wN
j → wj in L2(Iw;X) implies that all of

the approximate balanced POD eigenvalues and modes (suitably normalized) converge as N →∞,
i.e., λNk → λk, ϕN

k → ϕk, and ψN
k → ψk for k = 1, . . . , r. This proves (21).

The error bound (22) follows directly from the representation of ξ in Lemma 1 and the definition
of ξr. Also, it can be proved that the error bound is finite using the technique in the proof of Lemma
1.

The following result on the convergence of the balanced POD eigenvalues can be found in [31];
for completeness, we include a proof here.

Proposition 2. Let the above assumptions hold. If zNi → zi in L2(Iz;X) for i = 1, . . . , q, and
wN
j → wj in L2(Iw;X) for j = 1, . . . , s, then the balanced POD eigenvalues converge, i.e., λNk → λk

for all k, and also εNmax =
[
1 + λN1

]−1/2
converges to εmax =

[
1 + λmax(PΠ)

]−1/2
as N →∞.
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Proof. Recall H = CB, where C and B are defined above, and HN is defined similarly. Again,
using the definitions it can be shown that if each zNi → zi in L2(Iz;X) and each wN

j → wj in

L2(Iw;X), then HN → H in the operator norm as N → ∞. Convergence in norm implies the
individual singular values converge since |σk−σNk | ≤ ‖H−HN‖ (see, e.g., [20, Corollary 2.3]). The
definition of the balanced POD eigenvalues and Proposition 1 above give λk = λk(PΠ) = σ2

k and
λNk = λk(PNΠN ) = (σNk )2. Therefore, λNk → λk for all k, and εNmax → εmax as N →∞.

7 Numerical Results

In this section we give numerical results for two example problems.

7.1 Example Problem 1

For the first example, consider a one dimensional convection diffusion equation

wt(t, x) = µwxx(t, x)− κwx(t, x) + b(x)u(t),

w(t, 0) = 0, w(t, 1) = 0,

w(0, x) = w0(x).

System measurements are taken of the form

y(t) =

∫ 1

0
c(x)w(t, x) dx.

We assume the functions b(x) and c(x) are square integrable.
For the balanced POD algorithm, we require an abstract formulation of the problem. Briefly,

this can be done as follows. LetX be the Hilbert space L2(0, 1) of square integrable functions defined
on the interval (0, 1) with standard inner product (f, g) =

∫ 1
0 f(x)g(x) dx and norm ‖f‖ = (f, f)1/2.

Define the convection diffusion operator A : D(A) ⊂ X → X by

[Aw](x) = µwxx(x)− κwx(x),

where functions in D(A) are twice differentiable and satisfy the above boundary conditions. Define
B : R → X and C : X → R by [Bu](x) = b(x)u and Cw = (w, c). In this way, the PDE system
can be written as the infinite dimensional system

ẇ(t) = Aw(t) +Bu(t), w(0) = w0, y(t) = Cw(t),

where the dot denotes a time derivative.
For this example, we can easily check for convergence of the algorithm and also compare results

with computations using matrix approximations of the operators A, B, and C. We test the con-
vergence of the algorithm with µ = 0.05, κ = 1, control input function b(x) = 4 if 0 < x < 1/2 and
b(x) = 0 otherwise, and observation function c(x) = 2 if 1/2 < x < 1 and c(x) = 0 otherwise.

For the snapshot algorithms, we used standard piecewise linear finite elements for the spatial
discretization. For the functional gain computations, we used zero as the initial guess in the
Kleinman-Newton iterations. We used a constant time step of ∆t = 0.01 in the trapezoid Lyapunov
solver. To approximate the solutions of the differential equations (10) and (11) in Step 2 of the
algorithm, we used the trapezoid rule for the time integration.

The computed balanced POD eigenvalues are shown in Figure 1 for various numbers of equally
spaced finite element nodes. The balanced POD eigenvalues decay very rapidly to zero, and they

Preprint; published in: Comput. Optim. Appl. 53 (2012), no. 1, 227-248 14

http://dx.doi.org/10.1007/s10589-011-9451-x


J. R. Singler and B. A. Batten Balanced POD for PDE Robust Controller Computations

converge as the mesh is refined. Since the eigenvalues decay to zero rapidly, the error bound (20)
of Theorem 1 leads us to expect that a small value of r for ξNr will provide a good approximation
to ξ in the computation of W ∗F .
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33 nodes
65 nodes
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Figure 1: Approximate balanced POD eigenvalues λNk computed using various numbers of equally
spaced finite element nodes.

One main goal in the central controller computation is the approximation of the maximum

robustness margin εmax =
[
1 +λmax(PΠ)

]−1/2
. As discussed above, the first approximate balanced

POD eigenvalue, λN1 , converges to λmax(PΠ) as the approximate solutions of the differential equa-

tions (10) and (11) converge. Therefore, we approximate εmax by εNmax =
[
1 + λN1

]−1/2
. As shown

above, λN1 converged very quickly as the mesh is refined. Table 1 shows the fast convergence of the
approximated maximum robustness margin to approximately 0.7596 as the finite element mesh is
refined.

Table 1: The maximum robustness margin εmax =
[
1 + λmax(PΠ)

]−1/2
approximated by εNmax =[

1 + λN1
]−1/2

using various numbers of equally spaced finite element nodes.

nodes 33 65 129 257

εNmax 0.7599 0.7597 0.7597 0.7596

The second goal in the central controller computations is the approximation of W ∗F = (I −
αΠP )−1F , where α = −(1 − σ−2), σ = (1 − ε2)1/2, and 0 < ε < εmax. For this model problem,
Fy = fy, where f ∈ X is the functional gain. As discussed above, to compute W ∗F , we need only
compute W ∗f since W ∗Fy = (W ∗f)y. We approximate ξ = W ∗f with ξNr defined in (12).

Figure 2 shows the function ξNr (x) with r = 3 and ε = (0.9) εNmax computed using 65 equally
spaced finite element nodes. Refining the finite element mesh, decreasing the time step, or increasing
r gave very little change in ξNr (x). For example, increasing r from 3 to 4 gave an L2 norm difference
in ξNr of order 10−6.

For all computations, the algorithm gave nearly identical results to computations using finite
element matrix approximations of the operators A, B, and C. In particular, we found nearly
identical maximum robustness margins and also ξNr was very close to the function ξ computed
using the matrix approximations.
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Figure 2: The function ξNr (x) for r = 3 and ε = (0.9) εNmax as computed using 65 finite element
nodes.

In our computations, we found that using an adaptive solver (such as Matlab’s ode23s) for
the differential equations (10) and (11) in Step 2 of the algorithm gave similar results compared
to integrating these differential equations using the trapezoid rule with a constant time step. We
did notice that the smaller balanced POD eigenvalues were more accurately approximated using
an adaptive solver; however, this did not affect the accuracy in the computation of ξNr since ξNr is
constructed using only the largest balanced POD eigenvalues.2

7.2 Example Problem 2

For the second example, consider a two dimensional convection diffusion equation

wt(t, x, y) = µ
(
wxx(t, x, y) + wyy(t, x, y)

)
− xww(t, x, y)− y wy(t, x, y) + b(x, y)u(t),

on the unit square Ω = [0, 1]× [0, 1] with w = 0 on the bottom, right, and top walls (where y = 0,
x = 1, and y = 1) and wx = 0 on the left wall (where x = 0). System measurements are taken of
the form

y(t) =

∫
Ω
c(x, y)w(t, x, y) dx dy.

We assume the functions b(x, y) and c(x, y) are square integrable. The formulation of the A, B,
and C operators are similar to the example above.

We chose µ = 0.05, control input function b(x, y) = 5 sin(πx) sin(πy) if x > 1/2 and b(x, y) = 0
otherwise, and observation function c(x, y) = 5 for all x and y. We used standard piecewise
bilinear finite elements for the spatial discretization, zero as the initial guess in the Kleinman-
Newton iterations, and a constant time step of ∆t = 0.01 in the trapezoid Lyapunov solver. To
approximate the solutions of the differential equations (10) and (11) in Step 2 of the algorithm, we
used the trapezoid rule for the time integration.

The computed balanced POD eigenvalues are shown in Figure 3 for various numbers of equally
spaced finite element nodes in each coordinate direction. The balanced POD eigenvalues decay
very rapidly to zero, and they converge as the mesh is refined. Again, we can expect that a small
value of r for ξNr will provide a good approximation to ξ in the computation of W ∗F . Also, εNmax

2In an earlier version of this paper [37], we erroneously reported that using an adaptive solver gave superior
accuracy in the algorithm. However, our findings were due to an error in the computer implementation of the
balanced POD computations for the trapezoid rule with constant time step.
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Figure 3: Approximate balanced POD eigenvalues λNk computed using various numbers of equally
spaced finite element nodes in each coordinate direction.

quickly converges to to approximately 0.793 as the mesh is refined.
Figure 4 shows the function ξNr (x, y) with r = 3 and ε = (0.75) εNmax computed using 33 equally

spaced finite element nodes in each coordinate direction. Again, refining the finite element mesh,
decreasing the time step, or increasing r gave very little change in ξNr (x).
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Figure 4: The function ξNr (x, y) for r = 3 and ε = (0.75) εNmax as computed using 33 finite element
nodes in each coordinate direction.

8 Conclusions and Future Work

We presented an algorithm based on balanced POD for the computation of a robustly stabilizing
control law for large-scale finite dimensional linear systems and a class of linear distributed pa-
rameter systems. Specifically, we considered the central controller, which is robust with respect to
left coprime factor perturbations. The algorithm requires approximate solutions of specific linear
differential equations; these computations can be performed accurately and efficiently with existing
software. We proved convergence of the algorithm as the approximate solutions of the differential
equations converge. The algorithm also does not require access to matrix approximations of system
operators.
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We believe the algorithm can be modified to compute the challenging features of other robust
control laws, such as the standard H∞ controller. Furthermore, although we used balanced POD
in this work, it is likely that other balanced model reduction algorithms could be modified in a
similar way for the robust control computations.

The computed central controller must be reduced in order to be implemented in real time. Also,
in the reduction process, it would be desirable to retain as much robustness as possible. These
topics will be considered in future work along with testing the algorithm on more challenging PDE
systems.

We also note that Curtain [14] has extended the robustly stabilizing controller theory of [19, 15]
to a very general class of PDE systems, including systems with unbounded input and output
operators as often arise in applications. It is of interest to develop algorithms to compute robust
controllers for such systems.
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street by cylinder rotation, in Proceedings of American Control Conference, 2010, pp. 5674–
5681. 3

[11] J. A. Burns and K. P. Hulsing, Numerical methods for approximating functional gains in
LQR boundary control problems, Math. Comput. Modelling, 33 (2001), pp. 89–100. 2

[12] J. A. Burns, B. B. King, and D. Rubio, Feedback control of a thermal fluid using state
estimation, Int. J. Comput. Fluid Dyn., 11 (1998), pp. 93–112. 2

[13] J. A. Burns, E. W. Sachs, and L. Zietsman, Mesh independence of Kleinman–Newton
iterations for Riccati equations in Hilbert space, SIAM J. Control Optim., 47 (2008), pp. 2663–
2692. 3, 3.1

[14] R. F. Curtain, Robustly stabilizing controllers with respect to left-coprime factor perturbations
for infinite-dimensional linear systems, Systems Control Lett., 55 (2006), pp. 509–517. 8

[15] R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear System
Theory, Springer-Verlag, New York, 1995. 1, 2, 2, 8

[16] B. T. Dickinson, J. R. Singler, and B. A. Batten, A snapshot algorithm for linear
feedback flow control design, in Proceedings of the AIAA Infotech@Aerospace Conference and
AIAA Unmanned...Unlimited Conference, 2009. AIAA paper number 2009-1961. 3

[17] F. Feitzinger, T. Hylla, and E. W. Sachs, Inexact Kleinman-Newton method for Riccati
equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 272–288. 1, 3

[18] J. S. Gibson and A. Adamian, Approximation theory for linear-quadratic-Gaussian optimal
control of flexible structures, SIAM J. Control Optim., 29 (1991), pp. 1–37. 2

[19] K. Glover and D. McFarlane, Robust stabilization of normalized coprime factor plant
descriptions with H∞-bounded uncertainty, IEEE Trans. Automat. Control, 34 (1989), pp. 821–
830. 1, 2, 8
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