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Abstract

We consider two algorithms to approximate the solution Z of a class of stable operator Lya-
punov equations of the form AZ + ZA∗ + BB∗ = 0. The algorithms utilize time snapshots of
solutions of certain linear infinite dimensional differential equations to construct the approxima-
tions. Matrix approximations of the operators A and B are not required and the algorithms are
applicable as long as the rank of B is relatively small. The first algorithm produces an optimal
low rank approximate solution using proper orthogonal decomposition. The second algorithm
approximates the product of the solution with a few vectors and can be implemented with a
minimal amount of storage. Both algorithms are known for the matrix case, however the exten-
sion of the algorithms to infinite dimensions appears to be new. We establish easily verifiable
convergence theory and a priori error bounds for both algorithms and present numerical results
for two model problems.

1 Introduction

Approximating the solution of an operator Lyapunov equation of the form

AZ + ZA∗ +BB∗ = 0 (1)

has many applications in model reduction and control problems for linear systems. For example, ma-
trix Lyapunov equations are used in algorithms for balanced model reduction problems (Antoulas,
2005; Datta, 2004; Zhou et al., 1996) and they arise in Newton iterations for Riccati equations
(Kleinman, 1968; Banks & Ito, 1991; Burns et al., 2008; Morris & Navasca, 2008), which are used
to compute optimal feedback control laws. Recent work on approximating large-scale Lyapunov
equations include Antoulas (2005); Baur & Benner (2006); Gavrilyuk et al. (2004); Grasedyck &
Hackbusch (2007); Grasedyck et al. (2003); Gugercin et al. (2003); Li & White (2002); Penzl (9900);
Rosen & Wang (1995); Simoncini (2007). These problems often arise from the discretization of a
partial differential equation (PDE).

In this work, we consider two snapshot algorithms to directly approximate solutions of a stable
operator Lyapunov equation of the above form. Unlike many other large-scale algorithms, the
algorithms presented here are not iterative; instead, the approximation is constructed by simulating
m linear infinite dimensional differential equations, where m is the rank of B. Solving these
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differential equations is the main computational cost of the algorithm; therefore, the proposed
algorithm is applicable to large-scale systems when the rank of B is relatively small.

The first algorithm uses proper orthogonal decomposition to construct a low rank approximation
to the solution Z of the Lyapunov equation. The second algorithm approximates Zx for a few
vectors x with a minimal amount of storage; in certain applications (such as the Newton iterations
for Riccati equations mentioned above) this is all that is needed. After an earlier version of this
work was complete (Singler, 2008), the author became aware that both algorithms are known for
the matrix case: the minimal storage algorithm was proposed by Saad (1990) and the low rank
algorithm by Willcox and Peraire (2002). We extend both algorithms to an infinite dimensional
case and prove convergence under minimal and easily verifiable assumptions. Furthermore, we
establish a priori error bounds for both algorithms.

Let us briefly discuss other solution strategies for operator Lyapunov equations and the reasons
for advocating the algorithms studied here. To clarify the ideas, we focus on a distributed parameter
model problem: a one dimensional convection diffusion equation

wt(t, x) = µwxx(t, x)− κwx(t, x) + b(x)u(t), (2)

w(t, 0) = 0, w(t, 1) = 0, (3)

where subscripts denote partial derivatives, µ and κ are constants, b(x) is a given function, and
u(t) is an input. Roughly, the A operator corresponds to the convection diffusion operator, i.e.,
Aw = µwxx − κwx, along with the boundary conditions (3). The B operator corresponds to
multiplication by the function b(x), i.e., Bu = b(x)u. (More details for this example can be found
in Section 5.)

A standard approach to approximating the solution of the operator Lyapunov equation (1) is to
first discretize the system and solve the corresponding finite dimensional Lyapunov equation. For
example, discretizing the system in space (e.g., with finite differences or finite elements) leads to a
matrix differential equation of the form

ẋN (t) = [AN ]xN (t) + [BN ]u(t). (4)

One can now use existing large-scale solvers for the matrix Lyapunov equation

[AN ][ZN ] + [ZN ][AN ]∗ + [BN ][BN ]∗ = 0. (5)

This matrix approximation approach has been used extensively for model reduction and control
computations for distributed parameter systems; see, e.g., Banks & Burns (1978); Banks & Ito
(1991); Banks et al. (1996); Burns & Fabiano (1989); Burns et al. (1998); Camp & King (2002);
Evans (2003); Gibson & Adamian (1991); King et al. (2006); Morris & Navasca (2008).

There may be difficulties with this matrix approximation approach that must be addressed in
order to tackle complex problems.

Difficulties of matrix approximation approach:

• Matrix approximations are required: It may not be easy or even possible to extract
matrix approximations ([An], [BN ]) of the operators (A,B) from existing black box or com-
mercial simulation codes.

• Difficulties verifying convergence: For some problems and discretization schemes, the
existing convergence theory (see, e.g., Corollary 4.11 in Curtain, 2003) can be difficult to
verify. As the problems and discretization schemes become increasingly complex, it may be
extremely difficult to theoretically and numerically verify convergence. For example:
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– Some discretization methods for certain problems (such as linearized fluid flows) do
not produce an approximate differential equation of the form (4); standard convergence
theory does not apply and guarantees of convergence and accuracy may be difficult to
obtain.

– A “natural” discretization scheme may fail to satisfy the requirements of the theory and
produce an incorrect approximation (e.g., see Burns et al., 1988; Borggaard et al., 2004).

• No known adaptive methods to increase accuracy: There is no known method for
estimating the error between the computed solution of the finite dimensional Lyapunov equa-
tion (5) and the solution of the corresponding infinite dimensional Lyapunov equation (1).
Therefore, it may not be clear how to adaptive refine the discretization scheme to ensure
accuracy.

The snapshot algorithms studied here have many advantages, including the potential to over-
come the above difficulties.

Advantages of snapshot algorithms:

• Computationally efficient: The main computational cost of the algorithm is comput-
ing solutions of linear infinite dimensional differential equations. These computations can
be performed very efficiently, using well developed computational methods and/or existing
simulation code.

• Matrix approximations are not required: Of course discretization must be performed
with the algorithms, however an approximating matrix differential equation of the form (4) is
not required. This allows the use of existing simulation codes and specialized discretization
schemes that produce approximations of different forms.

• Straightforward to verify convergence: The convergence theory is easy to verify and
only requires convergence of the solutions of the linear differential equations.

• Best possible approximation error: For the low rank algorithm, the approximate error
converges to the best possible error for approximations of a given rank.

• Adaptive methods to increase accuracy: Simple, computable error bounds indicate the
quality of the approximation and can guide the rank and refinement of the approximation.
In particular, the approximation error depends largely on the simulation error in solving the
linear infinite dimensional differential equations; thus, it is possible to use adaptive solvers or
error estimators to guide refinement and produce more accurate approximations.

Proper orthogonal decomposition (POD), which is described in detail in Section 3, has been used
extensively for model reduction and control computations for partial differential equations; see, e.g.,
Atwell (2000); Atwell et al. (2001); Atwell & King (2001, 2004); Banks et al. (2002, 2000); Kepler
et al. (2000); Lee & Tran (2005). The use of POD in this work is fundamentally different than in
the above references. To be complete, we briefly outline the “standard” POD-based approach for
the Lyapunov equation (1) and its difficulties:

1. Collect a dataset capturing various features of the partial differential equation (2)-(3). Data
often comes from simulations using certain initial conditions and inputs u(t).

2. Apply POD to the data and extract a low order POD basis (see Section 3 for details).
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3. Project the partial differential equation onto the POD basis to create a low order matrix
differential equation of the form (4). Solve the low order matrix Lyapuonv equation (5).

Some researchers have had success on similar problems with this approach, however the method can
produce unpredictably bad results. In general, there are no guarantees of accuracy or convergence
for model reduction or control problems. (There are error bounds and error estimating procedures
for the simulation problem; see Kunisch & Volkwein, 2001, 2002; Homescu et al., 2005).

We emphasize that the use of POD in this work is fundamentally different from standard POD
methods as described above. In particular, we prove convergence for the snapshot algorithms.

This work is primarily concerned with the introduction and analysis of the snapshot Lyapunov
algorithms at the infinite dimensional level. The remainder of this work proceeds as follows. We
begin with a presentation of the algorithms and an outline of the convergence theory and error
bounds. Section 3 gives an overview of the continuous proper orthogonal decomposition, which is
used in the low rank algorithm. This is followed by proofs of the theoretical results in Section 4.
The following section presents numerical results for two model problems; the convergence analysis
is confirmed, and we also find that accurate time stepping of the differential equations is important
for obtaining accurate results.

2 The Snapshot Algorithms

We now describe the snapshot algorithms and give an overview of the approximation theory.
The algorithms are applicable to the matrix case and a class of infinite dimensional problems.

As mentioned in the introduction, we believe these algorithms have great potential for infinite
dimensional problems. Therefore, we concentrate on this case in the present work.

Throughout this work, let X be a separable Hilbert space with inner product (·, ·) and corre-
sponding norm ‖ · ‖ = (·, ·)1/2. For simplicity, we assume the inner product is real valued. For
the matrix Lyapunov equation, X is taken to be Rn and the inner product can be taken as the
standard dot product, (a, b) = aT b, or a weighted dot product, (a, b) = aTMb, where M ∈ Rn×n is
symmetric positive definite.

We suppose A and B have the following properties. In the matrix case, A ∈ Rn×n is exponen-
tially stable and B ∈ Rn×m. In the infinite dimensional case, A : D(A) ⊂ X → X generates an
exponentially stable C0-semigroup1 eAt over X and B : Rm → X is finite rank and bounded. The
latter assumption implies B must take the form

Bu =
m∑
j=1

bjuj ,

where each bj ∈ X and u = [u1, . . . , um ]T ∈ Rm (see Theorem 6.1 in Weidmann, 1980). This
representation for B also holds for the matrix problem; in this case, bj is the jth column of B.

2.1 Key to the Algorithms

We now show that the solution of the Lyapunov equation takes a special form. This is the key to
both of the algorithms.

1For an introduction to semigroup theory with applications to infinite dimensional control and systems theory, see
Curtain & Zwart (1995).
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In the infinite dimensional case, the operator Lyapunov equation (1) is understood as follows:
the operator Z : X → X is a solution if Z maps D(A∗) into D(A) and

AZx+ ZA∗x+BB∗x = 0

for all x ∈ D(A∗); see, e.g., Curtain & Zwart (1995, pages 160–161).

Proposition 1. Under the above assumptions, the unique solution Z : X → X of the Lyapunov
equation (1) is given by

Zx =

∫ ∞
0

m∑
j=1

(x,wj(t))wj(t) dt, (6)

where wj(t) = eAtbj is the unique solution of the linear evolution equation

ẇj(t) = Awj(t), wj(0) = bj , (7)

for j = 1, . . . ,m.

Remark 1. If bj is not in D(A), then wj(t) = eAtbj is not necessarily a classical solution of the
differential equation (7). However, wj(t) is the unique solution of (7) in a generalized or weak sense;
see, e.g., Curtain & Zwart (1995, Example A.5.29) or Pazy (1983, page 105). Throughout this work,
a solution of an infinite dimensional differential equation is always understood in a generalized or
weak sense.

Proof. Given the assumptions above, the exact solution Z : X → X of the Lyapunov equation is
given by Curtain & Zwart (1995, Theorem 4.1.23)

Zx =

∫ ∞
0

eAtBB∗eA
∗tx dt.

As is well known, the solution may be factored as Z = BB∗, where B : L2(0,∞;Rm)→ X is defined
by

Bu =

∫ ∞
0

eAtBu(t) dt

and B∗ : X → L2(0,∞;Rm), the adjoint of B, is given by B∗x = B∗eA
∗tx. Again, given the assump-

tions above on B, the operator must have the form Bu =
∑m

j=1 bjuj , where u = [u1, . . . , um ]T ∈
Rm, and each bj is in X. Then we have

Bu =

∫ ∞
0

eAtBu(t) dt =

∫ ∞
0

m∑
j=1

uj(t)wj(t) dt,

where wj(t) = eAtbj is the solution of the linear evolution equation (7) for j = 1, . . . ,m. Since eAt

is exponentially stable, there are constants M ≥ 1 and ω > 0 so that ‖eAtx‖ ≤ Me−ωt‖x‖ for any
x ∈ X; therefore, each wj is in L2(0,∞;X). The adjoint operator B∗ : X → L2(0,∞;Rm) is easily
computed to be

[B∗x](t) = [ (x,w1(t)), . . . , (x,wm(t)) ]T .

Again using Z = BB∗ gives the expression (6).
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The importance of this result is that the solution of the Lyapunov equation is exactly equal to the
continuous POD operator for the set of functions {wj(t)}. As we discuss in more detail below, the
eigenvalues and normalized eigenvectors of the integral operator (6) are the POD eigenvalues and
modes of the dataset {wj(t)}. Since the Lyapunov solution Z equals the continuous POD operator
for {wj(t)}, the POD eigenvalues and modes equal, by definition, the eigenvalues and orthonormal
eigenvectors of Z. For the low rank POD-based algorithm, we approximate the POD eigenvalues
and modes and construct an approximate truncated eigenvalue expansion of the Lyapunov solution
Z. The other snapshot based algorithm directly uses the integral representation of the solution Z
to approximate the product of Z with a few vectors in the Hilbert space without ever forming or
storing an approximation to Z.

2.2 The Algorithms

We now describe the convergent algorithms to approximate the solution Z : X → X of the Lyapunov
equation (1). We comment on the dual Lyapunov equation A∗Z + ZA+ C∗C = 0 below.

We first summarize the POD-based algorithm. Again, we assume Bu =
∑m

j=1 bjuj . Throughout
this work we use a superscript N on a quantity to denote an approximation of that quantity.

Algorithm 1 (POD-Based Low Rank Approximate Solution):

1. For j = 1, . . . ,m, compute an approximation wN
j (t) to the solution wj(t) = eAtbj of the linear

differential equation
ẇj(t) = Awj(t), wj(0) = bj . (8)

2. Compute {λNk } and {ϕN
k }, the POD eigenvalues and modes of the dataset {wN

j }mj=1, e.g., by
the method of snapshots or by quadrature (see Section 3.2).

3. Choose r and form the rth order approximate Lyapunov solution ZN
r : X → X given by

ZN
r x =

r∑
k=1

λNk (x, ϕN
k )ϕN

k , (9)

where (·, ·) is the inner product over the Hilbert space.

The choice of r and the accuracy of the approximations wN
j (t) can be guided by error bounds, which

are presented in Section 2.3. As mentioned above, this algorithm was proposed for the matrix case
by Willcox & Peraire (2002).

Remark 2. If desired, the approximate solution can be factored as ZN
r = R∗R, where R : X → Rr

and its adjoint R∗ : Rr → X are defined by

Rx = [ (x, ψN
1 ), . . . , (x, ψN

r ) ]T , R∗a =
r∑

k=1

akψ
N
k ,

where ψN
k = (λNk )1/2ϕN

k for k = 1, . . . , N and a = [ a1, . . . , ar ]T .

We now describe the snapshot based algorithm to approximate the product of the solution
Z : X → X of the Lyapunov equation (1) with a vector x ∈ X. The algorithm is directly based on
the integral representation of the solution given in Proposition 1 above.

Algorithm 2 (Snapshot-Based Approximate Solution/Vector Product):
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1. For j = 1, . . . ,m, compute an approximation wN
j (t) to the solution wj(t) = eAtbj of the linear

differential equation (8).

2. Compute the approximate product

ZNx =

∫ ∞
0

m∑
j=1

(x,wN
j (t))wN

j (t) dt, (10)

where (·, ·) is the inner product over the Hilbert space.

As mentioned above, this algorithm with quadrature approximations for the integral was proposed
for the matrix case by Saad (1990).

The integral can be approximated directly by the method of snapshots (see Section 3) or by
quadrature; thus, one only needs “time snapshots” of the approximate solutions wN

j (t) to compute

the approximate product. Again, the accuracy of the approximations wN
j (t) can be guided by error

bounds, which are presented in Sections 2.3.
In the snapshot algorithm, the approximate operator ZN does not need to be stored to com-

pute the product ZNx. Moreover, if storing the approximations wN
j (t) is a problem, one can use a

time stepping algorithm for the differential equations (8) and at each time step proceed as follows:
compute the solution of the differential equation at the next time step, update the integral approx-
imation, and discard any solution data not required for the next time step. We give an example of
this procedure using the trapezoid rule for the time stepping in Section 5.2. Products of ZN with
multiple vectors can be computed in a similar manner.

The low rank and snapshot algorithms can be applied to the dual Lyapunov equation

A∗Z + ZA+ C∗C = 0, (11)

by interchanging the roles of A and A∗ and B and C∗ above. Specifically, one must now approximate
the solutions of the dual linear evolution equations

żj(t) = A∗zj(t), zj(0) = cj . (12)

In the matrix case, cj is the jth column of the matrix CT . In the infinite dimensional case, we assume
C : X → Rp is bounded and finite rank so that C must have the form Cx = [(x, c1), . . . , (x, cp)],
where each cj ∈ X (again, see Theorem 6.1 in Weidmann, 1980). The remainder of the algorithms
remains unchanged.

2.3 An Overview of the Approximation Theory

We now give a brief overview of results on convergence and accuracy of the Lyapunov approxima-
tions. Details of the results and the proofs are contained in Section 4 below.

Theorem 1 shows that the trace norm error between the Lyapunov solution Z and the operator
ZN in the snapshot based algorithm (Algorithm 2) is bounded in the trace norm (see Section 4.1)
as follows:

‖Z − ZN‖tr ≤ CN

( m∑
j=1

∫ ∞
0
‖wj(t)− wN

j (t)‖2 dt
)1/2

,

where CN is an approximately computable constant. As each wN
j converges to wj , the constant

CN converges and the trace norm error tends to zero. Note that the error is due to the error
in approximating the solutions wj of the linear differential equations (8). Therefore, adaptive
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algorithms or error estimation techniques can be used to guide refined computations. Again, the
author is not aware of any other algorithm that has the potential for such adaptive computations.

Corollary 1 then gives a bound on the trace norm error between the Lyapunov solution Z and
the POD-based low rank approximation ZN

r of Algorithm 1:

‖Z − ZN
r ‖tr ≤

∑
k>r

λNk + CN

( m∑
j=1

∫ ∞
0
‖wj(t)− wN

j (t)‖2 dt
)1/2

.

We note that the sum of the neglected approximate POD eigenvalues λNk is computable. Therefore,
if one can estimate the approximation error between each wj and wN

j , then the approximation error

between the solution Z and the low rank approximation ZN
r can be estimated. Again, adaptive

computations are possible. Furthermore, as each wN
j converges to wj , the error converges to the

sum of the neglected POD eigenvalues:

lim
N→∞

‖Z − ZN
r ‖tr =

∑
k>r

λk,

and this is the best possible error for a rank r approximation.
Many researchers have noticed that the eigenvalues of solutions of Lyapunov equations (i.e., the

POD eigenvalues) often decay rapidly when B has low rank; therefore, low rank approximations to
a Lyapunov solution can be very accurate. This is the basis of most recent algorithms for solving
large-scale Lyapunov equations. In the matrix case, the recent works by Antoulas et al. (2002);
Grasedyck (2004); Penzl (2000) give theoretical reasons why the solutions of Lyapunov equations
allow accurate low rank approximations. For examples and counterexamples, see the recent works
on large-scale Lyapunov solvers referenced in Section 1.

In Theorem 3, we give a different bound for the operator norm error between the Lyapunov
solution Z and the low rank approximation ZN

r of Algorithm 1:

‖Z − ZN
r ‖ ≤ λr+1 +

r∑
k=1

(
|λk − λNk |+ 2λNk ‖ϕk − ϕN

k ‖
)
,

where λk and ϕk are the kth POD eigenvalue and mode of the set of functions {wj}mj=1. If the
first r POD eigenvalues are distinct, then the approximate POD eigenvalues and modes converge
(when suitably normalized, see Theorem 2) and the second term in the error bound tends to zero.
Thus, the speed of convergence of the approximate Lyapunov solution naturally depends on the
speed of convergence of the approximate POD eigenvalues and modes. Very often in practice, the
dominant POD eigenvalues and modes converge quickly, and therefore we expect fast convergence.
Furthermore, the overall approximation error converges to the first neglected POD eigenvalue:

lim
N→∞

‖Z − ZN
r ‖ = λr+1,

and again this is the best possible error for a rank r approximation to Z.

Remark 3. Due to the approximation theory for the POD eigenvalues in Theorem 2 below, λr+1

can be approximated by λNr+1. Thus, if the first r+ 1 POD eigenvalues and the first r POD modes
have converged, then λNr+1 is a good approximation of the operator norm error bound between Z
and ZN

r . This gives a simple way to assess the accuracy of the approximate solution.
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3 The Continuous Proper Orthogonal Decomposition

As discussed above, the key to the proposed algorithms is that the Lyapunov solution is exactly
the continuous POD operator for the set of functions {wj(t)}mj=1. In this section, we summarize
the continuous proper orthogonal decomposition from the recent works of Kunisch and Volkwein
(2002) and Henri and Yvon (2002a; 2002b; 2005). These works focus on the continuous POD for
a finite time interval, however the theory extends naturally to the case of an infinite time interval.
For completeness, we present proofs of the theorems below in Section 4.2.

Section 3.1 reviews properties of the continuous proper orthogonal decomposition and Section
3.2 focuses on approximating the POD eigenvalues and modes.

3.1 Continuous POD and its Properties

Let L2(0,∞;X) be the set of all functions w such that w(t) ∈ X for all t ≥ 0 and whose X norm
is square integrable, i.e.,

‖w‖L2(0,∞;X) =

(∫ ∞
0
‖w(t)‖2 dt

)1/2

<∞.

A sequence of functions {wN} ⊂ L2(0,∞;X) converges to w ∈ L2(0,∞;X) if ‖wN−w‖L2(0,∞;X) →
0 as N →∞.

We now define the continuous proper orthogonal decomposition and discuss its properties.

Definition 1. The continuous POD operator Z : X → X for a dataset {wj}mj=1 ⊂ L2(0,∞;X) is
defined by

Zx =

∫ ∞
0

m∑
j=1

(x,wj(t))wj(t) dt. (13)

The continuous POD operator is self adjoint, compact, and nonnegative; thus, the eigenvalues
of Z may be ordered λ1 ≥ λ2 ≥ · · · ≥ 0 (with repetitions according to multiplicity) and the
corresponding orthonormal eigenvectors {ϕk} ⊂ X form a complete set.

Definition 2. The eigenvalues {λk} of the continuous POD operator Z are called the POD eigen-
values of {wj} and the orthonormal eigenvectors {ϕk} ⊂ X of Z are called the POD modes of
{wj}.

The POD eigenvalues are an indication of “energy content” and the POD modes are optimal for
data reconstruction. First, the “total energy” in the dataset is contained in the POD eigenvalues:

Proposition 2. Let {wj}mj=1 be a collection of functions in L2(0,∞;X) and let {λk} be the eigen-
values of the POD operator corresponding to the dataset {wj}. Then∫ ∞

0

m∑
j=1

‖wj(t)‖2 dt =
∑
k≥1

λk <∞.

If the dataset is projected onto a subset of the POD modes, the POD eigenvalues provide the
exact data reconstruction error.
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Proposition 3. Let {wj}mj=1 be a collection of functions in L2(0,∞;X) with POD eigenvalues
{λk} and modes {ϕk}. Let wr

j be the rth order projection of wj onto the POD basis, i.e.,

wr
j (t) =

r∑
k=1

(wj(t), ϕk)ϕk. (14)

Then the data reconstruction error is given in terms of the sum of the neglected POD eigenvalues:

m∑
j=1

∫ ∞
0
‖wj(t)− wr

j (t)‖2 dt =
∑
k>r

λk.

In the case of a finite time interval, no other orthonormal basis yields a smaller reconstruction
error. This optimal reconstruction property extends to the case of an infinite time interval, however
we do not prove this here as it is not required for the current work.

We note in passing that approximating each wj(t) in the POD operator (13) by the rth order
projection wr

j (t) produces the approximate POD operator Zr in (9) computed in the low rank POD
algorithm.

3.2 Approximating the Continuous POD

An important feature of proper orthogonal decomposition is that the POD eigenvalues and modes
of a time varying dataset {wj}mj=1 ⊂ L2(0,∞;X) can be approximated by a variety of algorithms.
Two popular approaches are the method of snapshots and quadrature. In the method of snapshots,
the main idea is to approximate each wj with functions whose POD eigenvalues and modes are
easily computable. In the quadrature approach, the POD integral operator is approximated using
quadrature leading to easily computable approximate POD eigenvalues and modes. We describe
both methods below. Furthermore, there are algorithms to compute the POD of very large datasets
(Beattie et al., 2006; Fahl, 2001).

The method of snapshots and the quadrature approach are related since both approximate
a continuous POD operator with a discrete POD operator. The eigenvalues and orthonormal
eigenvectors of the discrete POD operator are then used as approximations of the continuous POD
eigenvalues and modes. Below, we describe the method of snapshots and the quadrature approach
and then present the eigendecomposition of a discrete POD operator.

We begin with the method of snapshots introduced by Sirovich (1987). A popular approach
to the method of snapshots is to use piecewise constant functions (in time) to approximate the
functions wj . It is possible to generalize this algorithm if more variation in time is desired.

Approach 1. The Method of Snapshots:

1. For a collection of functions {wj}mj=1 ⊂ L2(a, b;X), compute approximate snapshots aj,k ≈
wj(tj,k) of wj(t) at times a = tj,0 < tj,1 < · · · < tj,Nj = b.

2. For each j, compute vj,k = (aj,k + aj,k−1)/2 to approximate the average value of wj(t) over
the kth time interval for k = 1, . . . , Nj .

3. Set δj,k = tj,k − tj,k−1, the kth time step for k = 1, . . . , Nj .

4. Define piecewise constant approximations wN
j (t) to wj(t) by wN

j (t) = vj,k for tj,k−1 ≤ t ≤ tj,k.

Compute an approximate POD operator by substituting wN
j (t) for wj(t) in the continuous
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POD operator:

Zx =

∫ b

a

m∑
j=1

(x,wj(t))wj(t) dt ≈ ZNx =

m∑
j=1

Nj∑
k=1

δj,k(x, vj,k)vj,k.

5. “Stack” the data scaled by the square roots of the time steps to arrive at a discrete POD

operator as follows. Let Vj,k = δ
1/2
j,k vj,k and define

W = [V1,1, . . . , V1,N1 , . . . , Vm,1, . . . , Vm,Nm ].

Then ZN : X → X is given by ZNx =
∑N

k=1(x,Wk)Wk, where N =
∑m

j=1Nj .

6. Compute the eigenvalues {λNk } and orthonormal eigenvectors {ϕN
k } of the discrete POD

operator ZN (as described in Proposition 4 below) to obtain approximations of the POD
eigenvalues and modes for {wj}.

We note that this algorithm is often implemented using an equally spaced time grid.
Next, we describe the related quadrature approach for approximating POD eigenvalues and

modes of a time varying dataset.

Approach 2. Quadrature:

1. For a collection of functions {wj}mj=1 ⊂ L2(a, b;X), compute approximate snapshots aj,k ≈
wj(tj,k) of wj(t) at times a = tj,0 < tj,1 < · · · < tj,Nj = b.

2. Use quadrature schemes to approximate the continuous POD operator:

Zx =

∫ b

a

m∑
j=1

(x,wj(t))wj(t) dt ≈ ZNx =
m∑
j=1

Nj∑
k=1

δj,k(x, aj,k)aj,k.

3. “Stack” the data scaled by the square roots of the quadrature weights to arrive at a discrete

POD operator as follows. Let Vj,k = δ
1/2
j,k aj,k and define

W = [V1,1, . . . , V1,N1 , . . . , Vm,1, . . . , Vm,Nm ].

Then ZN : X → X is given by ZNx =
∑N

k=1(x,Wk)Wk, where N =
∑m

j=1Nj .

4. Compute the eigenvalues {λNk } and orthonormal eigenvectors {ϕN
k } of the discrete POD

operator ZN (as described in Proposition 4 below) to obtain approximations of the POD
eigenvalues and modes for {wj}.

As is well known, the eigenvalues and eigenvectors of a discrete POD operator can be computed
by solving a matrix eigenvalue problem. We provide a proof in Appendix A for completeness.

Proposition 4. Let {Wk}Nk=1 be a finite collection of elements in a Hilbert space X and let the
N ×N matrix Γ have ij entries (Wi,Wj). Then the discrete POD operator Z : X → X defined by

Zx =

N∑
k=1

(x,Wk)Wk,
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is compact, self adjoint, and nonnegative. The nonzero eigenvalues of Z are equal to the nonzero
eigenvalues of Γ and they may be ordered λ1 ≥ λ2 ≥ · · · > 0. If λi 6= 0, the corresponding
orthonormal eigenvector ϕi of Z is given by

ϕi = λ
−1/2
i

N∑
j=1

(γi)jWj , (15)

where (γi)j is the jth element of the ith orthonormal eigenvector of Γ.

3.2.1 Approximating the Continuous POD: Discretization

In the approximation procedures described above to compute the continuous POD of a time varying
dataset, the data lies in an infinite dimensional Hilbert space. In order to perform the computations,
a finite dimensional approximation must be performed somewhere in the algorithms. Below, we
briefly describe one finite dimensional computational procedure for approximating the continuous
POD of a dataset.

In many applications, one wishes to compute the POD of a dataset arising from a finite dimen-
sional discretization of a partial differential equation or some other infinite dimensional system.
Therefore, in the method of snapshots or the quadrature approach described above, the time snap-
shots of the data are often expressed as a Galerkin expansion. We describe the computation of the
eigenvalues and eigenvectors of a discrete POD operator when the data takes the form

Wj =
n∑

k=1

dj,kΦk, (16)

where each dj,k is a real number and each Φk is an element of the Hilbert space. This is not the
most general expression possible, however this form leads to a simple algorithm.

Recall from above that in order to compute the eigenvalues and eigenvectors of a discrete POD
operator, we need only compute the eigenvalues and eigenvectors of the matrix Γ with ij entries
Γij = (Wi,Wj). Substituting the above Galerkin expansion in for each Wi gives that the matrix Γ
is given by

Γ = DTMD, (17)

where the n× n “mass” matrix M and the n×N matrix D have ij entries

Mij = (Φi,Φj), Dij = dj,i.

As long as the above matrix product is not too expensive to compute, this leads to a simple
algorithm to compute the discrete POD eigenvalues and modes.

Algorithm. Discrete POD with Data in Galerkin Expansions:

1. Given a collection of data {Wj}Nj=1 ⊂ X of the form (16), compute the n×n matrix Γ defined
above in (17).

2. Compute the eigenvalues {λk} and orthonormal eigenvectors {γk} of Γ.

3. Then the discrete POD eigenvalues are given by {λi}Ni=1 and the orthonormal discrete POD
modes {ϕi} ⊂ X corresponding to nonzero eigenvalues are given by

ϕi = λ
−1/2
i

n∑
k=1

PkiΦk,
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where the n ×N matrix P is given by P = DΓev, and the ith column of the N ×N matrix
Γev is the ith orthonormal eigenvector of Γ.

In many applications, one only needs to compute a relatively small number of POD modes. In this
case, the entire n × N matrix P does not need to be formed. Specifically, in order to compute
the first r modes, first form the N × r matrix Γev,r, whose r columns are the first r orthonormal
eigenvectors of Γ. Then to compute the first r POD modes (i.e., ϕi for i = 1, . . . , r), replace P with
Pr = DΓev,r in the above expression for each ϕi.

We also note that it may be beneficial to use special algorithms to compute the eigenvalues of
Γ = DTMD without ever explicitly forming the product (see Watkins, 2005).

4 Approximation Theory and Error Bounds

We now prove the main results. We first review some background material and provide proofs for
the continuous POD theory in Section 3.

4.1 Notation and Background

In order to discuss the properties of the approximate Lyapunov solution, we first introduce some
notation and background material.

Let K be a compact linear operator from a Hilbert space X to a Hilbert space Y . The operator
norm of K is given by ‖K‖ = sup ‖Kx‖, where x ∈ X has unit norm. The Hilbert-Schmidt (HS)
norm of K is given by

‖K‖HS =
(∑

j≥1
‖Kϕj‖2

)1/2
for any orthonormal basis {ϕj} ⊂ X. If K : X → X is self adjoint and nonnegative, then the
stronger trace (or nuclear) norm is given by

‖K‖tr =
∑
j≥1

(Kϕj , ϕj),

for any orthonormal bases {ϕj} ⊂ X.
A compact operator K is called Hilbert-Schmidt if the HS norm of K is finite and K is called

trace class (or nuclear) is the trace norm of K is finite. If two operators K : X → Y and
L : Y → Z are HS, then the product KL : X → Z is trace class and ‖KL‖tr ≤ ‖K‖HS‖L‖HS .
Also, ‖K‖ = ‖K∗‖ for any of the above norms and ‖K‖ ≤ ‖K‖HS ≤ ‖K‖tr.

Now let K : X → X be compact, self-adjoint, and nonnegative. The eigenvalues of such an
operator can be ordered λ1 ≥ λ2 ≥ · · · ≥ 0 and the corresponding eigenvectors {ϕk} form a
complete orthonormal set. A best rank r approximation to K is given by a solution of the following
problem: find the minimizer over all rank r operators Fr of the operator norm error ‖K − Fr‖. A
solution of this problem (which may not be unique) is given by the rth order truncated eigenvalue
decomposition of K defined by

Krx =

r∑
k=1

λk(x, ϕk)ϕk

The best value of the operator norm error ‖K−Kr‖ is equal to λr+1, the first neglected eigenvalue.
The truncated eigenvalue decomposition also gives a best rank r approximation of K in the trace
norm. In this case, the best trace norm error is given by

∑
k>r λk, the sum of the neglected

eigenvalues.
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4.2 Continuous POD and its Properties

As mentioned above, we give proofs for the continuous POD results on an infinite time interval
in Section 3 as they are crucial for the main results. Many of the proofs of the continuous POD
results follow the theory for the finite time interval from the recent works of Kunisch and Volkwein
(2002) and Henri and Yvon (2002b; 2002a; 2005).

Let {wj}mj=1 be an arbitrary dataset in L2(0,∞;X). The continuous POD operator Z : X → X
for this dataset is given in Definition 1 in Section 3. The POD eigenvalues and modes are the
eigenvalues and orthonormal eigenvectors of the continuous POD operator.

A fundamental property of the POD operator is that it can be factored as Z = BB∗ as follows.

Definition 3. For {wj}mj=1 ⊂ L2(0,∞;X), define the bounded linear operator B : L2(0,∞;Rm)→
X by

Bu =

∫ ∞
0

m∑
j=1

uj(t)wj(t) dt.

It is now straightforward to check the factorization by direct computation.

Proposition 5. The adjoint operator B∗ : X → L2(0,∞;Rm) is given by

[B∗x](t) = [ (x,w1(t)), . . . , (x,wm(t)) ]T .

and therefore Z = BB∗.

The factorization allows us to obtain many properties of the POD operator. First, the factor-
ization directly gives that the POD operator is self adjoint and nonnegative. Next, we show the
POD operator is trace class.

Proposition 6. For {wj}mj=1 ⊂ L2(0,∞;X), the operators B and B∗ are Hilbert-Schmidt and
therefore Z = BB∗ is trace class.

Proof. Our proof follows an argument in (Curtain & Sasane, 2001, Theorem 4).
For i = 1, . . . ,m, define Li : X → L2(0,∞) by [Lix](t) = (x,wi(t)). We have |[Lix](t)| ≤

‖wi(t)‖‖x‖ and
∫∞
0 ‖wi(t)‖2 dt < ∞ since wi ∈ L2(0,∞;X). Theorem 5 in Curtain & Sasane

(2001) (which is a modification of Theorem 6.12, page 140, in Weidmann (1980)) shows each Li is
Hilbert-Schmidt.

The operator B∗ is given by

[B∗x](t) = [L1x(t), . . . , Lmx(t) ]T .

Let {xj} be any orthonormal basis for X. Since each Li is Hilbert-Schmidt,
∑

j≥1 ‖Lixj‖2L2(0,∞) <
∞ for each i. Then ∑

j≥1
‖B∗xj‖2L2(0,∞;Rm) =

∑
j≥1

( m∑
i=1

‖Lixj‖2L2(0,∞)

)
<∞

by above. Therefore B∗ is Hilbert-Schmidt and the result follows.

The POD operator Z is compact since it is trace class. Since Z is also self adjoint, the eigenvalues
of Z may be ordered λ1 ≥ λ2 ≥ · · · ≥ 0 (with repetitions according to multiplicity) and the
corresponding orthonormal eigenvectors {ϕk} ⊂ X form a complete set.
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We now prove that the “energy” in the dataset is given by the sum of the POD eigenvalues,
i.e., ∫ ∞

0

m∑
j=1

‖wj(t)‖2 dt =
∑
k≥1

λk <∞.

Proof of Proposition 2:

Proof. Let Z be the POD operator corresponding to {wj}. We know the sum of the eigenvalues of
Z is finite since Z is trace class. Also,

∑
k≥1

λk =
∑
k≥1

(Zϕk, ϕk) =
∑
k≥1

∫ ∞
0

m∑
j=1

|(ϕk, wj(t))|2 dt.

Now expand each wj(t) in terms of the orthonormal basis {ϕk} for X:

wj(t) =
∑
k≥1

(wj(t), ϕk)ϕk.

Then ∫ ∞
0

m∑
j=1

‖wj(t)‖2 dt =
∑
k≥1

∫ ∞
0

m∑
j=1

|(ϕk, wj(t))|2 dt

and the result follows from the computation above.

Next, we prove that if the dataset is projected onto a subset of the POD basis, then the
reconstruction error is given by the sum of the neglected POD eigenvalues.

Proof of Proposition 3:

Proof. The proof is a direct computation using the definition (14) of wr
j and the orthonormality of

the POD basis.

m∑
j=1

∫ ∞
0
‖wj(t)− wr

j (t)‖2 dt =
m∑
j=1

∫ ∞
0

{
‖wj‖2 − 2(wj , w

r
j ) + (wr

j , w
r
j )

}
dt

=

m∑
j=1

∫ ∞
0

{
‖wj‖2 − 2

r∑
k=1

|(wj , ϕk)|2 +

r∑
k=1

|(wj , ϕk)|2
}
dt

=

m∑
j=1

{∫ ∞
0
‖wj‖2 dt−

∫ ∞
0

r∑
k=1

|(wj , ϕk)|2 dt
}

=

∫ ∞
0

m∑
j=1

‖wj‖2 dt−
r∑

k=1

(Zϕk, ϕk)

=
∑
k≥1

λk −
r∑

k=1

λk =
∑
k>r

λk.

Here we used the above proposition and the fact that Zϕk = λkϕk.
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4.3 Main Results

We now give the main convergence results.
Throughout this section, wj and wN

j can be any functions in L2(0,∞;X) for j = 1, . . . ,m. We

consider the POD operators Z : X → X for {wj}mj=1 and ZN : X → X for {wN
j }mj=1. We let {λk, ϕk}

and {λNk , ϕN
k } be the eigenvalues and orthonormal eigenvectors of Z and ZN , respectively. These

are also the POD eigenvalues and modes of the datasets {wj(t)} and {wN
j (t)}. Define Zr : X → X

and ZN
r : X → X to be the rth order truncated eigenvalue expansions of Z and ZN , namely

Zrx =

r∑
k=1

λk(x, ϕk)ϕk, ZN
r x =

r∑
k=1

λNk (x, ϕN
k )ϕN

k .

Also, for the functions {wN
j }mj=1, define BN : L2(0,∞;Rm) → X analogously to the operator B

defined above (Definition 3) with the functions {wj}mj=1.

Below, we study how well ZN and ZN
r approximate Z.

The functions wj and wN
j are arbitrary in L2(0,∞;X), however we want to think of them in

terms of approximating the solution to the Lyapunov equation (1). Recall from Section 2 that
the Lyapunov solution is precisely the POD operator Z defined above for {wj}mj=1 the solutions
of the linear infinite dimensional differential equations (8). In the algorithms to approximate the
Lyapunov solution, the functions {wN

j }mj=1 are approximations to the solutions {wj}mj=1.
We begin with some preliminary lemmas.

Lemma 1. For any finite collection {wj}mj=1 of functions in L2(0,∞;X), the Hilbert-Schmidt norm
of B is given by

‖B‖HS =
(∑

k≥1
λk

)1/2
=

(∫ ∞
0

m∑
j=1

‖wj(t)‖2 dt
)1/2

,

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues of Z = BB∗.

Proof. We proved that B is Hilbert-Schmidt in Proposition 6. The Hilbert-Schmidt norm of B can
be computed as follows. Let {λk, ϕk} be the eigenvalues and orthonormal eigenvectors of Z = BB∗.
Then

‖B‖2HS = ‖B∗‖2HS =
∑
k≥1

(B∗ϕk,B∗ϕk) =
∑
k≥1

(ϕk, Zϕk) =
∑
k≥1

λk.

Continuous POD theory (see Proposition 2) gives

∑
k≥1

λk =

∫ ∞
0

m∑
j=1

‖wj(t)‖2 dt

and the result follows.

The following lemma is a known result in continuous POD theory; we present a proof for
completeness.

Lemma 2. Let {wj}mj=1 and {wN
j }mj=1 be two collections of functions in L2(0,∞;X) with POD

eigenvalues {λk} and {λNk }, respectively. If each wN
j → wj in L2(0,∞;X) as N → ∞, then the

sum of the POD eigenvalues converge:

lim
N→∞

∑
k≥1

λNk =
∑
k≥1

λk.
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Proof. We know from continuous POD theory (Proposition 2) that∑
k≥1

λk =
m∑
j=1

‖wj‖2L2(0,∞;X),
∑
k≥1

λNk =
m∑
j=1

‖wN
j ‖2L2(0,∞;X).

Since wN
j → wj in L2(0,∞;X) for each j, we know ‖wN

j ‖2L2(0,∞;X) → ‖wj‖2L2(0,∞;X) as N → ∞.
This gives the result.

We now prove that ZN converges to the Lyapunov solution Z in the trace norm as each wN
j

converges to wj in L2(0,∞;X). We also give a bound on the trace norm error involving the error
between each wj and wN

j .

Theorem 1. The trace norm error between Z and ZN can be bounded as follows:

‖Z − ZN‖tr ≤ CN

( m∑
j=1

∫ ∞
0
‖wj(t)− wN

j (t)‖2 dt
)1/2

, (18)

where the constant CN is given by

CN =

(∑
k≥1

λk

)1/2

+

(∑
k≥1

λNk

)1/2

=

( m∑
j=1

∫ ∞
0
‖wj(t)‖2 dt

)1/2

+

( m∑
j=1

∫ ∞
0
‖wN

j (t)‖2 dt
)1/2

. (19)

If wN
j → wj in L2(0,∞;X) for each j, then CN converges to the constant C given by

C = 2

(∑
k≥1

λk

)1/2

= 2

( m∑
j=1

∫ ∞
0
‖wj(t)‖2 dt

)1/2

,

and therefore ‖Z − ZN‖tr → 0 as N →∞.

Proof. First, since {wj − wN
j }mj=1 is a finite collection of functions in L2(0,∞;X) and

(B − BN )u =

∫ ∞
0

m∑
j=1

uj(t)
(
wj(t)− wN

j (t)
)
dt,

Lemma 1 above gives that B − BN is Hilbert-Schmidt and

‖B − BN‖HS =

(∫ ∞
0

m∑
j=1

‖wj(t)− wN
j (t)‖2 dt

)1/2

.

Next,
‖Z − ZN‖tr ≤ ‖Z − BBN

∗‖tr + ‖BBN ∗ − ZN‖tr.

Factor Z = BB∗ and similarly for ZN . Then

‖Z − ZN‖tr ≤ ‖B‖HS‖B − BN‖HS + ‖B − BN‖HS‖BN‖HS

=
(
‖B‖HS + ‖BN‖HS

)
‖B − BN‖HS

and the error bound follows from the observation above and Lemma 1
If each wN

j converges to wj in L2(0,∞;X), then the sequence CN converges to the constant C

defined above due Lemma 2 above. Since CN converges as wN
j → wj , the right hand side of the

error bound tends to zero and therefore ‖Z − ZN‖tr → 0 as N →∞.
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Corollary 1. The trace norm error between Z and ZN
r can be bounded as follows:

‖Z − ZN
r ‖tr ≤

∑
k>r

λNk + CN

( m∑
j=1

∫ ∞
0
‖wj(t)− wN

j (t)‖2 dt
)1/2

, (20)

where the constant CN is defined in (19). If wN
j → wj in L2(0,∞;X) for each j, then

lim
N→∞

‖Z − ZN
r ‖ =

∑
k>r

λk,

which is the best possible error for a rank r approximation to Z.

Proof. We have
‖Z − ZN

r ‖tr ≤ ‖Z − ZN‖tr + ‖ZN − ZN
r ‖tr.

Since ZN
r is the truncated eigenvalue expansion of ZN , which is self adjoint and nonnegative, ZN

r

is the best rank r approximation to ZN with trace norm error equal to the neglected eigenvalues:

‖ZN − ZN
r ‖tr =

∑
k>r

λNk .

The result now follows from the above theorem.

Next we give a different expression for the operator norm error between the Lyapunov solution
Z and the low rank approximation ZN

r . This error bound depends on the convergence of the
approximate POD eigenvalues and modes, which we now describe. First, if the approximate data
wN
j converges to the true data wj in L2(0,∞;X) for each j, then the POD eigenvalues will converge

and the POD modes corresponding to distinct POD eigenvalues will converge. If a POD eigenvalue
is repeated, however, we are only guaranteed that a subsequence of the approximate POD modes
will converge. Again, this is a known result in continuous POD theory and we provide a proof for
completeness.

Theorem 2. Let {wj}mj=1 and {wN
j }mj=1 be two collections of functions in L2(0,∞;X) with POD

eigenvalues and modes denoted by {λk, ϕk} and {λNk , ϕN
k }, respectively. If wN

j → wj in L2(0,∞;X)
as N →∞, then the following statements are true:

1. The individual POD eigenvalues converge as N →∞, i.e., for each k,

lim
N→∞

|λNk − λk| = 0.

2. If the kth POD eigenvalue is distinct, then the kth POD mode (suitably normalized) converges,
i.e.,

lim
N→∞

‖ϕN
k − ϕk‖ = 0.

3. If the kth POD eigenvalue is not distinct, then a subsequence of the kth POD mode (suitably
normalized) converges, i.e., there is a subsequence {Nj} so that

lim
Nj→∞

‖ϕNj

k − ϕk‖ = 0.
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Proof. Let Z and ZN denote the POD operators for the datasets {wj} and {wN
j }, respectively. By

definition, the POD eigenvalues and modes for {wj} and {wN
j } are the eigenvalues and orthonormal

eigenvectors of the POD operator corresponding to the data.
As each wN

j → wj in L2(0,∞;X), Theorem 1 above gives that ZN converges to Z in the trace

norm and therefore also in the (weaker) operator norm. Since ZN and Z are compact, the con-
clusions follow directly from the norm convergence and eigenvalue and eigenvector approximation
theory; see, e.g., Chatelin (1983); Ahues et al. (2001).

We show the speed of convergence of the approximate Lyapunov solution is governed by the
speed of convergence of the POD eigenvalues and modes.

Theorem 3. The operator norm error between ZN
r and Z is bounded as follows:

‖Z − ZN
r ‖ ≤ λr+1 +

r∑
k=1

(
|λk − λNk |+ 2λNk ‖ϕk − ϕN

k ‖
)
.

If the first r eigenvalues of Z are distinct, then ZN
r converges to Zr, the rth order truncated

eigenvalue expansion of Z, in the operator norm and therefore

lim
N→∞

‖Z − ZN
r ‖ = λr+1,

which is the best possible error for a rank r approximation to Z.

Proof. First,
‖Z − ZN

r ‖ ≤ ‖Z − Zr‖+ ‖Zr − ZN
r ‖,

where Zrx =
∑r

k=1 λk(x, ϕk)ϕk is the truncated eigenvalue expansion of Z. The eigenvalue expan-
sion truncation operator norm error is given by the first neglected eigenvalue, i.e.,

‖Z − Zr‖ = λr+1.

For the second term in the error bound, note

‖(Zr − ZN
r )x‖ ≤

r∑
k=1

‖λk(x, ϕk)ϕk − λNk (x, ϕN
k )ϕN

k ‖.

Next, add and subtract both λNk (x, ϕk)ϕk and λNk (x, ϕN
k )ϕk inside of the norm. Using the triangle

inequality, the Cauchy-Schwartz inequality, and the orthonormality of each POD basis gives the
result.

If the first r eigenvalues of Z are distinct, then by the approximation theory for the POD
eigenvalues and modes (Theorem 2) we have λNk → λk and ϕN

k → ϕk for k = 1, . . . , r. Thus, the
above error bound for ‖Zr −ZN

r ‖ goes to zero as N →∞. This implies ZN
r converges to Zr in the

operator norm.

5 Numerical Results

In this section, we present numerical results for two infinite dimensional model problems. We begin
with a simple problem derived from a one dimensional convection diffusion equation so that we
may compare the matrix approximation approach with the low rank algorithm. The second model
problem comes from a two dimensional convection diffusion equation. We leave experiments on
other problem types and comparisons with existing large-scale matrix Lyapunov algorithms for
another work.
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5.1 Model Problem 1

We take the A and B operators from the one dimensional convection diffusion equation

wt(t, x) = µwxx(t, x)− κwx(t, x) + b(x)u(t),

w(t, 0) = 0, w(t, 1) = 0, w(0, x) = w0(x),

where subscript denote partial derivatives, µ is a positive constant, and κ is a real constant. The
function b(x) is square integrable.

Let the Hilbert space X equal L2(0, 1), the space of square integrable functions, with the
standard inner product (f, g) =

∫ 1
0 f(x)g(x) dx. The A operator is defined by

Aw = µwxx − κwx, D(A) = H2 ∩H1
0 ,

and B is given by [Bu](x) = b(x)u. Here, Hm is the standard Sobolev space of functions with m
derivatives all of which are square integrable; also, any function w ∈ H1

0 must satisfy the Dirichlet
boundary conditions w(0) = 0 and w(1) = 0.

The eigenvalues of the convection diffusion operator A are given by λn = −µn2π2−κ2/4µ. Since
the eigenvalues are all negative and bounded away from the imaginary axis, the results in Delattre
et al. (2003) and Curtain & Zwart (1995, Section 2.3) can be used to show that A generates an
exponentially stable C0-semigroup.

5.1.1 Numerical Results

We now compare the numerical results of the POD-based algorithm with matrix Lyapunov com-
putations using matrix approximations of the A and B operators.

For the computations, we chose b(x) = 5(1−x)2 sin(πx), µ = 0.1, and κ = 1. Standard piecewise
linear finite elements were used for the spatial discretization of the partial differential equation (8).
The discretized equations were integrated over 0 ≤ t ≤ 2 using Matlab’s ode15s solver with default
error tolerances; at t = 2, the numerical solution is nearly zero. The time points returned from
ode15s were used in the method of snapshots to approximate the POD eigenvalues and modes.

Standard piecewise linear finite elements were also used to provide the matrix approximations
of the A and B operators for the matrix Lyapunov computations. Matlab’s lyap function was used
to solve the resulting matrix Lyapunov equations.

Figure 1 shows the POD eigenvalues computed by the method of snapshots for N = 32, 64, 128,
and 256 equally spaced finite element nodes. Eigenvalue computations for the matrix Lyapunov
solution using the standard matrix approximations produced similar results. The larger POD
eigenvalues have converged at this level of refinement; the POD eigenvalues nearer to machine
precision (10−16) have not yet converged. Further refinement is unnecessary since only the larger
POD eigenvalues are used to construct the approximate Lyapunov solution.

Figure 2 shows the first POD mode computed by the method of snapshots for N = 32 equally
spaced finite element nodes. The mode has converged at this level of refinement. The other POD
modes converged in a similar fashion, however the higher numbered modes were slower to converge
under refinement. This behavior is likely due to the fact that the higher numbered modes tend to
oscillate more than the lower numbered modes. Eigenvector computations for the matrix Lyapunov
solution using the standard matrix approximations produced similar results.

Figure 3 shows approximate Lyapunov solutions acting on f = exp(x). POD-based approxima-
tions are shown with N = 32 equally spaced finite element nodes with orders r = 1 and r = 2. The
matrix Lyapunov computations using the standard matrix approximations is shown with N = 256
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Figure 1: POD eigenvalues computed using N = 32, 64, 128, and 256 equally spaced finite element
nodes.
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Figure 2: The first POD mode computed using N = 32 equally spaced finite element nodes.

equally spaced finite element nodes for comparison. The low order POD-based approximations give
excellent agreement with the refined standard matrix approximation computations. In particular,
for r = 2 the POD approximation is indistinguishable from the result of the standard computation.

The operator norm error bound in Theorem 3 gives a good indication of the accuracy of the
POD-based approximation without comparison to other computations. Recall ‖(Z − ZN

r )f‖ ≤
‖Z − ZN

r ‖‖f‖. As discussed in Remark 3, we approximate ‖Z − ZN
r ‖ by λNr+1. For f(x) = exp(x),

‖f‖ ≈ 1.7873. For r = 1, ‖Z − ZN
r ‖ ≈ 0.0569; for r = 2, ‖Z − ZN

r ‖ ≈ 0.0031. These values give
approximate error bounds for ‖(Z − ZN

r )f‖ of 0.1016 for r = 1 and 0.0055 and r = 2. The above
computations agree with these approximate error bounds.

We also look at the trace norm error bound in Corollary 1. For r = 1, the sum of the neglected
eigenvalues is approximately 0.0601; for r = 2, this sum is approximately 0.0032. These values
also give a good estimate of the approximation error. Of course, the full error bound involves the
L2(0,∞;X) error between the exact and approximate solution to the partial differential equation
(8); we do not attempt to estimate this here.

We also note that we have seen similar performance of the algorithm when the rank of B is
greater than one.
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Figure 3: Approximate Lyapunov solutions acting on f = exp(x).

5.2 Model Problem 2

We take the A and B operators from the two dimensional convection diffusion equation with
spatially varying convection

wt(t, x, y) = µ
(
wxx(t, x, y) + wyy(t, x, y)

)
− c1 xwx(t, x, y)− c2 y wy(t, x, y) + b(x, y)u(t),

over the unit square [0, 1]× [0, 1] with zero Dirichlet boundary conditions. Here, subscripts denote
partial derivatives, µ, c1, and c2 are constants, and b(x, y) is a given square integrable function.
The abstract formulation of the A and B operators are similar to the example above. We do not
attempt to prove here that A generates an exponentially stable C0-semigroup; however, numerical
results indicate that this is the case.

5.2.1 Numerical Results

For the computations, we chose b(x, y) ≡ 1, µ = 0.1, c1 = 1, and c2 = 1. We use the low rank
method and the snapshot method to approximate the solution of the operator Lyapunov equation
Z acting on the function f(x, y) = 5x2 + y2.

For the low rank algorithm, standard piecewise bilinear finite elements were used for the spatial
discretization of the partial differential equation (8). The discretized equations were integrated
over 0 ≤ t ≤ 2 using Matlab’s ode15s solver with default error tolerances; at t = 2, the numerical
solution is nearly zero. The time points returned from ode15s were used in the method of snapshots
to approximate the POD eigenvalues and modes.

For the snapshot algorithm, we used the trapezoid rule for the time integration, again stopping
at t = 2. The trapezoid rule can be derived by assuming the solution is piecewise linear in
time. Substituting this approximation into the approximate POD operator (10) gives the following
algorithm:

1. Approximate the solution of the PDE with the trapezoid rule:

(I −∆tA/2)wn+1 = (I + ∆tA/2)wn,

where I is the identity operator.
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2. Update the approximation to [Zf ](x, y):

[Zf ]n+1 = [Zf ]n + [(f, wn+1)∆t/3 + (f, wn)∆t/6]wn+1

+[(f, wn+1)∆t/6 + (f, wn)∆t/3]wn.

This algorithm is at the infinite dimensional level and the equations must be discretized in space
to obtain an approximation to [Zf ](x, y). Again, we used piecewise bilinear finite elements for the
discretization.

Remark 4. In practice the algorithm can be stopped whenever the norm of wn+1 becomes smaller
than a certain tolerance. Also, the only solution data that must be stored is the solution at
the previous time step (wn). Furthermore, any time stepping method, spatial discretization, and
approximation method for the POD integral operator (10) can be used.

Figure 4 shows snapshot approximations of [Zf ](x, y) computed using the above trapezoid
rule algorithm with ∆t = 0.1 and ∆t = 0.01 and 64 equally spaced finite element nodes in each
coordinate direction. Further refinement in space produced little change. The approximation using
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Figure 4: Snapshot approximations of [Zf ](x, y), where f = 5x2+y2. Here, 64 equally spaced finite
element nodes were used in each coordinate direction, and (left) ∆t = 0.1 and (right) ∆t = 0.01.

the larger time step ∆t = 0.1 suffers from some loss of accuracy near the boundary. This is due to
the incompatibility of the initial condition w(0, x, y) = b(x, y) ≡ 1 with the zero Dirichlet boundary
conditions. Decreasing the time step to ∆t = 0.01 increases the accuracy. The convergence is clear;
further refinement in time produced little change. Also, the POD algorithm with r = 5 produces an
approximation that is nearly identical to the ∆t = 0.01 trapezoid rule approximation (not shown).
For this computation, Matlab’s adaptive solver ode15s takes very small time steps near t = 0 to
obtain accurate results.

6 Conclusion

We presented two algorithms to compute approximate solutions of Lyapunov equations. The first
algorithm is based on proper orthogonal decomposition and produces a low rank approximate solu-
tion; the second snapshot algorithm approximates the product of the Lyapunov solution with a few
vectors and can be implemented with a minimal amount of storage. The algorithms are applicable
to large-scale matrix problems as well as a class of infinite dimensional problems. Since the algo-
rithms are based on approximating the solutions of linear evolution equations, the computations
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can use existing simulation code as well as tools such as adaptive solvers and parallel algorithms.
The quality of the approximate solutions can be ascertained by simple error bounds. Numerical
results for parabolic model problems confirmed the convergence theory. The results indicate that
accurate time stepping is important for these algorithms, especially if the initial condition to the
PDE is not smooth (i.e., it is not in the domain of the A operator). Adaptive time stepping will
be considered in future work.

Although we tested the algorithm on simple problems here, in another work (Dickinson et al.,
2009) we successfully applied the trapezoid snapshot algorithm to operator Lyapunov equations
arising in feedback control computations for an incompressible fluid flow problem. The computa-
tions in that work used existing simulation code and no matrix approximations of the operators
were ever extracted from the code.

In other future work, we intend to further test the algorithms on other types of infinite di-
mensional systems (such as delay equations and hyperbolic partial differential equations). We also
plan to consider other classes of infinite dimensional systems, such as those with an unbounded B
operator.

Furthermore, we plan to investigate the computational cost of the algorithms in the future.
It is important to note that even if the snapshot algorithms are not as efficient as other matrix
Lyapunov equation solvers, they will still be computationally tractable and therefore they may be
preferable to use for certain operator Lyapunov equations due to the advantages discussed above.

Since the proposed algorithms depend on the solution of linear infinite dimensional differential
equations, the algorithms may have difficulty for problems whose solutions decay slowly to zero
or rapidly oscillate. We believe that most, if not all, of the recently developed matrix Lyapunov
solvers also may have difficulty with such problems.

We also note that the solution of Lyapunov equations plays an important role in standard
methods to compute truncated balanced reduced order models of linear systems (see, e.g., Antoulas,
2005; Datta, 2004; Zhou et al., 1996). Although the POD-based algorithm presented here could
be used for these Lyapunov computations, we propose that it is more natural to use Rowley’s
POD-based algorithm for approximate balanced truncation (Rowley, 2005). (In fact, Rowley’s
algorithm inspired the present work and also (Singler & Batten, 2009), which extends the algorithm
in (Rowley, 2005) to an infinite dimensional case.) This method requires the solution of the linear
differential equations (8) and (12) and bypasses the solution of Lyapunov equations (1) and (11).

A Appendix: Discrete POD Computation

We now prove Proposition 4, which shows that computing discrete POD eigenvalues and modes is
equivalent to solving a matrix eigenvalue problem. To prove this, we use a general result on the
eigenvalues of factored compact operators.

Proposition 7. Let X and Y be two Hilbert spaces and let L : X → Y be a compact linear operator.
Define S : Y → Y and T : X → X by S = LL∗ and T = L∗L. Then the nonzero eigenvalues of S
and T are equal. For a nonzero eigenvalue λ, the corresponding orthonormal eigenvectors ϕ of S
and ψ of T are related by

ϕ = λ−1/2Lψ, ψ = λ−1/2L∗ϕ.

Proof. Since L is compact, S and T are both compact. Also, S and T are self adjoint and non-
negative due to their factored representation. Therefore, the eigenvalues of both S and T can be
ordered and their corresponding orthonormal eigenvectors form complete sets.
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Let λk be the kth (ordered) eigenvalue of T = L∗L with corresponding orthonormal eigenvector
ψk. Then

Tψk = λkψk ⇒ L∗Lψk = λkψk ⇒ (LL∗)(Lψk) = λk(Lψk)⇒ S(Lψk) = λk(Lψk).

Therefore, λk is an eigenvalue of S with corresponding eigenvector Lψk. Let ϕk = λ
−1/2
k Lψk. Then

(ϕi, ϕj) = λ
−1/2
i λ

−1/2
j (L∗Lψi, ψj) = λ

−1/2
i λ

−1/2
j (Tψi, ψj) = λ

1/2
i λ

−1/2
j δij = δij ,

where δij is the Kronecker delta. Thus, {λk, ϕk} are eigenpairs for S and {ϕk} is an orthonormal
set.

Next, let λk be the kth (ordered) eigenvalue of S = LL∗ with corresponding orthonormal
eigenvector ϕk. A similar argument shows λk is an eigenvalue of T with corresponding orthonormal

eigenvector ψk = λ
−1/2
k L∗ϕk.

Now we proceed with the proof of Proposition 4, which gives a method for computing the POD
of a discrete dataset.

Proof of Proposition 4:

Proof. The discrete POD operator can be factored as Z = BB∗ as follows. Define B : RN → X by

Bu =
N∑
k=1

ukWk.

The adjoint operator B∗ : X → RN is computed to be B∗x = [ (x,W1), . . . , (x,WN ) ]T and therefore
Z = BB∗.

Since the range of B∗ is finite dimensional, B∗ and B are both compact. Due to the factorization
Z = BB∗, Z is compact, self adjoint, and nonnegative. Proposition 7 above then gives that the
nonzero eigenvalues of Z = BB∗ and Ẑ := B∗B are equal and can be ordered λ1 ≥ λ2 ≥ · · · > 0.
Furthermore, if λi is nonzero, the orthonormal eigenvector ϕi of Z is related to the orthonormal

eigenvector ϕ̂i of Ẑ by ϕi = λ
−1/2
i Bϕ̂i.

A calculation shows that Ẑu = Γu, where the N ×N matrix Γ has ij entries (Wi,Wj). Thus,
the nonzero eigenvalues of Z and Γ are equal. Using the definition of B and the expression above
for the orthonormal eigenvectors ϕi of Z shows that the eigenvectors are given by (15).
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