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Mechanistic models of biofilm growth
in porous media
Priyank Jaiswal1, Fathiya Al-Hadrami1, Estella A. Atekwana1, and Eliot A. Atekwana1

1Boone Pickens School of Geology, Oklahoma State University, Stillwater, Oklahoma, USA

Abstract Nondestructive acoustics methods can be used to monitor in situ biofilm growth in porous
media. In practice, however, acoustic methods remain underutilized due to the lack of models that can
translate acoustic data into rock properties in the context of biofilm. In this paper we present mechanistic
models of biofilm growth in porous media. The models are used to quantitatively interpret arrival times
and amplitudes recorded in the 29 day long Davis et al. (2010) physical scale biostimulation experiment in
terms of biofilm morphologies and saturation. The model pivots on addressing the sediment elastic behavior
using the lower Hashin-Shtrikman bounds for grain mixing and Gassmann substitution for fluid saturation.
The time-lapse P wave velocity (VP; a function of arrival times) is explained by a combination of two rock
models (morphologies); “load bearing” which assumes the biofilm as an additional mineral in the rock matrix
and “pore filling” which assumes the biofilm as an additional fluid phase in the pores. The time-lapse
attenuation (QP

�1; a function of amplitudes), on the other hand, can be explained adequately in two ways;
first, through squirt flow where energy is lost from relative motion between rock matrix and pore fluid,
and second, through an empirical function of porosity (ϕ), permeability (κ), and grain size. The squirt flow
model-fitting results in higher internalϕ (7% versus 5%) andmore oblate pores (0.33 versus 0.67 aspect ratio)
for the load-bearing morphology versus the pore-filling morphology. The empirical model-fitting results in
up to 10% increase in κ at the initial stages of the load-bearing morphology. The two morphologies which
exhibit distinct mechanical and hydraulic behavior could be a function of pore throat size. The biofilm
mechanistic models developed in this study can be used for the interpretation of seismic data critical for the
evaluation of biobarriers in bioremediation, microbial enhanced oil recovery, and CO2 sequestration.

1. Introduction

Formation of biofilms is a predominant way of life for most microorganisms in the environment. Biofilms
comprise dominantly of extracellular polysaccharides (EPS), which is a gel-type material playing a vital role in
attachment of microbial cells to growth surfaces [Hall-Stoodley et al., 2004; Lear and Lewis, 2012]. In both
natural and bioengineered systems, the formation of biofilms has been linked to pore throat clogging
[Drescher et al., 2013] leading to the alteration of sediment physical [Taylor and Jaffé, 1990], fluid transport
[Abdel-Aal et al., 2009], and sediment mechanical and hydrodynamic properties [Rosenzweig et al., 2013].
Biofilms have been found to decrease porosity (ϕ) by ~50%–90% and permeability (κ) by ~95%–99%
[Cunningham et al., 1991]. The ability to monitor microbial growth and manage artificial and natural
bioclogging is essential in many applications related to soil engineering [DeJong et al., 2010], groundwater
remediation [Kasi et al., 2011], CO2 sequestration [Mitchell et al., 2010], and microbial enhanced oil recovery
(MEOR) [Lazar et al., 2007].

In situ imaging of bioinduced sediment alterations are critical in understanding microbial growth habits. In
laboratory experiments, biofilm formation and development have been investigated using confocal laser
scanning microscopy [Lawrence and Neu, 1999], epifluorescent microscopy [Garcia-Betancur et al., 2012],
plate counting and column tracer tests [Seifert and Engesgaard, 2007], synchrotron-based X-ray-computed
microtomography [Davit et al., 2011], and nuclear magnetic resonance [Manz et al., 2003; Vogt et al., 2013].
In field settings, pump tests or slug tests designed to evaluate the change in hydraulic conductivity are
used to infer the presence of bioclogging indicative of the presence of biofilms.

Both laboratory- and field-based experiments unequivocally show that biofilm growth changes the physical
and chemical environment of porous media. Only a limited number of models exist to describe these
changes. Of these, many treat the biofilms as a complex fluid [Wilking et al., 2011]. A more realistic approach
could be to incorporate the biofilms in the rock as a solid phase, but this requires mechanical data such
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as Young moduli (Y), Poisson’s ratio (v), and
density (ρ), as well as information on biofilm
microstructure. Such data are not only
limited but also when available have a wide
range (e.g., Table 1), probably due to
heterogeneity of the biofilms as well as the
lack of standardized testing methods.

Insight into processes such as bioclogging
can be obtained through continuous
monitoring of microbial growth, but the key

is to achieve this without interfering with the growth itself. Acoustic methods at ultrasonic frequency
range can serve as an effective monitoring tool [Atekwana and Slater, 2009; Davis et al., 2010; Kwon and
Ajo-Franklin, 2013;Williams et al., 2005]. The greatest advantage is their nondestructive and noninvasive nature.
A major limitation, which also keeps this method largely underutilized, is a lack of models that can be used to
translate acoustic data into rock properties in biofilm environments. This paper is a pioneering attempt to

develop mechanistic models of biofilm
growth in unconsolidated sediments. The
models are developed and used to
quantitatively interpret, group arrival
times, and amplitude of the dominant
frequency (0.4 MHz) from the Davis et al.
[2010] physical scale experiment.

Davis et al. [2010] recorded
compressional waves and complex
conductivity data during 29 days of
stimulated microbial growth in porous
media. In their experiment, two
(identical) acoustic wave and complex
conductivity measurement sample
columns were constructed one of
which was biostimulated. Waveforms
were recorded in both columns every
3–5 days. The arrival time and amplitude
data used in this paper were extracted
from the waveforms using Li and
Pyrak-Nolte [1998] method. Over the
29 days, the amplitudes and arrival times
from the nonbiostimulated column
remained relatively uniform while data
from the biostimulated sample exhibited
a high degree of spatial variability, with
portions of the sample exhibiting up to
80% decrease in amplitudes (Figure 1).
Between days 5 and 7, both amplitudes
and arrival times changed significantly
in the biostimulated column. The
imaginary conductivity, which Davis
et al. [2010] interpreted in terms of
biofilm stages, also peaked by day 7;
the peak was interpreted to represent
maximum biofilm thickness and the
decrease was suggested to be related
to cell death or detachment.

Table 1. Biofilm Mechanical

Properties Young’s Moduli (GPa) Source

30 Nishi et al. [1990]
114 Hsieh et al. [2008]
30–40 Tajima et al. [1995]
64.6–99.6 (× 10�9) Stoodley et al. [2002]
6.5–0.5 (× 10�6) Konhauser and Gingras [2007]
63.9–283 (× 10�9) Stoodley et al. [1998]
78 ± 17 Guhados et al. [2005]
6–5 (× 10�6) Aggarwal and Hozalski [2010]
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Figure 1. Two-dimensional map of the (a) compressional wave ampli-
tude and (b) arrival time for stimulated and control columns for days 5,
8, and 29 from the Davis et al. [2010] experiment. The stimulated column
clearly shows perturbations in both amplitudes and arrival times.
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Environmental scanning electron microscope (ESEM) imaging at the end of the Davis et al. [2010] experiment
confirmed that there was an apparent difference in the morphology of attached biomass between regions of
increased and decreased attenuation (Figure 2). This begs the question why two distinct morphologies
formed in an otherwise uniform growth media? We investigate this question through mechanistic models
that are based on gas hydrate growth in unconsolidated marine sediments [Dvorkin and Nur, 1996]. We
postulate that from a modeling perspective, growth of gas hydrate is analogous to biofilm growth with
the caveat that while hydrate precipitate from pore fluids [Sloan and Koh, 2008], biofilms originate at the
surface of the sediment grains. Similar to hydrate, our mechanistic models also pivots on being able to
address the elastic behavior of sediments using the Hertz-Mindilin theory [Mindlin, 1949] for grain mixing and
the Gassmann substitution for fluid saturation [Gassmann, 1951].

2. Experimental Setup

We provide a brief description of the experimental setup. More details can be obtained from Davis et al.
[2010].Davis et al. [2010] fabricated rectangular sample columns that measured 102mm× 51mmby 254mm
(width ×depth × height) from 3.2 mm thick clear acrylic (Figure 3). Two sets of experimental columns
were constructed, one each for control (nonstimulated) and stimulated. All columns were wet packed
with silica sand saturated with sterile 25% BH (Bushnell Haas; Becton Dickinson) nutrient broth. One set of
columns (one electrical and one acoustic) was inoculated by saturating with 25% BH broth, 30 mM glucose,
Pseudomonas aeruginosa bacterial culture, and 30 mg/mL Gentamicin antibiotic. The fluid in the columns
remained stagnant during this experiment, and the columns were not fed with additional nutrients.

The acoustic imaging system consisted of two water-coupled plane wave transducers as source and receiver,
computer-controlled linear actuators (Newport 850-B4 and Motion Master 2000), a high-voltage pulse
generator (Panametrics PR1500), and an oscilloscope (Lecroy 9314L). In the experiment, waveforms were
recorded over a two-dimensional region. Linear actuators were used to move the source and receiver in
increments of 5 mm over the 60 mm by 70 mm acoustic scan region. An oscilloscope recorded and
digitized the transmitted signals at each point in the scan region. In total, nine sets of ultrasonic waveforms
scans were recorded. Individual sets of scans comprised measurements at 168 locations in a rectangular
matrix of 14 × 16 cells, each cell measuring 5 × 5 mm2. Although the experimental data were not collected
at a uniform temporal interval, the measurements adequately captured biofilm inception, growth, and
decay (Figure 1).

Sand 
Grain

Biofilm

Pores

Cells

Pores

Increased Amplitude

Decreased Amplitude

Biofilm

Figure 2. Environmental scanning electron microscope (ESEM) images from Davis et al. [2010] experiment. (a and b) From
an area of increased amplitude and (c and d) from an area of decreased amplitude. Biofilms from the increased amplitude
zone appear to be vuggier.
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3. Model Formulation

The ultrasonic waves in the Davis et al. [2010] experiment traveled through three media between source
and receiver—water, Pyrex enclosure, and sediments. To discount the effect of Pyrex (3.2 mm on
either side) and water (5 mm or either side), we reduce the arrival times by 7.7 ms and convert the results to
compressional wave velocity (VP) assuming straight rays and a sediment thickness of 45 mm. Figure 4 is a
display of the VP sorted according to average VP (for all days) increasing from left to right. We interpret
the onset of biofilm formation on day 3 based on the VP decreases in all the cells. From Day 5 onward, two
distinct VP trends can be observed, predominantly decreasing, e.g., in cells 1–20 and predominantly

C
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nSource Receiver

Water

Air

Horizontal 
Axis Vertical 
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Water
Tank

Linear
Actuators

Vertical 
Axis

Figure 3. Cartoon of the acoustic imaging system used in the Davis et al. [2010] experiment.
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Figure 4. Time-lapse velocity. VP changewithin the 168 cells over 29 days of observation. The data are plotted based on the
averaged VP in each cell node. The results show a general decrease in VP on day 5. Two dominant trends are observed
thereafter: (1) generally decreasing (e.g., cells 0–20) and (2) general increase (e.g., cells 150–168). The time-lapse VP trend in
the remaining nodes can be described by a combination of increasing and decreasing trends.
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increasing, e.g., in cells 150–168. Time-lapse VP in the remaining cells can be decomposed in terms of the two
trends. It is possible that the two trends are due to development of two distinct biofilm morphologies.

The VP of a system depends on its elastic moduli. Therefore, to model the time-lapse VP changes, first, the
time-lapse changes in elastic moduli due to biofilm growth have to be estimated. In the Dvorkin and Nur
[1996] model, elastic moduli are computed by separately computing themoduli of constituent dry-sediments
and pore fluid, followed by merging both moduli using the Gassmann’s substitution. While this approach
works well in siliciclastic rocks at low seismic frequencies [Nolen-Hoeksema, 2000; Xu and White, 1995], based
on the inherent assumptions of the Gassman’s substitution [Hofmann, 2006], it could be argued that it may
not be appropriate for use at ultrasonic frequencies. Mavko and Nolen-Hoeksema [1994] and Adam et al.
[2009] have shown that Gassmann’s substitution can remain valid at ultrasonic frequencies if the rock does
not have a strong fabric or oriented cracks. Since the Davis et al. [2010] setup comprises sand grains that are
packed together without a preferred orientation; the Gassmann’s assumptions are assumed to be applicable.

The elastic moduli of a porous sediment refer to its resistance against deformation under seismic stress. The
modulus of a monomineral solid is a function of its porosity (ϕ). Generally speaking, higher ϕ implies
lowermoduli (at higherϕ, thematerial deformsmore easily). For multimineral solids, such as naturally occurring
rocks, expression of elastic moduli is complex. The elastic moduli are at their maximum and minimum,
respectively, at zero (φ0) and critical porosity (φc; the limit at which the mineral grains become free floating).
Between φ0 and φc, moduli can change in many ways depending on the grain arrangement and consolidation
state of the rock [Mavko et al., 2009].Dvorkin and Nur [1996] showed that for unconsolidated sediments, such as
in Davis et al. [2010], the modified lower Hashin-Shtrikman bounds best explains the dry rock moduli change.

Assuming a homogenous background of quartz grains that are uncemented, spherical, and randomly
packed, the bulk (K) and shear (G) moduli at one endpoint, ϕc, can be expressed by the Hertz-Mindlin theory:

Kϕc
¼ n2 1� ϕcð Þ2G2

18π2 1� νð Þ2 P

" #1
3
; Gϕc

¼ 5� 4ν
5 2� νð Þ

3n2 1� ϕcð Þ2G2

2π2 1� νð Þ2 P

" #1
3
:

(1)

In equation (1), n is the average number of contacts per grain (9 in this paper). P is the differential pressure,
and v and G are the Poisson’s ratio and shear modulus of the solid phase. At the other endpoint,ϕ0, the elastic
moduli for two or more mineral phases can be calculated using the Hill’s average [Hill, 1952] and mass
balance as follows:

Kϕ0
¼ 0:5 �

Xm
i¼1

f iK i þ
Xm
i¼1

f i=Ki

 !�1" #
; Gϕ0

¼ 0:5 �
Xm
i¼1

f iGi þ
Xm
i¼1

f i=Gi

 !�1" #
; ρϕ0

¼
Xm
i¼1

f iρi (2)

In equation (2), is the number of the mineral components in the rock matrix; is the volumetric fraction of
the th matrix mineral component; and Ki, Gi, and ρi are the bulk moduli, shear moduli, and density of the
th matrix mineral component, respectively. Depending on the geometric configuration of the mineral
constituents, the actual K and G can be higher or lower than Hill’s average; however, it is a reasonable
estimate for randomly arranged solid mineral constituents.

For the dry frame for ϕ < ϕc bulk and shear moduli (Kdry and Gdry, respectively) using the modified lower
Hashin-Shtrikman bound can be expressed as follows:

KDry ¼ ϕ=ϕc

Kϕc
þ 4
3
Gϕc

þ 1� ϕ=ϕc

Kϕ0
þ 4
3
Gϕc

2
64

3
75
�1

� 4
3
Gϕc

; GDry ¼ ϕ=ϕc

Gϕc
þ Z

þ 1� ϕ=ϕc

Gϕ0 þ Z

� ��1

� Z;

Z ¼ Gϕc

6
9Kϕc

þ Gϕc

Kϕc
þ Gϕc

� �
(3)

The bulk modulus (Kf ) and density (ρf ) of the pore fluid can be expressed as follows:

Kf ¼
Xp
i¼1

Sf i
Kf i

� ��1

; ρf ¼
Xp
i¼1

Sf i ρf i ;
Xp
i¼1

Si ¼ 1 (4)

Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002440

JAISWAL ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1422



In equation (4), p is the number of fluid components, Kfi, ρfi, and Si are bulk modulus, density, and saturation
of the ith fluid component present in the pores. Note that fluids do not have shear modulus. The bulk
modulus of saturated rock (Ksat) can be expressed using the Gassmann’s substitution as follows:

KSat ¼ Kϕ0

ϕKDry � 1þ ϕð ÞKf KDry=Kϕ0
þ Kf

1� ϕð ÞKf þ ϕKϕ0
� Kf KDry=Kϕ0

(5)

The shear modulus of saturated rock (GSat) remains the same as that of the dry rock: GSat =GDry; and the
bulk density (ρb) of the saturated rock is the following:

ρb ¼ 1� ϕð Þρϕ0
þ ϕρf ; (6)

Values for Kf in equation (5) and ρf in equation (6) can be computed using the Batzle andWang [1992] method.
Finally, VP can be expressed as follows:

Vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KSat þ 4

3GSat= Þ=ρbð
p

(7)

On a related note, the above model can also predict the S wave velocity, VS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GSat=ρb

p
which if

experimentally available, can be used as an additional model constrain.

For modeling the mixture of biofilm, sand, and water (constituents of the Davis et al. [2010] experiment),
individual K, G, and ρ of all the three components are required. While the K, G, and ρ of sand and water are
well known, that of the biofilm is not. Therefore, for modeling purposes, we have made a few simplistic
assumptions. The EPS of P. aeruginosa dominantly consists of alginate which is an anionic polysaccharide. In
nature, instead of alginate, some bacteria generate polysaccharide in the form of cellulose. Although the
chemistry of alginate and cellulose are different, due to the similarity in the way the two polysaccharides are
constructed, we suggest that it is fair to substitute the mechanical properties of one for the other. In this
paper, we use Y of hemicellulose (5–8 GPa Gibson [2012]), which is an amorphous from of cellulose. For this
form we hypothesize that v is nearly zero, relating biofilm to extremely unconsolidated sediments or a
sponge. The biofilm ρ appears to be dependent on its (internal) ϕ [Rabah and Dahab, 2004; Zhang and
Bishop, 1994]. We choose a value of 1.5 g/cm3 which is representative of both hemicelluloid [Ehrnrooth, 1984]
as well as the dry EPS [Talukdar et al., 1996].

Like gas hydrates, we propose that the biofilms can be introduced in the unconsolidated sediments as a
part of thematrix or as a part of the pore fluid. In the Dvorkin and Nur [1996] model, introduction of hydrate in
the matrix assumes that it acts like an additional mineral grain which participates in the transfer of seismic
stress (load-bearing form). Introduction of hydrate in fluids (pore-filling form), on the other hand, only
requires the bulk modulus of the original pore fluid to be proportionately replaced by bulk modulus of the
hydrate. We acknowledge that unlike hydrates, biofilms do not precipitate from pore fluid, but rather grow on
a solid surface.

Klausen et al. [2003a, 2003b] show that the biofilms first originate on the surface of the mineral grains and
then spread laterally. We conceive that at the initial stages, developing biofilms may not bridge mineral
grains (Figure 5a), and hence, their presence in the model can be approximated by the pore-filling form. With
time, we postulate that the growth style will be a function of pore throat size. The load-bearing and pore-
filling forms in our model are intended to be, respectively, representative of growth under restricted and
unrestricted accommodation space. When vertical accommodation space is small, e.g., between two
mineral grains, after spreading along the grain surface (Figure 5b), the biofilm bridges the gap between
two mineral grains (Figure 5c). On the other hand, when the vertical accommodation space is relatively
unrestricted, e.g., in the pore spaces between three or more grains, the biofilm can continue to grow vertically
(Figure 5c). This could potentially create two very different morphologies, possibly those that were observed
in the Davis et al. [2010] experiment.

4. Model Validation

The first step in modeling is to determine the initial porosity,ϕi. On day 1, assuming biofilm saturation (Sbf) to
be zero, the VP is 1.734 ± 0.0051 km/s. For this VP, with water as pore fluid, the Dvorkin and Nur [1996]
model yields ϕi=37.85. In the next step, to show the effect of including biofilms in the sand pack in the load-
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bearing and pore-filling forms, we present a parametric test for a range of biofilm v (Figure 6a) and Y
(Figure 6b). When Sbf is increased in the load-bearing form, ϕ in equation (3) decreases as ϕi(1� Sbf ).
Decreasing ϕ will increase the system’s Vp. In our case, low biofilm Y counters this increase (solid lines;
Figure 6). On the other hand, when Sbf increases in the pore-filling mode, ϕ in equation (3) remains
unchanged. The K and G of the dry matrix remain unchanged but fluid ρ increases while its K decreases
(equation (4)). This in turn reduces the Vp of the system (solid dots; Figure 6). In the absence of firm
experimental data, v= 0 and Y= 6 GPa could represent reasonable values of biofilm mechanical properties.

Davis et al. [2010] also reported a decrease in pH value from 7.0 on day 1 to ~4.4 on day 26, implying that
the acidity of the system increased with microbial growth and biofilm formation and development. A
possible reason for lowering of the pH is the production of CO2(g), which dissolves in the pore water as the
system equilibrates [Le Chatelier, 1998]: CO2(aq) + H2O↔ H2CO3↔ HCO3

�. As opposed to the dissolved form,
gas can significantly lower VP when present in the bubble form. Bubbles are typically formed when gas
concentration exceeds its solubility. To examine the presence of gas bubbles, the partial pressure of CO2

needs to be expressed as a function of pH (Henry’s law) [Smith and Harvey, 2007]:

logPCO2 ¼ �pHþ log
γHCO�1

3
MHCO�1

3

K1KCO2

� �
(8)

In equation (8), γ and M are the activity coefficient and the molarity, respectively. K1 is the first dissociation
constant of H2CO3 and KCO2 is Henry’s law constant for CO2; both values are corrected for the sample
temperature (T ). The resultingPCO2 is presented in Table 2. Even at maximumPCO2 (Table 2), CO2 concentration
is less than its solubility (1.45 g/L; 5.73 MPa), no bubbles are therefore expected in the Davis et al. [2010]
experiment (the authors also reported that they did not observe any bubble formation). Dissolved CO2

changes fluid properties in equation (4). In our case, this results in a reduction of VP by up to 0.002 km/s, which

a. Inception b. Expansion c. Maturation

Figure 5. Biofilm growth styles. (a) Inception. Biofilm growth is initiated on a grain surface. (b) Expansion. Biofilm expand
both vertically and horizontally. (c) Maturation. Biofilm continues to grow into the pore spaces and due to a lack of
accommodation space between mineral grains, they expand along the surface which results in their interconnection.
At this stage, biofilms act like an additional mineral grain in load-bearing form or an additional fluid component in the
pore-filling form.
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Figure 6. Velocity versus porosity/biofilm saturation. Decreasing porosity is proportional to increasing biofilm saturation.
Synthetic modeling shows that VP increases when biofilm is introduced in load-bearing form (blue line) and VP decreases
if biofilm is introduced in the pore-filling form (red line).
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is within the standard deviation of the VP in the
absence of biofilms and therefore inconsequential
to our model.

The Vp in the Davis et al. [2010] experiment
continually changes in every cell throughout the
duration of the experiment (Figure 4); some cells

exhibit more change on certain days compared to others. If cells with a positive Vp change are categorized
as “load bearing” and cells with a negative Vp change are categorized as “pore filling,” Figure 6 can be used
to map VP perturbations to Sbf. The underlying assumption is that Sbf monotonically increases in all cells.
This approach provides flexibility to change the growth forms (from pore filling to load bearing or vice versa)
in estimating Sbf at individual cells. However, it has a drawback. It assumes mutually exclusive growth
forms. Our model uses a single growth form at an individual cell between two observations days which is
based on the net VP change. Since the two growth forms have opposing effect on the Vp (Figure 6), our
approach yields a very conservative Sbf estimate.

Mapping positive Vp perturbation as an increase in the load-bearing form (Figure 7a) and negative
perturbations as an increase in the pore-filling form (Figure 7b) shows an overall ϕ decreased of 10%, with as
much as 15% decrease at a few selected locations (Figure 7c). This value is consistent with data obtained in a
bioclogging experiment by Abdel-Aal et al. [2010] using P. aeruginosa culture and sands. Arranging cells
based on average VP (Figure 4) aids in the visualization of our results. In Figure 7a, cells with dominant load-
bearing form are numbered 140 and higher. Similarly, cells with dominant pore-filling form are numbered
60 and lower. In cells 60–140, biofilm grows in equally in both forms.

As opposed to the traveltime/VP which increased and decreased throughout the experiment, the peak-to-
peak amplitudes (AP2P) generally decreased with time [Davis et al., 2010]. AP2P changes can be related to
seismic attenuation which is the loss of seismic energy in a single cycle [Batzle et al., 2005]. Mathematically,
it can be represented by the inverse of a dimensionless “quality factor” QP as follows:

1
QP

¼ � δAP2P

πAP2Pi

(9)

In equation (9), AP2P is current and AP2Pi is peak-to-peak amplitudes on the first day. It is intuitively
expected that biofilm growth will increase attenuation. However, the Davis et al. [2010] experiment has an

exception; a display of π:Q�1
P computed using equation (9), suggests that the attenuation decreases in

cells 150–165 on day 7 (Figure 7d). A comparison of Figures 7a and 7d suggests that this decrease could be
related to the early stages of the load-bearing form. Figure 7d further shows that attenuation increases
most rapidly in cells 5–35. A comparison of Figures 7b and 7d suggests that increased attenuation could be
related to the pore-filling mode.

Attenuation is a complex phenomenon which depends on a multitude of factors such as frequency, grain
shape and size, fracture density and aspect ratio, as well as fluid saturation and viscosity. As a result,
models for attenuation are generally more difficult to formulate than they are for VP; more so for biofilms due
to a scarcity of relevant data. Here we have attempted to model the observed peak-to-peak amplitude
changes in two ways. First, using the “squirt flow” theory [Mavko and Nur, 1979] which takes the biofilm
texture into account and second, using an empirical model that takes medium bulk properties into account.

Attenuation through squirt flow, as amplitude decay in porous media, implies heat loss due to relative motion
between solid (dry matrix) and liquids (pore fluid). The relative motion is higher in pores that are “soft,” i.e.,
that get easily deformed under seismic stress. By definition, the remaining “stiff” pores do not contribute to
squirt flow. In the high-frequency limit, i.e., when pore pressure distribution in the rock does not equilibrate

within the wave half-cycle, Gurevich et al. [2010] formulatedQ�1
P as a function of P and frequency (f ) as follows:

1
QP p; fð Þ ¼

αϕ� Pð ÞKdryffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3πfηKf

p (10)

In equation (10), α is the pore aspect ratio (ratio of radius and length), ϕ* is the volume of soft pores, and η is
the viscosity of the fluid that squirts in and out of the soft pores. For modeling attenuation using squirt

Table 2. PCO2 in kPa

Alkalinity pH = 7 pH = 5 pH = 4.5 pH = 4

50 0.0063 1.288 2.0711 7.005
100 0.01245 2.5345 4.0439 13.292
150 0.01868 3.7644 5.997 19.552
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flow, we make some simplistic but logical and intuitive assumptions. First, we assume that the pore fluid is a
colloid comprising microbial cells suspended in water and use the exponential law proposed by Cheng et al.
[2002] for colloidal η:

η ¼ η0e
aS�bfþbð Þ (11)

In equation (11), Sbf
* is the volume fraction of biofilm cells suspended in the pore water (assumed to be

detached from the original framework), a and b are model constants, and η0 is the viscosity of water in the
absence of any suspensions. In line with Davis et al. [2010], we use the complex conductivity [Davis et al.,
2010, Figure 12a] as a proxy for biofilm detachment assuming that the absolute changes in the complex
conductivity are linearly proportional to the fraction of detached biofilm from the solid surface. The complex
conductivity curve in Davis et al. [2010] is bell shaped [Davis et al., 2010, Figure 12a] begins at a base
value, peaks on the seventh day of observation and exponentially declines thereafter to its starting base
value. We approximate Sbf

* with 1� cð Þ*Stbf , where Stbf is the total biofilm saturation (Figure 7c), c is a

detachment array ranging between 0.01 (implying 1% of Stbf is in the detached state) and 0.99 (implying 99%

of Stbf is in the detached state) such that c*Stbf imitates the complex conductivity.

In the Davis et al. [2010] experiment, attenuation is not limited to the biostimulated column. Even in the
nonbiostimulated column, the source wavelet gets attenuated, and over 29 days, the attenuation
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tude change as an indication of attenuation (see text for details). Attenuation consistently increases at all model locations
except in cells 130–165 on day 3. In cells 130–165, biofilms appear to have a load-bearing growth style.
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characteristics changes, albeit modestly
(<5%) as compared to the biostimulated
column (up to 80%). Our explanation is
as follows. Squirt flow occurs in the sand
pack in both biostimulated and
nonbiostimulated columns. The internal
settling of the pack over time is expected
to slightly change the attenuation
character, as observed in the Davis et al.
[2010] experiment. We expect the
pores within the biofilm to be “softer”
than the sand pack pores. In which
case, the loss of energy could be higher
as pore fluid squirt in-and-out of the
biofilm EPS as compared to pores of
the sand pack. Thus, Stbf can strongly
influence attenuation.

In equation (10), ϕ * can be assumed
as the biofilm porosity; Kdry and Kf can
be obtained from equations (3) and (4);
the differential pressure (ambient
conditions) can be assumed constant
throughout the experiment and f is
the dominant frequency. Rather than

modeling Q�1
P at every cell, we compare

and contrast model parameters in
dominantly pore-filling form (cells 5–35;
Figure 7b) versus dominantly load-
bearing form (cells 150–165; Figure 7a).

Figure 8a is a plot of δA
P2P

AP2Pi
versus

observation days. Black and red stars in Figure 8a indicate average δAP2P

πAP2Pi
from cells 5–25 and 150–165,

respectively. Black and red lines in Figure 8a are model predictions using equations (9) and (10). The arrays

c*Sporebf and c*Sloadbf corresponding to pore-filling and load-bearing forms are shown in Figure 8b in black

and red, respectively (Sporebf and Sloadbf are from Figures 7a and 7b, respectively), and array c is shown in dashed

blue line. Array α for pore-filling and load-bearing forms is shown in Figure 8c in black and red lines,
respectively. Based upon model fitting (Figure 8a), the squirt flow requires biofilms in the load-bearing form
to have (a) more oblate pores and (b) higher ϕ * (Figure 8c).

Attenuation can also be explained using an empirical model. For a plane wave, the amplitude decay can be
expressed as A(x) = A0 e

�ax, where x is the travel path and a is a system-dependent constant defined as
follows [Boadu, 1997]:

a ¼ a0 þ a1ϕ þ a2κ þ a3D (12)

In equation (12), D is themean grain size (mm) and a0 through a3 are system-dependent constants. Equations
(9) and (12) can be combined as follows:

1
QP

¼ � δA
πA0

¼ � 1
π

1� e a0þa1ϕþa2κþa3Dð Þx
� �

(13)

In our case, for equation (13), we can assume that D remains constant, x is the thickness of the sedimentary
column (51 mm), and obtain the time-lapseϕ (Figure 4c). With an initial permeability κi=5 D (corresponding to

ϕi=38.75% [Costa, 2006]), modeling Q�1
P from cells 5–25 and 150–165 yields two κ arrays corresponding to
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pore-filling and load-bearing forms
(Figure 9). As intuitively expected, Figure 9a
shows that in general, deceasing κ
increases Q�1

P (decreases amplitude). Of
particular interest though is the amplitude
increase on day 7 in cells 150–165, which
can be fitted by increasing the κ by ~10%
(Figure 9b). Application of the empirical
model (Figure 9) suggests that at low
(~2%) saturation, the load-bearing form
could locally increase the system κ.

5. Discussion

Similar to the Davis et al. [2010]
experiment, Kwon and Ajo-Franklin [2013]
conducted experiments which involved
stimulating the production of the
biopolymer dextran inside a column of
sand andmonitoring changes in κ and the
seismic response using the ultrasonic
pulse transmission method. Like Davis
et al. [2010], Kwon and Ajo-Franklin [2013]
also observed increased attenuation in
conjunction with decreased κ. Davis et al.
[2010] speculated that attenuation could

have occurred due to squirt flow and scattering, whereas Kwon and Ajo-Franklin [2013] related the
attenuation to a flow-induced loss mechanism related to the combined grain/biopolymer structure. We have
presented two models for attenuation, which is by no means an exhaustive investigation but offer new
insights into the system dynamics. The sparse nature of experimental data available on biofilm fundamental
properties such as K, G, α, ϕ *, and η limits model testing and development. We emphasize on the importance
of a standardized method for collecting these data by the wider biofilm community.

In the Davis et al. [2010] experiment, except at a few sampling locations, the attenuation increased by up
to ~80%. On the other hand, arrival times only increased and decreased by ~2%. This should not be
interpreted as VP being insensitive to biofilm growth. Traveltime is a kinematic property which depends on
medium velocity. The medium velocity, in principle, only depends on bulk composition which should be
independent of acquisition setup. Amplitude, on the other hand, is a more dynamic property. Besides the
bulk composition, it also depends on acquisition setup and scale of investigation. The relative changes in
amplitudes and traveltimes are also a function of the scale of sampling and the dominant frequency. For
example, if the same experiment was done at a larger spatial scale, perturbations in arrival time could be
better observed. Similarly, if the dominant frequency was in the sonic range (30–100 Hz), attenuationmay not
have been as prominent.

A close inspection of the Davis et al. [2010] data also suggests that in general, arrival times have spatial
dependence while amplitudes have temporal dependence [Al-Hadrami, 2013]. We were unable to identify
any strict patterns in time-lapse Sbf. In our opinion, for scaling this experiment to field scale, such as for
CO2 sequestration or MEOR, it will be critical to (a) acquire data in a time-lapse manner and (b) use all
attributes of data along with their potential spatial and temporal patterns. Achieving repeatability in seismic
experiments in field setting has its own challenges. On a related note, the model in this paper also predicts
the shear-wave velocity (VS), which could be easily acquired in the field settings. If present, VS could
additionally constrain Sbf.

The environmental scanning electronmicroscope (ESEM) images acquired at the end of the Davis et al. [2010]
experiment (Figure 1) in zones of decreasing and increasing amplitudes corresponds to cells 20 (pore filling)
and 170 (load bearing), respectively, in our model. Davis et al. [2010] noted that during ESEM imaging of
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the zone with increasing amplitudes, the bacterial cells were not visible until the operating temperature
and relative humidity were changed from 5°C to 20°C and 89% to 14%, which effectively led to drying out
of the biomaterial. We interpret this as the biofilm in the increased amplitude zone to be having higher
internal ϕ which is in line with our squirt flow model. The surface texture of the biofilm in this zone was
vuggy with elongated crevasses. In contrast, biofilm from the decreased amplitude zone was clearly visible at
5°C operating temperature and 89% relative humidity and had relatively smoother texture and better
defined pores. A higher value for α in the case of increased amplitude zone is probably reflective of the
observed texture.

The empirical model result suggests that the AP2P increase on day 5 is due to the local increase in κ, which
occurs at low (<5%) Sbf in the load-bearing form. To explain this, we propose formation of “biotubes,”
which we envision as channels within biofilms that lead to an overall elevated hydraulic conductivity [e.g.,
Stoodley et al., 1994]. The term “tube” is to reflect the rod-shaped nature of P. aeruginosa bacteria. Elevated
hydraulic conductivity has also been reported for other biofilms such as Bacillus mojavensis [Vogt et al.,
2013] and Bacillus subtilis [Wilking et al., 2013]. We are uncertain of the exact nature of the proposed biotubes
in the Davis et al. [2010] experiment but we hypothesize that biochanneling is concurrent with limited
vertical accommodation space (Figure 6c), which automatically implies that pore throat size could affect
biofilm morphology.

Fully mature P. aeruginosa biofilms conceptually appear as mushroom-shaped projections extending away
from the surface (Figure 6c) with a texture characterized by channels and caverns [Klausen et al., 2003a,
2003b; Miller et al., 2012]. This morphology assumes unrestricted growth space and is similar to the pore-
filling form in our model. It also has a more common occurrence that the load-bearing form, which is
somewhat rarely reported [e.g., Abdel-Aal et al., 2010]. However, corroborating studies suggest that the
material properties of biofilms are dynamic and shape change can occur in response to mechanical pressure
[Alpkvist and Klapper, 2007], nutrient supply [Chang and Halverson, 2003], and osmotic pressure [Seminara
et al., 2012]. We speculate that between the two mineral grains, it is the increased shear pressure due to
growth which changes the biofilm structure. This is in line with Mukherjee et al. [2009] who suggest that
shear stress can change the biofilm morphology to a thinner and denser state.

Both Davis et al. [2010] and Kwon and Ajo-Franklin [2013] observed that the amplitude decrease stops at
~80%. This phenomenon can be understood using equation (13) which implies that when ϕ and κ fall
below a minimum threshold, attenuation depends on the system constants (a0, a4, and D). In the Kwon and
Ajo-Franklin [2013] experiment since the size of the sand pack (as well as ϕ0 due to grain packing) remains
the same as in the Davis et al. [2010] experiment, the maximum attenuation is similar. The decrease in ϕ in
the Kwon and Ajo-Franklin [2013] model is less than that predicted by our model (~6% versus ~10%),
which could be due to the differences in the elastic properties of the bacteria which were cultivated in the
two experiments.

Kwon and Ajo-Franklin [2013] also measured time-lapse changes in κ as decreasing from 5.25 D to 225 mD,
which is very close to κ predicted by our pore-filling model (black line; Figure 9b). However, Kwon and Ajo-
Franklin [2013] did not report any increase in κ, but it may not be inconsistent with our model. On a closer
examination, the relative amplitude displayed in Figure 9a from Kwon and Ajo-Franklin [2013] does show
that the amplitude increased on the second observation day. The similarity in the two data sets indicates
that biotube-type features could be forming in the Kwon and Ajo-Franklin [2013] experiment as well.
However, we acknowledge that more experimental data are needed for proper calibration of rock physics
models to test the biotube hypothesis. Although biofilm monitoring experiments using geophysical
techniques remain a challenge, such efforts could be rewarding in the long run.

6. Conclusions

We report here a pioneering effort in developing mechanistic models for biofilm growth in porous media. We
show that acoustic amplitudes and arrival times recorded in a 29 day long physical scale experiment by
Davis et al. [2010] can be modeled using the lower Hashin-Shtrikman bounds for grain mixing and Gassmann
substitution for fluid saturation. Model application suggests the occurrence of two distinct biofilm forms
which could form as a function of pore throat size. An increase in VP can be explained by the biofilm load-
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bearing form (in the matrix), which could occur when the vertical accommodation space is low. As a result,
the biofilm bridge adjoining mineral grains expand along the grain surface and possibly interconnect. A
decrease in VP can be explained by biofilms in the pore-filling form (in the pore), which could occur when the
vertical accommodation space is unrestricted. Mapping time-lapse VP to Sbf suggests that overall ϕ could
have decreased by 10%, with the decrease being as much as 15% at a few selected locations. Amplitude
decay can be explained equally well by a deterministic squirt flow model and an empirical model as a
function of ϕ and κ. Results from the squirt model suggest that the load-bearing form has higher (7% versus
5%) internal porosity and lower (0.33 versus 0.67) pore aspect ratio as compared to the pore-filling forms.
Results from the empirical model suggest that local κ increases by 10% at low (~2%) Sbf in the load-bearing
form and that a limiting threshold of 80% decrease in amplitudes is due to the grain size of the sand
pack. Models developed in this paper can be applied to field seismic data by adapting them appropriate to
lower frequencies and larger length scales such as will be needed for MEOR studies and biobarrier monitoring
associated with CO2 sequestration.
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