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and the southern Basin and Range Province: Results
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[1] Over the past several decades, contrasting models have been proposed for the physical and chemical
processes responsible for the uplift and long‐term stability of the Colorado Plateau (CP) and crustal thinning
beneath the Basin and Range Province (BRP) in the southwestern United States. Here we provide new con-
straints on the models by modeling gravity anomalies and by systematically analyzing over 15,500 P‐to‐S
receiver functions recorded at 72 USArray and other broadband seismic stations on the southwestern CP
and the southern BRP. Our results reveal that the BRP is characterized by a thin crust (28.2 ± 0.5 km),
a mean Vp /Vs of 1.761 ± 0.014 and a mean amplitude (R) of P‐to‐S converted wave (relative to that of
the direct P wave) of 0.181 ± 0.014 that are similar to a typical continental crust, consistent with the model
that the thin crust was the consequence of lithospheric stretching during the Cenozoic. The CP is charac-
terized by the thickest crust (42.3 ± 0.8 km), largest Vp /Vs (1.825 ± 0.009) and smallest R (0.105 ± 0.007)
values in the study area. In addition, many stations on the CP exhibit a clear arrival before the P‐to‐S con-
verted phase from theMoho, corresponding to a lower crustal layer of about 12 km thick with a mafic com-
position. We hypothesize that the lower crustal layer, which has an anomalously large density as revealed
by gravity modeling and high velocities in seismic refraction lines, contributed to the long‐term stability
and preuplift low elevation of the Colorado Plateau.
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1. Introduction

[2] The southwestern portion of theUnited States has
undergone a series of tectonic events ranging from

Proterozoic orogenesis [Whitmeyer and Karlstrom,
2007; Karlstrom and Bowring, 1988], flat subduc-
tion of the Farallon plate in the late Cretaceous to
early Tertiary [Saleeby, 2003] creating widespread
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magmatism and crustal shortening, Cenozoic uplift of
the Colorado Plateau (CP) [Liu and Gurnis, 2010] to
the Late Cenozoic extension within the Basin and
Range Province (BRP) [Menges and Peartree, 1989].
A majority of the above tectonic events can be

observed in Arizona where the CP and BRP dominate
the present day tectonic environment (Figure 1).
Major features with a sharp contrast between the two
provinces include surface elevation, heat flow, crustal
thickness, tectonic deformation, Bouguer gravity, and
crustal Poisson’s ratio [e.g., Thompson and Zoback,
1979; Sumner, 1989; Frassetto et al., 2006; Gilbert
et al., 2007].

[3] Numerous active‐source seismic refraction/
reflection studies (Figure 2) suggest that crustal
thickness (H ) ranges from 40 to 50 km beneath the
CP, and 28–32 km beneath the BRP [Roller, 1965;
Warren, 1969;Prodehl, 1979;Gish et al., 1981; Sinno
et al., 1981;Hauser and Lundy, 1989;McCarthy et al.,
1991; Wolf and Cipar, 1993; Parsons et al., 1996].
Similar results were obtained by applying the
receiver function (RF) method to broadband seis-
mic data [Zandt et al., 1995; Wilson et al., 2005;
Frassetto et al., 2006; Gilbert et al., 2007; Wilson
et al., 2010]. These studies have proposed crustal
evolution models mainly based on crustal thickness
but some of the studies [e.g., Frassetto et al., 2006;
Gilbert et al., 2007] used Vp /Vs measurements in
determining the nature of the crust and hence the
tectonic history.

[4] The gravity field of the study area has been
studied by numerous researchers [e.g., Aiken, 1976;
Keller et al., 1979; Thompson and Zoback, 1979;
Sumner, 1989; Hendricks and Plescia, 1991].
These workers have shown that there is an excel-
lent correlation between the tectonic provinces (CP
and BRP) and Bouguer gravity anomalies. The CP
has high amplitude negative Bouguer gravity values
that correspond to thicker crust and lithosphere, and
has Free‐air gravity values that average to approx-
imately 0 mGal implying that it is in isostatic
equilibrium [Aiken, 1976; Thompson and Zoback,
1979]. The BRP has relatively high amplitude
Bouguer gravity values which agree with the thinner
crust found in the region [McCarthy et al., 1991].
Two‐dimensional regional gravity models [Thompson
and Zoback, 1979; Mickus, 1989; Hendricks and
Plescia, 1991] constrained by seismic refraction
models [e.g., Warren, 1969; McCarthy et al., 1991]
indicate that crust beneath the BRP is thinner with
a less dense upper mantle than that under the CP,
and that there is a steep gradient in crustal thick-
nesses between the two provinces. Detailed gra-
vity modeling [McCarthy et al., 1991; Mickus and
James, 1991] along a seismic refraction profiles in
western Arizona indicates that the lower crust is
significantly denser and thicker in narrow regions
associated with highly extended crustal regions.

Figure 1. Major geologic provinces and their ages
[Bennett and DePaolo, 1987; Livaccari and Perry, 1993],
volcanic fields (brown areas) and their ages, metamor-
phic core complexes (orange areas) [Hendricks and
Plescia, 1991], and location of seismic stations (open
circles and stars) used in this study. Stars indicate stations
showing a secondary arrival between the direct P wave
and the P‐to‐S converted phase from the Moho. The
letter inside each of circles represents the tectonic area
based on seismic and surface geology analyses. Area A,
a transition zone between the CP and the eastern portion of
the BRP north of Grand Canyon; area B, Mojave‐Elves
Chasm; area C, the BRP in southern Arizona; area D,
Arizona transition zone; area E, Colorado Plateau. The red
dashed line separates the highly extended terrane with
older Proterozoic rocks in the Mojave Desert and less
extended terrane and younger Proterozoic rocks in central
Arizona [Wooden andDeWitt, 1991;Bennett andDePaolo,
1987]. The blue dashed lines represent the suture between
the Yavapai, southern Yavapai, and Mazatzal provinces
[Bennet and DePaolo, 1987; Karlstrom and Humphreys,
1998; Selverstone et al., 1999]. The black solid lines
outline the Arizona Transition Zone [Hendricks and
Plescia, 1991]. The major volcanic fields in the study
area include the Navajo (NVF), San Francisco (SFVC),
Hopi Buttes (HBVF), White Mountains (WMVF), and
Mormon mountain volcanic fields (MMVF) [Hendricks
and Plescia, 1991; Condie and Selverstone, 1999].
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[5] Recent developments in RF studies revealed
that in addition to crustal thickness, the Vp /Vs

measurement, which is uniquely related to the
better‐known Poisson’s ratio (s) by s = 0.5 [1 − 1/

(�2 − 1)], where � = Vp /Vs, provides additional
information on crustal composition and evolution
[e.g., Zhu and Kanamori, 2000; Nair et al., 2006;
Liu and Gao, 2010]. Laboratory experiments sug-
gest that the average Vp /Vs value for granitic,
andesitic, and basaltic rocks is 1.71, 1.78, and 1.87,
respectively [Tarkov and Vavakin, 1982], and that
for the upper crust and lower crust, Vp /Vs is 1.74
and 1.81, respectively [Christensen, 1996]. Previous
RF studies in the study area suggest that Vp /Vs

values range from 1.81 to 1.90 in the CP and from
1.73 to 1.78 in the BRP [Zandt et al., 1995; Frassetto
et al., 2006; Gilbert et al., 2007] (Figure 2).

[6] The present study is motivated by a number of
factors. First, the previous RF studies in the area
have limited number of stations, and the station
distribution was uneven (Figure 2). Second, a dif-
ferent set of crustal thickness and Vp /Vs measuring
techniques and crustal velocities were used in
previous studies, which led to a heterogeneous data
set that makes inter‐station comparisons unreliable.
For instance, Zandt et al. [1995] used a P wave
velocity of 6.25 km/S and a constant Vp /Vs of
1.73 Vp/Vs when computing crustal thickness,
while Frassetto et al. [2006] used a P wave
velocity of 6.1–6.3 km/s; Gilbert et al. [2007] used
a P‐wave velocity of 6.475 km/s and a Vp /Vs of
1.81 for LA RISTRA and 1.85 for SPE stations.
Third, virtually none of the previous studies con-
ducted in‐depth investigations of the stacking
amplitude (R) of the P‐to‐S converted phases and
their multiples. As demonstrated in recent studies
[Nair et al., 2006; Liu and Gao, 2010], the stacking
amplitude is effective in providing additional
information about the structure and evolution of the
crust, especially in areas with potentially magmatic
underplating and other forms of magmatic modifi-
cation of the original crust. Finally, this study takes
the advantage of the high‐quality data recorded by
the nearly evenly distributed EarthScope Transport-
able Array (TA) stations to comprehensively inves-
tigate the spatial distribution of H, Vp/Vs, and R in
Arizona, where a sharp contrast in crustal char-
acteristics between the CP and the BRP has been
previously noted [Sumner, 1989], but the nature
and cause(s) of such contrast have been debated,
mostly due to a lack of detailed knowledge about
crustal characteristics beneath the CP and the BRP.

2. Tectonic Setting

[7] Proterozoic terranes in the study area include the
Mojave‐Elves Chasm, Yavapai, southern Yavapai,

Figure 2. Topographic map of the study area showing
previous determinations of crustal thickness and Vp/Vs.
Dashed white lines connecting black triangles are seis-
mic refraction surveys [Sinno et al., 1981; Wilson and
Fuis, 1987]. Triangles denote shot points. AB, Sinno
et al. [1981]; BC, Gish et al. [1981]; DE and FG,
Warren [1969]; JI, Diment et al. [1961]; JH, Langston
and Helmberger [1974] and Bache et al. [1978]; EK,
Bache et al. [1978]; KL, Roller [1965]; MN and OP,
Wilson and Fuis [1987]; QR, instrument deployment of
the PACE 1987; QS, profile of PACE 1989 [McCarthy
et al., 1994]; TU, Grand Canyon profile of PACE 1989
[McCarthy et al., 1994]. Black dotted lines joined by red
triangles are COCORP deep seismic reflection profiles
[Hauser et al., 1987]. The pink pluses and circles indi-
cate the average crustal thickness along seismic refrac-
tion and reflection profiles [Roller, 1965; Warren, 1969;
Hauser and Lundy, 1989; Wolf and Cipar, 1993;
Parsons et al., 1996]. Red circles and pluses indicate
crustal thickness determined by Frassetto et al. [2006]
using receiver functions. Black circles and pluses rep-
resent crustal thickness from Gilbert et al. [2007].
Brown circles and pluses are those from Zandt et al.
[1995], and white circles show results of Zhu and
Kanamori [2000]. The numbers next to the circles or
pluses are Vp/Vs determinations. Note that in order to
highlight spatial variations of the crustal parameters such
as thickness, throughout the text greater values are
represented by bigger pluses, and smaller values are
shown as bigger circles (see the legend).
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and the Mazatzal provinces (Figure 1) [Whitmeyer
and Karlstrom, 2007]. The oldest rocks found in
the study area are Proterozoic granitoids and
gneisses with an estimated age ranging from 2.0 to
2.3 Ga found in the Mojave‐Elves Chasm terrane
(area B, Figure 1) [Bennett and DePaolo, 1987].
Proterozoic tectonic events, which created the
northeasterly trending Yavapai and Mazatzal ter-
ranes, involved a series of tectonic pulses including
accretion, back‐arc spreading and continental mar-
gin volcanic arcs from 1.6 to 1.8 Ga [Whitmeyer
and Karlstrom, 2007]. The 1.4 Ga granitoids in
the BRP and the Arizona Transition Zone represent
the first major event to affect the Proterozoic lith-
osphere [Van Schmus et al., 1996], and were pos-
sibly produced from underplated basaltic material
[Karlstrom and Humphreys, 1998].

[8] During the Mesozoic, the Laramide orogeny
affected the southwestern United States with the
arrival of a flat‐lying subduction slab. Most of
the current western U.S. orogenic zone including
the study area was uplifted [Bird, 1979; Sonder and
Jones, 1999]. During the subsequent tectonic col-
lapse of the orogenic event in the Cenozoic, the
current BRP area experiencedwidespread extension.
The amount of extension in the BRP varied spa-
tially, with the Colorado River Extensional Corri-
dor being extended as much as 200% [Wernicke
et al., 1988], leading to the formation of metamor-
phic core complexes (MCCs) which are exhumed
metamorphic and igneous rocks in the previously
over thickened crust [Coney and Harms, 1984]. At
the present time, the southern BRP is characterized
by low elevation, high heat flow [Lachenbruch and
Sass, 1978], low upper mantle seismic velocities
[Bensen et al., 2009; Buehler and Shearer, 2010],
and thin crust [Zandt et al., 1995; Frassetto et al.,
2006; Gilbert et al., 2007; Buehler and Shearer,
2010]. While the exact time of the uplift of the
CP is still a topic of debate, most studies suggest
that approximately during the same time period as
the extension in the BRP, the CP was uplifted to
about 2 km above sea level [Spencer, 1996; Sonder
and Jones, 1999; Roy et al., 2009; Liu and Gurnis,
2010]. However, the interior of the CP remained
unaffected by the extensional stress field.

[9] Central to this study is the nature and thickness
of the crust under the CP and their relationship with
the uplift and tectonic stability of the plateau.
Despite the numerous studies on this fundamental
problem, there still remains an uncertainty on the
timing and the mechanism of the uplift of the CP,
which was at or below sea level in the Late Cre-
taceous based on shallow marine deposits found

throughout the CP [Bond, 1976]. Paleobotanical
[Wolfe et al., 1998], basalt vesicularity [Sahagian
et al., 2002], and thermochronological studies
[Flowers et al., 2008] resulted in contradictory data
on the timing of the uplift, from the latest Creta-
ceous to the Miocene.

[10] Equally controversial is the mechanism for the
uplift of the CP. Some of the proposed models
include various crustal thickening models involv-
ing the flat subduction of the Farallon plate [Bird,
1984, 1988; Chase et al., 2002], thermal heating
of the lithosphere [Hinojosa and Mickus, 2002],
delimination of a part or all of the mantle litho-
sphere [Bird, 1979; England and Houseman, 1988;
Zandt et al., 1995; Spencer, 1996; McQuarrie and
Chase, 2000], chemical alteration of the lithosphere
and removal of the Farallon plate [Humphreys et al.,
2003; Roy et al., 2004], mantle convection [Liu and
Gurnis, 2010], and buoyancy from a lower velocity
channel in the depth range of 150 to 300 km [West
et al., 2004].

[11] Similarly, contradicting models for the thin-
ning of the crust beneath the BRP have been pro-
posed, including long‐distance transportation of
plastic lower crustal materials from the BRP to the
CP [Bird, 1979, 1984], delamination of the lower
crust, and Cenozoic extension [Wernicke et al.,
1988] that created a radial anisotropy [Liu, 2009;
Moschetti et al., 2010]. Isotopic [Livaccari and
Perry, 1993] and xenolith [Esperanca et al., 1997;
Selverstone et al., 1999] evidences indicate the
presence of Proterozoic lower crust beneath the
study area.

[12] The present study is aimed at providing con-
straints on the various models for the uplift and
tectonic stability of the CP and crustal thinning of
the BRP by systematically examining teleseismic
receiver function data recorded at all the available
broadband seismic stations in Arizona and adjacent
areas. Gravity anomaly data are also used to aide in
the interpretation of the seismic results and to
provide additional constraints on the models.

3. Data and Methods

[13] The three‐component broadband seismic data
for all the seismic stations within the area of 31.5°
to 37.0°N and −115.0° to −109.0°E were obtained
from the IRIS (Incorporated Research Institutions
for Seismology) DMC (Data Management Center).
A total of 85 stations have available data at the
IRIS DMC at the time when the data were requested.
As described below, after the seismograms were
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converted into receiver functions and went through
manual checking, 72 of them have sufficient high‐
quality RFs for the study. The 72 stations belong to
a number of seismic networks including TA
(EarthScope Transportable Array), IU (IRIS/USGS
Network), CI (Caltech Regional Seismic Network),
and several PASSCAL (Program for Array Seismic
Studies of Continental Lithosphere) portable seismic
networks. Sixty‐four of the 72 stations (Figure 1)
are TA stations which have a nominal spacing of
70 km and each station recorded the ground motion
for about two years between 2007 and 2009. Sta-
tion TUC belongs to the IU network, and stations
NEE2, PDM, and GLA belong to the CI network.
The data set also includes 4 stations from the LA
RISTRAportable seismic experiment which recorded
data for 18 months between August 1999 and May
2001 [Wilson et al., 2002].

[14] Data from earthquakes with epicenteral dis-
tances between 30° and 180° for the period of 1990
to early 2010 were requested from the IRIS DMC
for the study. Following Liu and Gao [2010], a

cutoff magnitude (Mc) was calculated using Mc =
5.2 + (D − 30.0)/(180.0 − 30.0) − D/700.0, where
D is the epicentral distance in degree, and D is the
focal depth in km. The parameters used for this
equation are aimed at balancing the quantity and
quality of the seismic data to be requested.

[15] The seismograms were windowed starting 20 s
before and extending to 360 s after the first P wave
arrival, and were band‐pass filtered within the
frequency band of 0.08 to 0.8 Hz to improve signal‐
to‐noise ratio (S/N). All the events having a S/N of
4.0 or greater on the radial component were
selected and converted into radial RFs using the
procedure of Ammon [1991]. The width of the
Gaussian filter is 5 s, and the value of the water
level is 0.03. The RFs were examined visually and
all of those with well defined first P arrivals were
selected for this study while the others with weak P
arrivals or anomalously large peaks in the P wave
coda were rejected. To ensure reliability of the
results, 13 of the 85 stations with less than 40 high‐
quality RFs were not used in the study. A total of
15,766 high‐quality RFs were used for the study at
72 stations, leading to an average of 219 RFs per
station which is more than that used by most pre-
vious RF studies.

[16] To demonstrate the high‐quality of the RFs
and the first‐order difference in crustal thickness
between the BRP and the interior part of the CP,
we grouped the RFs into (focal‐depth corrected)
epicentral distance bins of 2° wide and with 1°
overlap among neighboring bins and stack those in
the same bins (Figure 3). The arrival times of the
PmS phase and its multiples for stations on the CP
are significantly delayed relative to those on the
BRP, suggesting a greater crustal thickness beneath
the former.

[17] The resulting RFs for each of the stations were
moveout‐corrected and stacked [Zhu andKanamori,
2000; Nair et al., 2006]. The optimal pair of crustal
thickness (H) and Vp /Vs together with the maxi-
mum stacking amplitude (R) were determined for
each station by grid searching. The stacking was
performed using the equation [Zhu and Kanamori,
2000; Nair et al., 2006]

A Hi; �j

� � ¼
Xn
k¼1

w1 � Sk t i; jð Þ
1

� �
þ w2 � Sk t i; jð Þ

2

� �

� w3 � Sk t i; jð Þ
3

� �
; ð1Þ

where � = Vp /Vs, w1, w2, w3 are the weighting
factors, t1, t2, t3 are the moveout times for the PmS,
PPmS and PSmS phases, respectively, n is the

Figure 3. (bottom) Binned and stacked radial receiver
functions from (left) stations in the BRP and (right) sta-
tions on the CP with observable PuS arrivals. Dashed
lines are the predicted arrival times for PuS, PmS, PPmS,
and PSmS phases. The scale bar shows the amplitude
relative to that of the direct P wave. Note the clear
difference in the arrival times of the converted phases
and the existence of a midcrustal phase beneath the
CP. (top) Number of RFs per bin.

Geochemistry
Geophysics
Geosystems G3G3 BASHIR ET AL.: ARIZONA CRUST 10.1029/2011GC003563

5 of 18



number of high‐quality radial receiver functions
from the station, Sk(t) is the amplitude of the point
on the kth receiver function at time t after the first P
arrival, and A(Hi, �j) is the stacking amplitude
corresponding to Hi and �j. For this study, we use
w1 = 0.5, w2 = 0.4 and w3 = 0.1. Figure 4 shows an
example H − � (i.e., thickness versus Vp /Vs) plot
and associated RFs.

[18] The procedure to produce the H − � plots
involves calculation for a series of candidate Hi in
the 15 to 65 km range with a 0.1 km increment, and
�j values from 1.65 to 1.95 with a step of 0.0025.
At each candidate (Hi, �j), the RFs are stacked
using Equation (1) to obtain A(Hi, �j). The effec-
tiveness of theMoho in producing converted waves
was quantified by R, which is the stacking ampli-
tude (relative to that of the direct P wave) corre-
sponding to the optimal Hi and �j. For each pair of
(Hi, �j), the moveout of PmS, PPmS and PSmS,
were calculated. Details of stacking procedure
including synthetic tests and the calculation of the
moveout times can be found in the works of Nair
et al. [2006] and Liu and Gao [2010].

[19] The computation of the moveout times requires
a mean crustal P wave velocity. Christensen and
Mooney [1995] found that the average crustal

velocity in crustal extensional domains is 6.2 km/s.
Based on previous active and passive source seis-
mic studies [McCarthy et al., 1991; Gish et al.,
1981; Frassetto et al., 2006], for this study, we
used a crustal velocity of 6.1 km/s for the BRP and
6.3 km/s for the CP. As demonstrated by Nair et al.
[2006], a 5% departure of the actual velocity from
the velocity used for the stacking would lead to
an error of about 2.5 km in the resulting H value,
and about 0.012 in the resulting Vp /Vs value. The
bootstrap approach was used to obtain the stan-
dard deviations (STDs) of the observed parameters
(H, Vp /Vs, R) and their mean values [Efron and
Tibshirani, 1986; Press et al., 1996; Gao et al.,
2004; Liu and Gao, 2010].

[20] The Bouguer gravity anomaly data were
obtained from the National Geospatial and Imaging
Agency. The data set includes approximately 45,000
stations with the station spacing between 1 and 3 km
except in the north central part of Arizona along
the Utah border where the station spacing is greater
5 km. This distribution of data is sufficient for
regional gravity studies and the construction of
regional gravity models. In order to analyze litho-
spheric scale anomalies, an isostatic residual gravity
anomaly map was created (Figure 5) using GMT
(Generic Mapping Tools) software [Wessel and
Smith, 1991] that uses the method of Watts [2001]
to determine a regional compensation model where
an elastic plate is flexed downward due to a driving
load. The driving force is regional topographic loads
as determined by elevations variations derived from
GTOP30 digital elevation models. Resulting iso-
static residual gravity anomaly map (Figure 5)
clearly outlines crustal scale features better than the
Bouguer gravity anomaly map [Sumner, 1989;
Hendricks and Plescia, 1991]. The Bouguer gravity
anomaly map shows a large amplitude northeast
trending gradient that is related to the change in
crustal thickness between the CP and the BRP. The
isostatic residual gravity anomaly map still has
northeast trending gradient but its amplitude is less
than half of that on the Bouguer gravity anomaly
map. The high amplitude regions which are more
pronounced in the isostatic residual gravity anomaly
map in southwest Arizona and along the Colorado
River can be explained by high density lower crustal
material as imaged by seismic refraction surveys
[McCarthy et al., 1991].

4. Results

[21] Reliable crustal thickness (Figure 5), Vp /Vs

(Figure 6), and amplitude ratio (Figure 7) observa-

Figure 4. Analysis of data from station Z13A which is
a quality A station located in central Arizona. (a) Radial
receiver functions plotted against back‐azimuth. The red
line is the result of simple time domain stacking of all
the RFs. PmS indicates P‐to‐S converted phases from
the Moho, and PPmS and PSmS are multiples. (b) H‐�
plot. The black dot indicates the maximum stacking
amplitude.
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tions were obtained at 72 stations. We divide the
results into two categories (A and B) based on the
quality of the RFs (Table 1). Stations in category A
display a clear PmS arrival between 3.5 and 6.5 s
and either a PPmS or PSmS or both arrivals, lead-
ing to a well‐defined single peak on the H − � plot
(see Figure 4 for an example). Those in category B
show a clear PmS arrival but neither PPmS nor
PSmS is observed, resulting in a poorly defined
peak on the H − � plot (see Nair et al. [2006] for
results of synthetic tests). For category B stations
Vp /Vs cannot be reliably determined, and the crustal
thickness is taken as Hn which is the thickness
corresponding to a nominal Vp /Vs of 1.732. For-
tunately, the vast majority (66 out of 72) of the
stations turned out to be category A stations, and
the remainder are category B stations.

[22] The resulting Vp /Vs values of all 66 stations for
the PmS arrival in the entire study area range from
1.64 to 1.97 with an average of 1.797 ± 0.008,
H values range from 23 km to 54 km with a mean

value of 34.4 ± 0.9 km, and the resulting R values
range from 0.05 to 0.36 with a mean of 0.155 ±
0.008. To highlight systematic spatial variations of
the observed crustal characteristics, we plot eleva-
tion and the H, Vp /Vs, and R values observed in a
200 km wide NE‐striking band (Figure 8). The
observed crustal parameters correspond well with
surface elevation. Based on seismically derived
crustal characteristics, tectonic history and surface
geology, we divide the study area into five subareas
(Figure 1). As detailed below, our results are in
excellent agreement with the vast majority of
results from previous studies. One exception is that
at some stations, our results are inconsistent with
those from EARS (the EarthScope Automated
Receiver Survey, http://www.iris.edu/dms/products/
ears/). The disagreement is most likely caused by
the fact that the automatic procedure includes low‐
quality RFs, while our and most other previous
studies performed manual checking of the RFs
before they were used for stacking.

Figure 5. Resulting crustal thicknesses plotted on top
of isostatic residual gravity anomaly map. Pluses indi-
cate the stations with a large thickness, and open circles
indicate relatively smaller thicknesses (see legend).
Solid symbols represent category A stations, and dotted
ones represent category B stations. Line A‐B is the loca-
tion of the gravity model shown in Figure 9.

Figure 6. Resulting crustal Vp /Vs derived from cate-
gory A stations. The background image shows P wave
velocity perturbations relative to the AK135 earth model
[Kennett et al., 1995] at the depth of 100 km [Burdick
et al., 2010]. Pluses indicate relatively larger values, and
circles indicate relatively smaller values (see legend).
The black diamonds indicate the locations of diabase
sheeted intrusions [Howard, 1991; Karlstrom and
Humphreys, 1998].

Geochemistry
Geophysics
Geosystems G3G3 BASHIR ET AL.: ARIZONA CRUST 10.1029/2011GC003563

7 of 18



4.1. Area A

[23] Area A, which contains 4 stations, is a transition
zone between the northwestern CP and the adjacent
BRP [Wooden and DeWitt, 1991] (Figure 1). The
resulting crustal thickness ranges from 24 to 35 km
in the BRP to 40 km at the western edge of the CP
(Figure 5). The thinnest crust occurs over a large
Cenozoic volcanic field (Figure 1). These observa-
tions agree well with the isostatic residual gravity
anomaly patterns (Figure 5) which show gravity
maxima over the extended and thin crust in the
BRP [Mickus and James, 1991] and a gravity
minimum over the thick crust.

[24] The average crustal thickness beneath this area
is 31.5 ± 2.7 km with a mean Vp/Vs value of 1.726 ±
0.026 which is the smallest values of entire study
area. In addition, the R value (0.125 ± 0.022) is
smaller than the mean value (0.155 ± 0.008) in
the entire study area. By stacking RFs recorded at

7 stations in this area, Zandt et al. [1995] reported
that the crustal thickness ranges from 30 to 35 km
with an average Vp /Vs of 1.73 (Figure 2), values
consistent with our measurements.

4.2. Area B

[25] Area B is within the Colorado River Exten-
sional Corridor of the BRP, a region of highly
extended crust [Howard and John, 1987; Mickus
and James, 1991]. Analysis of data from the ten
stations in this area resulted in crustal thicknesses
ranging from 23 to 32 km (Figure 5), which is
among the thinnest in the entire study area. This
agrees with seismic refraction [McCarthy et al.,
1991] and gravity modeling results [Mickus and
James, 1991]. The mean Vp /Vs (1.795 ± 0.019)
value is close to the mean value of the entire study
area, and the mean R value (0.207 ± 0.013) is
significantly greater than the mean value of the
study area.

[26] Zhu and Kanamori [2000] measured H and
Vp /Vs at two stations (GLA and NEE) in area B. At
station GLA, our resulting crustal thickness (26.1 ±
0.4 km) and Vp/Vs (1.70 ± 0.20) values are consist-
ent with the results of Zhu and Kanamori [2000]
(27.0 ± 0.6 km and 1.72 ± 0.04, respectively).
Another station measured by Zhu and Kanamori
[2000], NEE, is about 6.5 km north of our station
NEE2. The resulting crustal thicknesses are similar
(31.3 ± 1.3 km for NEE and 25.7 ± 0.2 km for
NEE2), and the Vp/Vs values are statistically con-
sistent (1.75 ± 0.05 versus 1.79 ± 0.01).

4.3. Area C

[27] Area C is within the BRP of southern Arizona
and contains 17 stations. The resulting crustal
thicknesses range from 25 to 33 km with an aver-
age of 28.2 ± 0.5 km (Figure 5), Vp /Vs values range
from 1.65 to 1.86 with an average of 1.761 ± 0.014
(Figure 6), and R values from 0.05 to 0.28 with an
average of 0.181 ± 0.014 (Figure 7).

[28] Within this area, the crust is thinner (25–28 km
compared to 30–33 km) in western Arizona than
southeastern Arizona. This relationship can also be
observed in the isostatic residual gravity anomaly
where higher amplitude regional gravity anomalies
are seen in western Arizona than in southeastern
Arizona (Figure 5). Additionally, although areas B
and C are usually considered as a single tectonic
unit (southern Basin and Range), there are enough
contrasts in Vp /Vs, and R values between the two
areas to indicate that the crust may have different

Figure 7. Observed amplitude ratio (R) plotted on top
of smoothed crustal thickness measurements shown in
Figure 5. The dashed lines are terrane boundaries (see
Figure 1). The black squares indicate the locations for
xenolith data [Selverstone et al., 1999; McGuire, 1994].
CC, Cache Creek; ChV, Chino Valley; SFVC, San
Francisco volcanic field; HB, Hopi Buttes; BP, Buell
Parks; GK, Green Knobs; GR, Garnet Ridge; CV, Cane
Valley; MR, Moses Rock; RM, Red Mesa; ME, Muler
Ear.
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Table 1. Observations of Crustal Thickness (H, Hn), Vp/Vs (�), and R

Station Area
Longitude
(deg),

Latitude
(deg) H (km) � Hn (km) R N Rank

112A B −114.580 32.536 23.5 ± 0.28 1.846 ± 0.015 25.4 ± 0.13 0.233 ± 0.007 136 A
113A C −113.767 32.768 26.9 ± 0.18 1.724 ± 0.005 26.7 ± 0.04 0.237 ± 0.015 196 A
114A C −112.883 32.751 – – 30.9 ± 0.15 0.162 ± 0.004 122 B
115A C −112.228 32.701 26.0 ± 0.00 1.810 ± 0.000 27.1 ± 0.07 0.196 ± 0.006 243 A
116A C −111.704 32.562 25.5 ± 0.17 1.770 ± 0.005 26.2 ± 0.09 0.223 ± 0.003 274 A
117A C −110.739 32.572 31.5 ± 0.00 1.790 ± 0.000 32.3 ± 0.00 0.117 ± 0.005 177 A
118A C −109.970 32.640 29.0 ± 0.33 1.832 ± 0.013 30.7 ± 0.22 0.047 ± 0.006 46 A
119A C −109.303 32.766 27.6 ± 0.20 1.876 ± 0.005 30.0 ± 0.05 0.249 ± 0.003 199 A
216A C −111.457 32.002 25.4 ± 0.16 1.810 ± 0.010 26.7 ± 0.04 0.182 ± 0.006 192 A
217A C −110.816 31.775 30.0 ± 0.09 1.662 ± 0.004 28.8 ± 0.13 0.134 ± 0.006 199 A
218A C −110.046 31.974 29.6 ± 0.09 1.748 ± 0.004 30.0 ± 0.00 0.223 ± 0.003 228 A
219A C −109.259 31.999 30.4 ± 0.00 1.752 ± 0.004 30.8 ± 0.00 0.199 ± 0.004 176 A
AZ45 E −109.082 36.455 44.2 ± 0.00 1.800 ± 0.000 50.1 ± 0.12 0.188 ± 0.012 103 A
AZ47 E −109.333 36.636 45.0 ± 0.07 1.795 ± 0.007 47.9 ± 2.83 0.058 ± 0.005 146 A
AZ48 E −109.539 36.761 44.0 ± 0.61 1.834 ± 0.025 47.6 ± 2.86 0.123 ± 0.017 95 A
AZ49 E −109.691 36.887 47.5 ± 0.10 1.800 ± 0.000 49.7 ± 0.00 0.124 ± 0.005 164 A
GLA B −114.827 33.051 26.1 ± 0.35 1.690 ± 0.020 25.5 ± 0.05 0.148 ± 0.015 39 A
NEE2 B −114.619 34.768 25.7 ± 0.13 1.788 ± 0.011 26.7 ± 0.00 0.214 ± 0.006 320 A
PDM B −114.142 34.303 26.5 ± 0.00 1.780 ± 0.000 27.5 ± 0.00 0.235 ± 0.003 465 A
T12A A −114.715 36.726 31.7 ± 0.05 1.720 ± 0.000 31.6 ± 0.00 0.146 ± 0.007 191 A
T13A A −113.907 37.020 36.5 ± 0.00 1.800 ± 0.000 38.0 ± 0.05 0.159 ± 0.013 205 A
T14A E −113.084 37.062 47.7 ± 0.09 1.812 ± 0.004 52.5 ± 0.05 0.129 ± 0.005 225 A
T15A E −112.382 37.018 52.8 ± 0.13 1.753 ± 0.005 53.5 ± 0.24 0.104 ± 0.006 204 A
T16A E −111.506 36.984 30.4 ± 0.32 1.858 ± 0.013 33.2 ± 0.22 0.165 ± 0.012 128 A
T17A E −110.804 36.997 36.6 ± 0.35 1.844 ± 0.006 39.5 ± 0.15 0.048 ± 0.004 180 A
T18A E −109.874 37.136 42.5 ± 0.29 1.847 ± 0.012 44.9 ± 0.00 0.053 ± 0.003 236 A
TUC C −110.785 32.310 30.3 ± 0.04 1.678 ± 0.004 29.6 ± 0.19 0.138 ± 0.009 272 A
U12A A −114.539 36.432 33.8 ± 0.13 1.674 ± 0.000 0.0 ± 0.00 0.133 ± 0.007 254 A
U13A A −113.965 36.415 23.8 ± 0.39 1.711 ± 0.017 0.0 ± 0.00 0.060 ± 0.010 140 A
U14A E −113.180 36.418 41.5 ± 0.05 1.800 ± 0.000 43.2 ± 0.09 0.196 ± 0.004 219 A
U15A E −112.291 36.428 41.1 ± 0.00 1.850 ± 0.000 47.6 ± 0.22 0.139 ± 0.003 197 A
U16A E −111.130 36.143 49.3 ± 0.10 1.822 ± 0.005 51.6 ± 0.00 0.084 ± 0.003 197 A
U17A E −110.662 36.600 45.9 ± 0.15 1.873 ± 0.006 53.1 ± 0.23 0.056 ± 0.003 253 A
U18A E −109.870 36.420 42.6 ± 0.07 1.890 ± 0.000 44.0 ± 9.33 0.090 ± 0.013 166 A
U19A E −109.208 36.292 – – 44.3 ± 0.07 0.095 ± 0.004 124 B
V12A B −114.851 35.727 29.9 ± 0.00 1.760 ± 0.000 30.4 ± 0.07 0.258 ± 0.005 244 A
V13A B −113.984 35.852 31.6 ± 0.00 1.742 ± 0.004 32.0 ± 0.00 0.214 ± 0.008 182 A
V14A E −113.105 35.634 41.8 ± 0.85 1.860 ± 0.028 46.9 ± 2.83 0.047 ± 0.002 243 A
V15A E −112.173 35.819 41.7 ± 0.13 1.768 ± 0.004 42.8 ± 0.04 0.121 ± 0.004 234 A
V17A E −110.794 35.622 44.4 ± 0.31 1.890 ± 0.000 55.0 ± 1.62 0.082 ± 0.002 114 A
V18A E −109.933 35.711 – – 45.4 ± 4.39 0.105 ± 0.007 109 B
V19A E −109.046 35.715 40.0 ± 0.24 1.806 ± 0.009 44.1 ± 0.00 0.082 ± 0.002 240 A
W12A B −114.870 35.301 27.8 ± 0.00 1.860 ± 0.000 32.4 ± 0.00 0.190 ± 0.005 315 A
W13A B −113.885 35.099 27.7 ± 0.00 1.800 ± 0.000 28.7 ± 0.00 0.262 ± 0.003 340 A
W14A D −113.083 35.213 31.3 ± 0.22 1.832 ± 0.008 33.4 ± 0.18 0.239 ± 0.004 330 A
W15A E −112.267 35.179 – – 39.4 ± 0.00 0.127 ± 0.003 290 B
W16A E −111.532 35.095 40.1 ± 0.10 1.883 ± 0.010 47.2 ± 2.96 0.111 ± 0.007 195 A
W17A E −110.713 35.079 47.3 ± 0.17 1.787 ± 0.006 48.6 ± 0.00 0.086 ± 0.002 230 A
W18A E −109.736 35.118 40.3 ± 0.00 1.830 ± 0.000 38.1 ± 11.98 0.107 ± 0.008 288 A
W19A E −109.388 35.112 41.8 ± 0.05 1.840 ± 0.000 44.1 ± 0.04 0.066 ± 0.004 250 A
X13A B −113.830 34.593 26.0 ± 0.15 1.786 ± 0.009 26.8 ± 0.05 0.152 ± 0.004 303 A
X14A D −112.891 34.469 31.2 ± 0.10 1.722 ± 0.005 31.1 ± 0.00 0.182 ± 0.003 353 A
X15A D −112.237 34.487 33.2 ± 0.09 1.798 ± 0.004 34.7 ± 0.04 0.248 ± 0.002 299 A
X16A E −111.441 34.418 36.7 ± 0.21 1.823 ± 0.015 38.2 ± 0.26 0.129 ± 0.002 229 A
X17A E −110.806 34.337 – – 42.9 ± 0.00 0.113 ± 0.007 181 B
X18A E −109.950 34.529 40.2 ± 0.06 1.803 ± 0.006 41.9 ± 0.00 0.101 ± 0.005 265 A
X19A E −109.290 34.428 40.4 ± 0.21 1.830 ± 0.008 46.5 ± 0.06 0.101 ± 0.002 259 A
Y12C B −114.524 33.750 23.7 ± 0.00 1.900 ± 0.000 30.9 ± 0.11 0.167 ± 0.003 441 A
Y13A C −113.829 33.814 28.8 ± 0.00 1.750 ± 0.000 29.0 ± 0.21 0.146 ± 0.001 360 A
Y14A C −113.005 33.938 28.1 ± 0.13 1.748 ± 0.004 28.3 ± 0.00 0.156 ± 0.004 346 A
Y15A D −112.333 33.953 31.0 ± 0.22 1.708 ± 0.011 30.7 ± 0.09 0.151 ± 0.004 212 A
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characteristics. This might be reflected in the
degrees of extension between the two areas and
the presence of a lower crustal domal region in the
Colorado River Extensional Corridor [Mickus and
James, 1991; McCarthy et al., 1991].

[29] Frassetto et al. [2006] analyzed RFs at
COARSE (Consortium for an Arizona Reconnais-
sance Seismic Experiment) stations and concluded
that the average crustal thickness in the BRP in
Arizona is about 28 km, which is consistent with
our results. The mean value of Vp /Vs obtained by
Frassetto et al. [2006] in the BRP is 1.78 which is
similar to our result of 1.761 ± 0.014 for area C.
Our crustal thickness measurements in this area are
in agreement with results obtained by Gilbert et al.
[2007] using RF stacking, and with results from
seismic refraction data [Parsons et al., 1996; Gish
et al., 1981; Sinno et al., 1981; Warren, 1969]
(Figure 2).

4.4. Area D

[30] Area D has 11 stations within the Arizona
Transition Zone. The resulting crustal thicknesses
range from 25 to 33 km, Vp /Vs values range from
1.65 to 1.88, and R measurements range from 0.05
to 0.28. The corresponding averages are 30.4 ±
1.0 km, 1.803 ± 0.024, and 0.216 ± 0.021 for H,
Vp /Vs, and R measurements, respectively.

[31] Gish et al. [1981] modeled seismic refraction
data and concluded that the crustal thickness
beneath the Arizona Transition Zone is about
32 km which is slightly larger than our results.
Frassetto et al. [2006] concluded that beneath
station RENO, which is located in the southeastern
part of Transition Zone, the crustal thickness ranges
from 34.5 to 36.5 km and Vp /Vs ranges from 1.81
to 1.86 which are consistent with the results from a
nearby station (Z19A) in this study (Table 1).

Table 1. (continued)

Station Area
Longitude
(deg),

Latitude
(deg) H (km) � Hn (km) R N Rank

Y16A D −111.478 33.880 29.6 ± 0.04 1.760 ± 0.000 30.2 ± 0.09 0.230 ± 0.005 244 A
Y17A D −110.844 33.695 30.4 ± 0.00 1.748 ± 0.004 30.8 ± 0.00 0.197 ± 0.007 195 A
Y18A D −110.034 33.778 37.0 ± 0.06 1.755 ± 0.006 37.4 ± 0.13 0.130 ± 0.009 220 A
Y19A E −109.254 33.957 – – 41.7 ± 0.00 0.121 ± 0.008 190 B
Z13A C −113.657 33.200 26.6 ± 0.16 1.774 ± 0.009 27.4 ± 0.11 0.185 ± 0.006 131 A
Z14A C −112.946 33.363 26.0 ± 0.00 1.790 ± 0.000 27.1 ± 0.00 0.208 ± 0.005 407 A
Z15A C −112.158 33.289 25.7 ± 0.00 1.770 ± 0.000 26.3 ± 0.00 0.275 ± 0.003 235 A
Z16A D −111.427 33.341 25.4 ± 0.21 1.788 ± 0.011 26.3 ± 0.00 0.125 ± 0.005 243 A
Z17A D −110.472 33.297 29.8 ± 0.17 1.866 ± 0.009 36.3 ± 2.41 0.364 ± 0.007 88 A
Z18A D −110.036 33.085 24.4 ± 0.00 1.970 ± 0.000 27.9 ± 0.00 0.270 ± 0.006 103 A
Z19A D −109.266 33.292 31.0 ± 0.08 1.890 ± 0.000 34.6 ± 1.52 0.236 ± 0.007 147 A

Figure 8. Cross‐section plots for (a) elevation, (b) H,
(c) Vp /Vs, and (d) R observations at stations in a 200 km
wide band centered at profile A‐B shown in Figure 5.
BRP, Basin and Range Province; ATZ, Arizona Transi-
tion Zone; CP, Colorado Plateau.
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Gilbert et al. [2007], McCarthy et al. [1994], and
Warren [1969] suggested that crustal thickness
beneath the Transition Zone ranges from 30 to
35 km (Figure 2), which agrees with our results.

4.5. Area E

[32] Area E is the SW portion of the CP and con-
tains the maximum number of stations (30) among
all the five areas. The resulting H measurements
range from 30 to 53 km with a mean value of
42.3 ± 0.79 km, which is the largest among all the
five areas. Similarly, the Vp /Vs measurements range
from 1.65 to 1.89 with a mean value of 1.825 ±
0.009, which is also the largest among all the areas.
In contrast, the R values range from 0.048 to 0.196
with a mean of 0.105 ± 0.007, which is the lowest
in the entire study area.

[33] Our results are consistent with most of the
previous determinations of crustal characteristics.
Seismic refraction experiments revealed a crust
with a thickness ranging from 40 to 45 km [Roller,
1965; Warren, 1969; Prodehl, 1979; Wolf and
Cipar, 1993; Parsons et al., 1996]. Hauser and

Lundy [1989] combined COCORP reflection data
with results previously obtained by Roller [1965]
and Warren [1969], and suggested that the mini-
mum crustal thickness of the CP is 50 km (Figure 2).
Zandt et al. [1995] used the receiver function
technique at 11 seismic stations along 37° N lati-
tude and proposed that the average crustal thick-
ness and the Vp /Vs beneath the western CP is 45 km
and 1.85, respectively.Frassetto et al. [2006] stacked
receiver functions at COARSE seismic stations and
concluded that the average crustal thickness and the
Vp /Vs beneath the southern part of the CP is 40 km
and 1.81, respectively. Using data from COARSE
and LA RISTRA, Gilbert et al. [2007] suggested
that the crustal thickness ranges from 35 to 45 km
with Vp /Vs values in the range of 1.81–1.85.
Sheehan et al. [1997] used the receiver function
technique and proposed that the average crustal
thickness beneath the northeastern part of the CP is
43.1 km. Those observations are in general agree-
ment with our results.

4.6. Gravity Modeling

[34] The isostatic residual gravity anomaly map
(Figure 5) highlights the relationships between the
gravity field, resulting crustal thickness, and the
tectonic regimes. Gravity anomalies and crustal
thickness relationships have been discussed by pre-
vious researchers [e.g., Aiken, 1976; Sumner, 1989;
Hendricks and Plescia, 1991]. In general, areas
with thicker crust are characterized by more nega-
tive isostatic gravity anomalies and vice versa. In
order to aide in determining if the above crustal
thicknesses agree with other geophysical data, a
two and one‐half dimensional gravity model using
the method of Cady [1980] was constructed using
the observed Bouguer gravity anomaly data. The
elevation of the data points and surface topographic
variations were used in the modeling process. A
variety of constraints were used to construct the
final model (Figure 9) including receiver function
derived crustal thicknesses (Figure 8), seismic
refraction models [Warren, 1969; Wolf and Cipar,
1993; McCarthy et al., 1991], and P wave veloci-
ties converted to densities [Christensen andMooney,
1995]. The densities derived from the P wave
velocities and the seismically derived thicknesses
were altered by up to 10% to determine a final
gravity model.

[35] The resulting gravity model (Figure 9) shows a
12–15 km thick high‐density lower crustal layer
beneath the CP, supporting the existence of the
lower crustal layer between the Moho and the

Figure 9. Gravity model of the crust and upper mantle
along profile A‐B (Figure 5). Densities are in g/cm3. The
red crosses are observed and the blue line is calculated
gravity anomalies. Dots represent crustal thickness
determinations at stations in the 200 km wide band
centered on the profile.
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crustal discontinuity responsible for generating the
observed PuS (Figure 10, see below). In addition,
the gravity model requires that the density of the
lower crust beneath the CP must be significantly
greater than that beneath the BRP. The resulting
lower crustal densities are 2.87 g/cm3 for the BRP
and 3.07 g/cm3 for the CP, which is about 5%
higher than the lower crustal density in the IASP91
earth model [Kennett and Engdahl, 1991]. This
implies the existence of a mafic lower crustal layer
beneath the CP, a conclusion that is consistent with
the distribution of the Vp /Vs observations (Figures 6
and 8).

5. Discussion

5.1. Crustal Composition

[36] Crustal composition for the study area can be
determined with the help of our geophysically
derived crustal parameters. Christensen [1996]
made laboratory measurements and concluded
that the average Vp /Vs value of upper and lower
continental crust is about 1.74 and 1.81, respec-
tively, leading to an average value of 1.78 for
the entire continental crust. Additionally, Holbrook

et al. [1992] concluded that Vp /Vs values smaller or
equal to 1.76 are indicative of felsic rocks, 1.78 to
1.81 are intermediate, and ≥1.81 are associated
with mafic rocks. Based on the above criteria, the
overall crustal composition is felsic for area A,
intermediate for areas B, C, and D, but approaches
mafic for area E. This can be seen in the gravity
model in which the CP has an overall denser crust
than the BRP. The densities of the lower crust is
3.07 g/cm3 for the CP and 2.87 g/cm3 for the BRP
which is consistent with mafic and intermediate
petrologies, respectively.

[37] Areas B and C are both in extensional terranes
of the BRP but the Vp /Vs values of the former
(1.795 ± 0.019) are considerably larger than those
of the latter (1.761 ± 0.014, see Figure 6). The
difference might be related to the presence of more
abundant gabbroid diabase sheets, which have a
high Vp /Vs , in area B than that in area C (Figure 6)
[Howard, 1991; Karlstrom and Humphreys, 1998].
Alternatively, the larger Vp /Vs in area B can be
caused by a previously proposed lower crustal
domal structure seen in the seismic refraction and
gravity models [McCarthy et al., 1991; Mickus and
James, 1991]. This structure would cause the
overall densities and Vp /Vs to be higher than those
observed in area C.

5.2. Constraints on Hypotheses of Crust
Thinning Beneath the BRP

[38] Several models have been proposed to explain
the significantly thinned crust beneath the BRP. In
light of our new RF measurements, we next pro-
vide new constraints on these models.

5.2.1. Mesozoic Compression and
Transportation of Lower Crustal Material
Beneath the BRP

[39] A number of studies have proposed that a layer
of the lower crust was transported from the BRP
toward the CP due to Mesozoic compression
associated with the flat‐subduction of the Farallon
plate [Bird, 1979, 1984, 1988; Zandt et al., 1995],
resulting in a thinned BRP and thickened CP crust.
This model predicts that relative to a typical con-
tinental cratonic area, the BRP should have reduced
crustal thickness (H) and Vp /Vs observations due to
the removal of a mafic lower crustal layer, and
perhaps increased R values due to an increase in
the velocity contrast between the mantle and the
overlying upper crust.

Figure 10. Stacked RFs for stations with observable
PuS arrivals plotted against station latitudes. The PuS
arrivals are marked by crosses, and the PmS are marked
by circles.
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[40] While this model can explain the observed thin
crust, the anticipated decrease in Vp /Vs and increase
in R are not observed (Figures 6 and 7). Instead, the
mean Vp /Vs over the southern BRP stations (areas
B and C) is 1.773 ± 0.012 which is almost identical
to the Vp /Vs of a typical continental crust (1.78)
[Christensen, 1996] that contains both the upper
and lower crust. In addition, the observed R values
are similar to typical continental cratons such as the
undeformed part of the Kaapvaal craton in southern
Africa [Nair et al., 2006]. Therefore, the long
distance transportation of lower crust material away
from the BRP is inconsistent with our observations.

5.2.2. Delamination of the Lower Crust
Beneath the BRP

[41] The thin crust, high heat flow, and high iso-
static residual gravity anomalies (Figure 5) in
the BRP area might suggest that the lower crust
beneath the BRP has been removed by delamina-
tion [Gao et al., 1998; Jull and Kelemen, 2001].
Crustal delamination can occur in continental regions
which are going through extension such as the BRP
[Jull and Kelemen, 2001;Gans and Bohrson, 1998].
The loss of the lower crust to the mantle would lead
to an overall felsic crust and an increase in R due

to direct contact between the subcrustal lithosphere
and the upper crust. Both are not observed at the
BRP stations (Figures 6 and 7), suggesting that our
observations are not supportive of lower crustal
delamination beneath the BRP. This conclusion is
consistent with results from Nd isotopic studies
which indicate that a 70 to 100 km thick lithosphere
existed beneath both the BRP and the CP between
early Proterozoic and late Cenozoic time [Livaccari
and Perry, 1993]. A post‐Proterozoic crustal dela-
mination event would require the removal of the
original lithosphere and consequent formation of a
younger lithosphere.

5.2.3. Cenozoic Extension in the BRP

[42] Numerous studies suggest that the BRP has
been extended by as much as 200% during the
middle to late Cenozoic [Gans and Bohrson, 1998;
Wernicke et al., 1988]. Under the assumption of a
100% extension rate, our observed present‐day
crustal thickness (23–32 km) in the BRP suggests a
pre‐Cenozoic crustal thickness of about 50 km,
which is similar to the value that Zandt et al. [1995]
proposed in the NW corner of the study area
(Figure 2).

[43] Our observations of small H, normal Vp /Vs and
normal R values (relative to a typical cratonic area)
in the BRP are consistent with the model that the
thinned crust beneath the BRP was the conse-
quence of significant Cenozoic extension, because
a simple extension of both the upper and lower
crust reduces the crustal thickness but maintains the
preextension Vp /Vs and R values.

5.3. A Strong Mafic Lower Crustal Layer
Beneath the CP

[44] A total of 14 stations show a clear arrival prior
to PmS which is denoted as PuS (Figures 3 and 10).
The arrival and associated multiples result in a
clearly defined secondary peak on the H − � plot
(see Figure 11 for an example). All of the stations
with the PuS arrival are located on the CP (Figure 1).
We determined the values of H, Vp /Vs and R related
to the PuS arrival using the same H − � stacking
procedure used to determine the parameters for the
entire crust. The resulting thicknesses of the upper
crustal range from 26.2 to 35.9 km with a mean of
30.1 ± 0.9 km, and the Vp /Vs values range from
1.66 to 1.79 with a mean of 1.734 ± 0.011, which
are significantly smaller than those for the entire
crust and are consistent with laboratory‐determined
Vp /Vs of upper continental crust rocks [Christensen,
1996]. The R measurements associated with the PuS

Figure 11. (a) Individual (thin black lines) and stacked
(thick red line) receiver functions for station AZ49,
showing the PuS arrival at about 3 s after the direct
P wave. (b) Corresponding H − � plot. The dot in
Figure 11b corresponds to the optimal H and Vp /Vs asso-
ciated with the Moho, and the triangle represents the
optimal values for the boundary at the top of the lower
crustal layer.
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arrival range from 0.012 to 0.177 with a mean of
0.095 ± 0.011. Although PuS arrivals are not as
clearly observed at the rest of the CP stations, prob-
ably due to a less sharp discontinuity, the similarities
in the H, Vp/Vs, and R observations (Figures 5–7)
between the stations with and without the PuS
arrival indicate a stratified crustal structure beneath
the CP.

[45] Given the observed mean H of 42 km and a
mean Vp /Vs of 1.825 for the entire CP crust, we can
estimate the Vp /Vs of the 12 km thick lower crustal
layer by simple partitioning, i.e., HU�U + HL�L =
H�, where � = Vp /Vs = 1.825, H = 42.0 km, �U =
1.734,HU = 30.0 km, andHL = 12 km. The resulting
Vp /Vs for the lower layer, �L, is 2.053, which is
about 13% greater than that of typical lower crustal
rocks [Christensen, 1996], suggesting a composi-
tion with more Fe and Mg than a typical lower
crustal layer.

[46] The existence of the mafic layer beneath the
CP is supported by results of gravity modeling
(Figure 9), which suggest that the lower crust under
the CP has a higher density than that beneath the
BRP. Of course, the exact density could not be
determined based on gravity modeling alone due
to trade‐offs between the thickness and density
of the layers in the model, but a density greater
than 3.00 g/cm3 had to be used for the CP lower
crust in order to match the observed anomalies.
Such densities are consistent with mafic rocks [e.g.,
Christensen, 1996].

[47] This strongly mafic lower crustal layer
increases the overall crustal Vp /Vs, as observed
(Figure 6), and reduces the velocity contrast across
the Moho, leading to the observed anomalously
small R observations on the CP (Figure 7). In turn,
the fact that almost all the CP stations show large
H, large Vp /Vs, and small R observations strongly
suggest that the lower crustal layer pervasively
exists beneath the entire CP interior and is not
limited to stations with clear PuS arrivals.

[48] Seismic refraction/wide‐angle reflection data
obtained along most of the PACE (Pacific to
Arizona Crustal Experiment) profiles across the CP
(Figure 2) show a high velocity layer in the bottom
of the crust with varying thicknesses from several
to up to 20 km [Wolf and Cipar, 1993]. The upper
boundary of this layer represents an approximately
10% increase in Vp, which ranges from 6.8 to
7.3 km/s in the lower crustal layer and is signifi-
cantly greater than that beneath a typical continental
lower crust [Wolf and Cipar, 1993]. We acknowl-
edge that the interpretation of the PACE data and

the existence of a sharp boundary at about 30 km
depth are debated [e.g., Parsons et al., 1996].

[49] The petrological nature of the high density
mafic lower crustal layer cannot be specified at the
present time. One of the possibilities is that the
layer is dominantly composed of eclogite and ser-
pentinite. Analyses of eclogite xenoliths found in
the Navajo volcanic field located in the NE corner of
the study area (Figure 1) suggested that the eclogites
represent metamorphosed oceanic lithosphere sub-
ducted during Proterozoic subduction [Wendlandt
et al., 1993; Selverstone et al., 1999]. However
the Vp /Vs of eclogites is 1.785 [Christensen, 1996],
which is significantly lower than the observed
value of 2.05. The most likely rock that can con-
tribute to such a high Vp /Vs is serpentinite which
has an unusually high value of 2.12 [Christensen,
1996] and has been suggested as an explanation
for low velocity, high Vp /Vs zones in the mantle
wedge above subduction zones [e.g., Bostock et al.,
2002; Ranero and Sallares, 2004]. Additionally,
coexistence of eclogite and serpentinite was observed
in numerous places such as the Voltri Massif in
Italy [Cortesogno et al., 1977] and the Dabie‐Sulu
terrane in China [Jing et al., 2007]. We emphasize
that while the evidence for the co‐existence of
eclogites and serpentinites is convincing, the exis-
tence of such a thick layer composed of those rocks
beneath the CP remains hypothetical. Additional inter-
disciplinary studies aimed at resolving this impor-
tant issue are required to test this hypothesis.

5.4. Implications on the Mechanism
Responsible for the Uplift of the CP

[50] As evidenced by the near‐horizontal Phanero-
zoic sedimentary rock strata exposed in the Grand
Canyon and elsewhere on the CP, during much of
the Phanerozoic until the late Cretaceous, the ele-
vation of the CP was near sea level [Flowers, 2010].
The mechanisms responsible for the uplift of the
CP started in Tertiary are one of the major unre-
solved issues in western U.S. tectonics. It is well
established that the CP area is under isostatic
equilibrium as revealed by the near‐zero free‐air
gravity anomaly [Keller et al., 1979; Thompson
and Zoback, 1979]. Under the reasonable assump-
tion that equilibrium was maintained prior to uplift,
the excess mass of the 2 km thick upper‐crustal
layer must be compensated by an equal amount of
mass deficit in the underlying crust and/or mantle.

[51] One group of models for the uplift of CP
advocate that the mass deficit is located in the
mantle in the form of higher temperature [Roy et al.,
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2009; Parsons et al., 1996], chemically induced
reduction in lithosphere density [Humphreys et al.,
2003; Roy et al., 2009], partial replacement of the
lithosphere by the lighter asthenosphere [Spencer,
1996], or lateral temperature increase in the astheno-
sphere [Moucha et al., 2009; West et al., 2004].

[52] A competing group of models suggest isostatic
uplift due to thickening of the lower crust, and one
of the possible mechanisms of such thickening is
attributed to the shear stress from the low angle
Farallon plate applied on the base of the North
American lithosphere. The stress could transport
ductile lower crust from SW to NE direction,
resulting in a CP crust that is thicker than a typical
continental crust [Bird, 1984, 1988; Beghoul and
Barazangi, 1989; McQuarrie and Chase, 2000].

[53] Our RF observations, especially the thick
upper crustal layer revealed by the PuS phases and
the results of gravity modeling (Figure 9), do not
support the existence of a thickened lower crust
beneath the CP. Instead, they suggest a lower crust
with an anomalously high density. Such a high‐
density lower crust can resolve the long‐lasting
debate about how an area with such a thick crust
could stay at sea level. The main supporting evi-
dence of crustal thickening as the cause of CP uplift
came from the observation that at the present time,
areas with a crustal thickness of 42 km are signif-
icantly higher than sea level, and those at sea
level have a crustal thickness of about 30–35 km
[Mooney et al., 1998], and thus the preuplift CP
crust must be thinner than 42 km [McQuarrie and
Chase, 2000]. This argument is inconsistent with
our results. Simple calculations based on the Airy’s
hypothesis of isostacy conclude that the surface of
an area with densities and thicknesses similar to our
results (Figures 8 and 9) is close to sea level,
mostly due to the greater lower crust density than
that in a standard earth model such as PREM
[Dziewonski and Anderson, 1981]. Thus the result-
ing high Vp /Vs and especially the required high
density in the lower crust beneath the CP (Figure 9)
support the models involving a lower density
mantle as the cause of the uplift of the plateau.

5.5. Speculations on the Causes
for the Stability of the CP

[54] One of the long‐lasting debates on western
U.S. tectonics is the enigmatic tectonic stability of
the CP. Over the past 500 million years the interior
of the CP has escaped both significant compres-
sional (e.g., the Sevier and Laramide orogenies) and
Cenozoic extensional tectonic events which created

the BRP on the west and the Rio Grande rift on the
east of the CP [Morgan and Swanberg, 1985].

[55] The most trivial explanation for the stability is
that the CP has a mechanically strong (i.e., cold and
thick) lithosphere [Blackwell et al., 1991; Lee et al.,
2001]. While most seismic tomography studies
concluded that at the present time, the CP has a
lithosphere that is about twice as thick as that
beneath the BRP [e.g., West et al., 2004], the 100%
Cenozoic crustal extension in the latter area sug-
gests a similar preextension thickness between
the two areas [Bird, 1988]. The similarity in pre-
extension lithosphere thickness between the two
areas was independently suggested by isotopic
studies [Livaccari and Perry, 1993]. The velocities
of the uppermost mantle beneath the CP and the
BRP are similar in some of the seismic tomography
studies [e.g., Bedle and van der Lee, 2009]. Some
more recent studies even suggested that at the
present time, the CP lithosphere has a lower velocity
than that of the BRP. For instance, using data from
USArray and other stations, Burdick et al. [2010]
suggested that in the top 200 km, the P wave
velocity beneath the CP is consistently lower than
that beneath the BRP (Figure 6). Thus a thick and
strong mantle lithosphere may not be the cause of
the long‐term stability of the CP.

[56] On the basis of our RF and gravity modeling
results, we speculate that the mafic, dense, and
mechanically strong lower crust is mostly respon-
sible for the long‐term tectonic stability of the CP.
We further hypothesize that an anomalously strong
crust might be responsible for other stable blocks
among tectonically active provinces such as the
Tarim basin between the Tibetan plateau and
Tienshan, and the Sichuan basin on the eastern
edge of the Tibetan plateau. RF studies similar to the
one presented here should be able to pin point if a
strong lower crust or a strong mantle lithosphere is
responsible for the tectonic stability of those blocks.

6. Conclusions

[57] This study confirmed previously proposed sys-
tematic spatial variations in crustal thickness, Vp/Vs

and the efficiency of the crust/mantle boundary in
producing P‐to‐S converted phases across the
southwestern Colorado Plateau and the southern
Basin and Range Province. The Basin and Range
Province is characterized by a thin crust with a Vp/Vs

that is similar to a typical cratonic crust, suggesting
that crustal thinning was the result of simple stretch-
ing of the original crust rather than other processes
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such as lower crustal delamination or horizontal
transferring of lower crustal material. In contrast, the
Colorado Plateau has a mafic crust with a felsic
upper crust of about 30 km thick and a mafic lower
crust of about 12 km. We hypothesize that the
mechanically strong lower crust is responsible for
the long‐term stability of the CP, and the higher‐
than‐normal density of the lower crust is respon-
sible for the near sea level elevation prior to the
Cenozoic uplift of the plateau.
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