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Field-scale observations of a transient geobattery resulting
from natural attenuation of a crude oil spill
J. W. Heenan1 , D. Ntarlagiannis1, L. D. Slater1 , C. L. Beaver2 , S. Rossbach2, A. Revil3,
E. A. Atekwana4 , and B. Bekins5

1Department of Earth and Environmental Sciences, Rutgers University-Newark Campus, Newark, New Jersey, USA,
2Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA, 3ISTerre, CNRS, UMR CNRS
5275, Université de Savoie Mont-Blanc, Le Bourget-du-Lac, France, 4Boone Pickens School of Geology, Oklahoma State
University, Stillwater, Oklahoma, USA, 5United States Geological Survey (USGS), Menlo Park, California, USA

Abstract We present evidence of a geobattery associated with microbial degradation of a mature crude
oil spill. Self-potential measurements were collected using a vertical array of nonpolarizing electrodes,
starting at the land surface and passing through the smear zone where seasonal water table fluctuations
have resulted in the coating of hydrocarbons on the aquifer solids. These passive electrical potential
measurements exhibit a dipolar pattern associated with a current source. The anodic and cathodic reactions
of this natural battery occur below and above the smear zone, respectively. The smear zone is characterized
by high magnetic susceptibility values associated with the precipitation of semiconductive magnetic iron
phase minerals as a by-product of biodegradation, facilitating electron transfer between the anode and the
cathode. This geobattery response appears to have a transient nature, changing on a monthly scale, probably
resulting from chemical and physical changes in subsurface conditions such as water table fluctuations.

1. Introduction

A “geobattery” describes the occurrence of a natural source of current flow inside a metallic conductor buried
in the ground. This source of current is driven by a difference of redox potential in the ground and the two
electrochemical half-cell reactions occurring simultaneously at separate locations on an ore body [Sato and
Mooney, 1960; Bigalke and Grabner, 1997]. The current flow resulting from the half-cell reactions can be
inferred using the self-potential (SP) method. This method is a passive electrical geophysical method used
to map the occurrence of electrical potential anomalies occurring at the surface of the Earth. The term “bio-
geobattery” has since been adopted to describe SP anomalies associated with two electrochemical half-cell
reactions occurring at separate locations, with different redox states electronically connected and being the
result of microbial processes [Naudet et al., 2003; Naudet and Revil, 2005]. Conceptually, a biogeobattery
results from a strong redox potential gradient in which the electron transfer between the anodic and
cathodic reaction is driven by biotic electronic conductors such as certain pili between bacteria or certain fila-
mentous (cable) bacteria [Naudet and Revil, 2005; Revil et al., 2010; Risgaard-Petersen et al., 2014]. Naudet and
Revil [2005] suggested a biogeobattery can be generated by the oxidation of organic matter, in which the
anaerobic oxidation occurs below the water table in an anoxic environment and the oxygen above the water
table serves as the terminal electron acceptor. Since then, several additional electrochemical half-cell
reactions have been proposed that could also support anode to cathode electron transfer [Revil et al.,
2010], suggesting that a biogeobattery can develop in the presence of any redox gradient, not requiring
oxygen as the electron acceptor. For example, Risgaard-Petersen et al. [2014] presented a biogeobattery in
marine sediments with supporting evidence that certain oxidized nitrogen species are capable of acting as
a terminal electron acceptor for the cathode portion of the geobattery.

The first evidence for the creation of such a biogeobattery at the field scale has been documented in a surface
SP survey over the Entressen landfill in France [Naudet et al., 2004; Revil et al., 2010]. Additionally, Revil et al.
[2010] presented surface SP data sets over two additional contaminated sites that were consistent with the
operation of a geobattery. Risgaard-Petersen et al. [2014] presented evidence of current production in a mar-
ine biogeobattery setting, consistent with themodeled current production at the Entressen landfill [Linde and
Revil, 2007]. Laboratory investigations attempted to shed more light into the biogeobattery mechanism.
Naudet and Revil [2005] reported SP signals in an experimental tank treated with sulfate-reducing bacteria
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and organic nutrients that are consistent with the geobattery concept. Ntarlagiannis et al. [2007] presented a
column experiment in which the essential elements of a biogeobattery were produced, including geopili
linking cells to cells and cells to mineral surfaces as confirmed by scanning electron microscope imaging.
Electrical potential measurements on the scale of tens of millivolts were observed during this experiment.
The sources of these potentials, however, were not conclusively produced by a geobattery. They could
have possibly been the result of open circuit galvanic cell potentials facilitated by the metallic surfaces of
the electrodes measuring electrical potential being in contact with the pore fluids. In another experiment,
Hubbard et al. [2011] presented a column experiment where an oxic zone transitioned into an anoxic
Fe(III)-reducing section mediated by a natural microbial community or a model iron-reducing organism,
but no SP signal was recorded from this experiment. Davis et al. [2010] also only observed a small SP
signal, typically <10 mV, when injecting contaminated material into a biological permeable reactive
barrier. The measured signal was deemed too small to be accurately and reliably measured in the field.
The difficulty in monitoring these biogeobattery reactions in situ may result from the difficulties in
recreating the complex biological environment and processes rather than deficiencies in the SP method.
For example, Revil et al. [2015] simulated geobattery operation with a sandbox experiment in which an
iron bar facilitated electron flow from a propylene glycol media below the water table to the oxygen
electron acceptor in the unsaturated region and successfully monitored current flow.

Revil et al. [2010] emphasized that the key diagnostic factor when determining the presence of a biogeobat-
tery generated by a biodegrading contaminant is a vertically oriented dipole, pointed upward, straddling a
contaminant plume located at the water table (Figure 1), a phenomenon that has been observed in the field
[Doherty et al., 2015]. Revil et al. [2010] presented a laboratory experiment in which a bacteria-inoculated
sandbox and mineral oil generated a small dipolar anomaly across the water table consistent with the
biogeobattery model.

Vertical (downhole) SP profiles could confirm the operation of a biogeobattery at a contaminated site, as
measurements of the electrical potential across the biodegrading contaminant from cathode to anode can
be collected this way. Here we report results of a focused field investigation where such a data set was
acquired over a mature hydrocarbon-contaminated site at the Bemidji, Minnesota, USA oil spill site. Our

Figure 1. Conceptual model of the electron flow pathway potentially explaining the results seen during the duration of
the experiment. In this model, multiple redox couples transfer electrons from deeper in the subsurface, below the
water table, to the shallow subsurface above the water table. This transfer is facilitated by magnetite formed as a by-
product of natural attenuation of the hydrocarbons in the contaminated zone. This results in the biogeobattery
measured at the site (modified from Revil et al. [2010]).
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study focused on the North Pool (Figure 2) where oil floating at the water table is thickest and previous
investigations provide an extensive geochemical inventory. The smear zone is a region in which the
hydrocarbons are coating solids within the subsurface, the boundaries of which are defined by the range
of water table fluctuations [Essaid et al., 2011]. Also, it is microbially very active and shows distinctively
elevated and localized presence of conductive magnetite [Atekwana et al., 2014]. SP anomalies recorded
on the site suggest that SP signals can be generated due to biodegradation processes in hydrocarbon-
contaminated sites that can be described by the operation of a biogeobattery.

1.1. Field Site

In August 1979, a high-pressure crude oil pipeline ruptured, spilling roughly 1,700,000 L of crude oil in an
uninhabited area near Bemidji, Minnesota, USA. Oil pooled in low-lying areas and sprayed over an area of
6500 m2 southwest of the pipeline, forming the south and north contaminated zones, or pools (Figure 2).
Following cleanup procedures, approximately 400,000 L of product still remained and percolated down-
ward toward the water table, forming a perched oil layer approximately 1 m thick [Bennett et al., 1993;
Hult, 1984]. The site eventually became the National Crude Oil Spill Fate and Natural Attenuation
Research Site (referred to from here on as the Bemidji site) a well-constrained field laboratory for studying
biodegradation processes. The oil plume settled at the water table and has since reached a stable state,
though fluctuations in the water table level have resulted in a smear zone centered on the mean water
table level. This site is ideally suited for investigating evidence for a biogeobattery as (1) it is a mature,
stable spill site with extensively documented natural attenuation [Baedecker et al., 1993; Essaid et al.,
2011] and (2) the lithology is relatively simple, consisting of ~20 m thick moderately calcareous sand
and glacial outwash deposits overlying clayey till of unknown thickness [Bennett et al., 1993]. In addition
to the well-characterized subsurface lithology, the site’s temperature, water level, and oil thickness are
regularly monitored at dozens of places across the site.

Iron minerals, within the sands and glacial deposits, include goethite, hematite, magnetite, ferrihydrite,
clinochlore, epidote, and possibly maghemite [Zachara et al., 2004]. The smear zone appears to be dominated
by magnetite [Atekwana et al., 2014], due to the high magnetic susceptibility (MS) values observed [Mewafy
et al., 2011]. It is assumed that magnetite is dominating the MS response as magnetite production has
been shown to result from both hydrocarbon biodegradation [McCabe et al., 1987] and dissimilatory
iron reduction [Lovley et al., 1987]. The uncontaminated groundwater is aerobic with dissolved oxygen
concentrations between 8 and 9 mg/L, dissolved organic carbon of 2.8 mg/L, and low levels of nitrate at gen-
erally <0.2 mg/L, and sulfate at 2.9 mg/L [Bennett et al., 1993]. The aquifer is divided in the vicinity of the oil
body into anoxic, transition, and background zones. In the anoxic portion, hydrocarbons are oxidized

Figure 2. Arial map of the site indicating pool locations. This site was chosen for its thorough characterization and relatively
well-controlled site conditions.
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predominantly by iron reduction [Lovley et al., 1989] and methanogenesis [e.g., Baedecker et al., 1993]. Bekins
et al. [2001] show two zones of methanogenic activity with CH4 concentrations greater than 15 mg/L. The
vadose zone vapor plume near the oil body has low O2 (< 2% of volume), high CO2 (>10%), and high CH4

(>15%) levels [Amos et al., 2005]. This site has been extensively documented in other research [e.g., Essaid
et al., 2011].

2. Methods
2.1. Self-Potential

In June 2010, an ~5 cm diameter borehole (C1010) was drilled at a site on the North Pool where extensive
microbiological [Bekins et al., 2001; Beaver et al., 2015] and geochemical [Cozzarelli et al., 2010] studies have
been conducted (Figure 2). The borehole was drilled by advancing a core barrel with a polycarbonate liner
ahead of a hollow stem auger to ~15 m below land surface, and ~6 m below the mean water table elevation.
An array of 16 nonpolarizing Petiau Pb-PbCl electrodes [Petiau, 2000] was assembled by attaching the elec-
trodes to a 3.8 cm diameter PVC pipe, with connecting wires extending along the pipe to the surface.
Electrodes were spaced at 1 m intervals, starting at 1 m below land surface (BLS), and straddling the smear
zone. An additional electrode was placed at 7.5 m BLS to focus on the smear zone. The array was installed
in the borehole immediately after drilling, and the borehole backfilled using a slurry of the native material
produced during drilling. SP signals were recorded using a high impedance voltmeter (100 MΩ) with the
uppermost electrode assigned as the reference electrode, which was connected to the negative terminal
of the voltmeter by convention. Water and oil levels also were collected each month in an adjacent well
located less than a meter from the electrode array.

2.2. Magnetic Susceptibility

In June 2011, magnetic susceptibility (MS) logging measurements were acquired in an existing well (G0906)
located approximately 8 m from C1010. Data were acquired at 3 cm intervals from land surface to 17 m below
land surface using a Bartington MS logging probe calibrated for a PVC lined well with an ~5 cm diameter.
Additionally, the retrieved cores were logged in the laboratory. An example of the methods and results were
previously reported in detail in Mewafy et al. [2011].

2.3. Microbiology

Samples for DNA extraction were obtained from core C1110, which was retrieved from the smear zone in
June 2011 close to C1010. The retrieved core, consisting of 14 sections, started at an elevation of 432.0 m
above sea level (asl) and spanned a distance of 10.67 m to the region below the surface of the water table.
Sediment cores were retrieved in polycarbonate liners in a core barrel pushed into the sediments ahead of
a hollow stem auger. Liquid CO2 injected into the shaft of a freezing drive shoe in the last 10 cm of the
saturated zone core froze the water allowing for retention of water throughout the core [Murphy and
Herkelrath, 1996]. The cores were frozen, sealed, and transported to Oklahoma State University for analysis.
A sterile spatula was used to extract the sediments, and the sediment samples were placed aseptically into
1.7 mL microcentrifuge tubes. Twelve samples were taken along the core in triplicates. The sediment sam-
ples were stored at �20°C in order to preserve the DNA until extraction. The PowerSoil DNA Isolation Kit
(MOBIO Laboratories, Carlsbad, CA) was used to isolate soil DNA. Isolated DNA was stored at �20°C. In this
work, the microbial abundance of three samples in the relevant zone (423.6, 424.1, and 425.1 m asl)
is shown.

Extracted DNA was sent to the Michigan State University Genomics Core Facility for 16S rRNA gene high-
throughput sequencing using primers F515 and R806 with the Illumina MiSeq platform. Paired end
sequences were assembled with PANDAseq [Masella et al., 2012], resulting in a total of 1,764,706
sequences. Sequences that did not overlap by 10 base pairs, were shorter than 250 bp, longer than
274 bp or did not meet a quality score or 0.9, were removed. OTUs were picked by the pick_open_refer-
ence_otus.py command using usearch61 [Edgar, 2010] in QIIME [Caporaso et al., 2010]. Singletons were
removed, and taxonomy was assigned by using the default QIIME Greengenes reference data set.
Sequences were deposited in the National Center for Biotechnology Information Sequence Read Archive
under the submission number SUB2352145.
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3. Results
3.1. Self-Potential

A time series of SP measurements for the duration of the experiment is presented in Figure 3. This data set
excludes the initial measurements, as there appears to be have been a period of time where the system

Figure 3. (top) Time series of the SP data collected from July 2010 to July 2012. Measurements in early-November 2010 show no indication of the strong dipole
seen in the subsequent measurements from December 2010 to June 2011. The dipole decreases in the mid-June 2011 measurements and subsequently increases
in the measurements following this data set. The smear zone is indicated by the shaded rectangle and a vertically exaggerated plot of the relative water level
change is represented by the gray line. (bottom) A representative subset of the data with continuous water level monitoring suggests a link between the water level
and the measured geobattery response.
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was stabilizing or reaching equili-
brium. Continuous water level
monitoring data for this time per-
iod are also shown on the lowest
panel. The first set of measure-
ments, taken on 3 November
2010 after an apparent equilibrium
was reached, shows no evidence
of a diagnostic dipole typical of a
geobattery. The subsequent mea-
surements from December 2010
to June 2011 show the dipole
signature, which appears to
increase in magnitude with time
subsequently decreasing for the
mid-June 2011 measurement. The
dipole is characterized by negative
values above the smear zone, and
positive values at the bottom
consistent with the suggested bio-
geobattery model [Revil et al.,
2010]; in all cases, the magnitude
of the negative potential is smaller
than that of the positive potential.
The dipole then strengthens from
mid-July to October, the end of
the time window presented in
Figure 3. Once again, this dipole

seems to become stronger with time. The water level data presented in the figure is from a level logger in
an adjacent well.

3.2. Magnetic Susceptibility

Magnetic susceptibility measurements performed down borehole G0906, less than 6 m north of borehole
C1010, reveal a strong MS signal within the smear zone (Figure 4). Whereas most of the borehole shows a
MS of 1020 ± 15 m3/kg [Atekwana et al., 2014], there is a sharp increase in MS to maximum values of
1230 m3/kg in the smear zone; even with the elevated MS values recorded in the borehole, the local spike
around the smear zone is very distinctive (Figure 4). The MS signal and the dipolar SP signature are centered
on the smear zone (Figure 4). Analysis of the sediment reveals that the horizon of highmagnetic susceptibility
coincides with a zone of high magnetite content [Mewafy et al., 2011; Atekwana et al., 2014]. The magnetic
susceptibility and sediment analysis of the site is further documented in Atekwana et al. [2014].

3.3. Microbiology

Because of hydrocarbon degradation processes, the oil plume and the smear zone above are an area of
intense microbial activity. At 425.1 m (above sea level; m asl), which is in the smear zone above the oil plume,
the Peptococcaceae family predominated, making up 27% of the total microbial community, followed by the
Comamonadaceae with 18%. The main genus among the Peptococcaceae was closely related to WCHB1-84,
an iron-reducing Gram-positive bacterium, the sequence of which was originally found at the contaminated
Wurtsmith air force base [Dojka et al., 1998]. The main genus among the Comamonadaceae was Albidiferax
(Rhodoferax), which is also a known iron reducer [Risso et al., 2009]. The family of Bradyrhizobiaceaewas found
to be present with 4% abundance. The main representative of this family was Rhodopseudomonas, which is
capable of iron oxidation and of accepting electrons in microbial fuel cells [Jiao et al., 2005; Xing et al., 2008].
At the two lower depths, at 424.1 and 423.6 m, which are inside the oil plume, a clearly methanogenic
microbial community was present predominated by the Syntrophaceae with 40% and 32%, respectively,
and the methanogenic Methanoregulaceae with 15% and 11%, respectively. The main genus among the

Figure 4. The dipolar SP anomaly observed at this site appears to be cen-
tered around the zone of highest MS. The MS data are represented by
the gray line, a representative SP profile by the black line/diamonds, and
smear zone is represented by the light gray shaded area.
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Syntrophaceae was Smithella, which frequently has been reported to be associated with the methanogenic
degradation of crude oil alkanes [Gray et al., 2011] (Figure 5).

4. Discussion

We have reported the presence of a strong SP anomaly centered across the smear zone of a crude oil plume
undergoing biodegradation (Figure 3). This smear zone is concomitant with the presence of strong values in
the magnetic susceptibility (Figure 4). The SP anomaly is also transient with a loose relationship with seasonal
fluctuations in water table elevations. These observations point to the existence of a possible biogeobattery
driven by microbially mediated redox reactions associated with the degradation of the crude oil. A biogeo-
battery requires the presence of a strong redox gradient above and below the water table and an electronic
conductor that bridges the two redox couples [Revil et al., 2010]. These conditions appear to be present at the
Bemidji site. Our data suggest that the presence of magnetite may serve as the electronic conductor. Indeed,
several studies have documented that magnetite can be used by microbes as conduit for direct interspecies
electron transfer [Kato et al., 2012; Shrestha et al., 2013; Rotaru et al., 2014] and has been shown to accelerate
syntrophic methanogenesis [Cruz Viggi et al., 2014; Zhuang et al., 2015].

Detailed microbial characterization of the Bemidji site indicate that syntrophic bacteria and methanogenic
archaea are present in the oil plume and iron reducers are present in the smear zone above the methano-
genic zone (Figure 5). Bacteria from the genus Smithella are able to provide hydrogen and carbon dioxide
to methanogenic archaea and indeed, the main methanogen found at these depths in our study was
Methanoregula, which is a hydrogenotrophic Archaeon. Methanoregula was shown to be enriched in

Figure 5. Microbial community structure in the center of petroleum contamination of the North Pool at Bemidji, MN in
June 2011. Bacterial and archaeal 16S rRNA sequence abundances are sorted by families. The prominent microbial
families in the smear zone at 425.1 m (above sea level, m asl) are the unclassified Peptococcaceae of the Firmicutes and the
Comamonadaceae of the Beta-Proteobacteria. In the free phase zone at 424.1 and 423.6 m asl, the dominant families are
Syntrophaceae of the Delta-Proteobacteria and the archaeal family Methanoregulaceae. “Others” denote microbial families
that make up less than 1% of the total community.
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microcosms that were inoculated with lake sediments and incubated with butyrate and magnetite
nanoparticles [Zhang and Yu, 2016]. It is assumed that Methanoregula is able to take up electrons directly
from magnetite, because in another study, Methanoregula was found to be enriched at cathodes and
producing methane, when the voltage was set lower than the threshold for hydrogen production [Chen
et al., 2016]. The presence of the electron conductor magnetite or a combination of magnetite and
microbial influences (biofilms, nanowires, etc.), has been verified by the MS field measurements and
laboratory analysis of retrieved sediments of the smear zone.

The observed SP dipole, with negative anomalies above the smear zone, and positive below, is consistent
with a bulk upward flow of electrons from below the saturated zone into the unsaturated zone. Excess of
electrons below the smear zone can be explained by the dominant reducing conditions (methanogenesis).
In a similar fashion, electron depletion above the smear zone can be the result of iron reduction, even
coupled to iron oxidation as suggested by the presence of Rhodopseudomonas higher up. In this environ-
ment, biogenic magnetite formation may be encouraged by methanogenic/iron reduction processes. The
presence of magnetite, and/or the electrically conductive biofilms, will promote upward flow of electrons,
and its subsequent oxidation by Rhodopseudomonas in the region above the water table. Analyzing these
metabolic pathways as a complementary system, where both regions work in unison, electron flow can be
traced from the methanogenic zone below the water table to the zone above (Figure 6). This microbially dri-
ven flow of electrons across the conductive boundary can result in the dipolar anomaly, interpreted as the
biogeobattery. The following equations describe possible redox processes that could drive the biogeobattery
and are supported by the microbiology:

CO2 þ 4H2 → CH4 þ 2H2O; (1)

Fe3þ þ 3H2O→ Fe OHð Þ3 þ Hþ; (2)

Fe OHð Þ3 þ 3Hþ → Fe2þ þ 3H2O; (3)

The vertical SP anomaly observed suggests that the plume fringe concept [Meckenstock et al., 2015] may best
describe redox zonation at the site. In this model, the metabolic processes of natural attenuation take place
simultaneously on the fringes of the plume, with multiple processes occurring on the same horizon (Figure 7).

Figure 6. A flow diagram of the interspecies interactions between the microbes in the subsurface that result in the biogeo-
battery measured at the site. Iron-reducing and methanogenic microbes within the saturated smear zone generate mag-
netite which is subsequently oxidized in the unsaturated zone, resulting in the upward flow of electrons in the subsurface.
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This differs from the traditional zona-
tional model, where different meta-
bolic processes occur in different
regions, typically in the direction of
groundwater flow. Recent microbio-
logical characterization of the site
supports this model. Iron-reducing
bacteria such as Albidiferax and
Desulfosporosinus and two methano-
genic archaea, Methanoregula and
Methanosarcina, were identified in
clone libraries constructed from
DNA isolated from Bemidji sediments
at the same depth [Beaver et al.,
2015], and with 16S rRNA gene
sequencing in this work.

The geochemical and microbial char-
acterization of the site suggests that
the essential biogeobattery compo-
nents are present and can be linked
to the indigenous microbial commu-
nity. In this publication, we include a
more comprehensive microbiological
analysis based on 16S rRNA gene
high-throughput sequencing. For
example, microbes were found that
are capable of producing secondary
magnetite due to iron reduction,
including Geobacter and Albidiferax,

[Lovley et al., 1987; Finneran et al., 2003; Hansel et al., 2005], thereby providing an electron conductor to facil-
itate electron flow. Magnetite can be used by microbes as conduit for direct interspecies electron transfer
[Kato et al., 2012; Shrestha et al., 2013; Rotaru et al., 2014] and has been shown to accelerate syntrophic
methanogenesis [Cruz Viggi et al., 2014; Zhuang et al., 2015]. Additionally, iron-oxidizing microbial genera,
such as Rhodopseudomonas, [Xing et al., 2008; Bose et al., 2014; Cruz Viggi et al., 2014] are shown to be present
above the anoxic zone in this work. This may result in the redox gradient required to generate the geobattery.

The complex microbial community below the smear zone appears to be a contributing factor to the transi-
ence of the biogeobattery. As evidenced by the diverse microbial families present, there are diverse meta-
bolic pathways, including those for iron reduction and methanogenesis. The presence of diverse microbial
populations suggests dynamic geochemical conditions that could favor certain populations in response to
changes in local environmental conditions (e.g., water level). Changes in the dominance of certain metabolic
pathways could explain the transient nature of SP andMS signals at the Bemidji site [Slater et al., 2015]. Such a
dynamic environment is in agreement with the fringe plume concept, where the redox gradients are very clo-
sely spaced at the outer edge of the plume (Figure 7) [Meckenstock et al., 2015]—exactly like the conditions at
the Bemidji site. As previously discussed, the biogeobattery operation requires a redox gradient across the
electron conductor (in agreement with the fringe plume concept) and not necessary an oxic/anoxic bound-
ary as previously thought [Revil et al., 2010]. While metatranscriptomics could have provided a clearer picture
as to what metabolic pathways were active at the time of sampling, we cannot verify if the presence of
diverse microbial populations with the ability to express multiple metabolic pathways are the result of
dynamic geochemical conditions (e.g., temperature and oxygen availability), or the drivers for such changes.
However, the transient geophysical signals observed appear to be linked to dynamic microbial processes.
Due to the lack of a temperature gradient and slow moving groundwater, this signal appears to be driven
by the redox gradient [Essaid et al., 2011]. As this gradient appears to be dynamic, we expect the SP signal
to vary over time in response to these changes. This supports the concept that the SP signal as an indirect

Figure 7. Conceptual model of plume fringe degradation [Meckenstock et al.,
2015]. This model supports a vertical gradient in redox potential rather that a
horizontal gradient dependent on the direction of groundwater flow.
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indicator of natural attenuation pro-
cesses [Doherty et al., 2010, 2015].
Further research is needed to clarify
which microbiological driven pro-
cesses contribute to the biogeobat-
tery operation, as evidenced in SP
measurements, and which do not.
Once the contributing processes
have been verified, then quantitative
interpretation of the SP signals may
then be possible.

Further support for our conceptual
model is the apparent correlation
of the water table fluctuation with
the observed SP dipole (Figure 3).
Throughout the experiment, relative
highs in the water table were
followed by weak dipoles, while
lower relative water table levels were
followed by stronger dipoles. For
example, Figure 3 shows that the
water table recorded at an adjacent
well is higher on 3 November 2010
and 15 June 2011 when the dipole
is weak. There is a weak negative lin-
ear correlation between the water

table elevation and the strength of the dipole as computed above. The linear correlation coefficient (R2)
for the least squares regression of the geobattery strength as a function of the water table is 0.43, but it is
significant (P = 0.011) at the 95% confidence interval. The weak R2 value associated with the strength of
the dipole and the water level is not necessarily indicative of these two variables being unrelated. The
expected wetting/draining hysteresis [Essaid et al., 2011] is complicated by oil in the pore space altering water
flow during the rising and falling of the water table. Furthermore, nutrient recharge patterns may be influ-
enced by these same factors, resulting in variations in biodegradation rates and microbial activity [Bekins
et al., 2005]. Targeted experiments are required to fully understand the influence of the complex hysteresis
patterns on the SP signal. The water level fluctuations might promote changes in the local redox conditions,
leading to changes in the dominant microbial populations with different metabolic capabilities (Figure 8),
further promoting redox changes; this sequence of events could be expressed as a transient biogeobattery.
The weak correlation between the water table level and the dipole strength indicates that the relationship is
more complex than that and that there could be several variables influencing this relationship.

The results of this study suggest that the observed SP signals are closely linked to microbial processes.
Specifically, the complex geochemical environment supports the presence of diverse microbial populations
with a multitude of metabolic pathways and can be linked with both the biodegradation processes and the
SP signal. Variations in these pathways may drive the signal transience. This study demonstrates the current
ability of SP to be used as a qualitative monitoring tool for natural attenuation. The influence of complex
microbial environments demonstrates the need for further research to identify the signal sources. For exam-
ple, iron recycling in magnetite by iron-metabolizing microorganisms may potentially drive geobattery
operation [Byrne et al., 2015].

5. Conclusions

The SP data sets collected over the course of this field study indicate that a field-scale biogeobattery exists at
the Bemidji site. This biogeobattery is transient, with periods of little to no measurable voltage signature
across the smear zone of the hydrocarbon contamination, likely due to subsurface conditions. The driving

Figure 8. A concept map of the biogeobattery seen on the site. When the
electrons are recycled back into the system, changes such water table
fluctuation may result in a change in the dominant microbial pathway,
subduing the measured SP signal.
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force for this transient signal appears to be variations in the environment within and immediately adjacent to
the plume. When considered in the context of the plume fringe concept [Meckenstock et al., 2015], the bulk of
the redox couples hypothesized in Figure 6 occur in a comparatively small portion of the contaminated
region. This would result in any physical or chemical changes (i.e., fluctuating water table) altering dominant
pathways, resulting in the transient nature observed.

As SP is a relatively low-cost approach to monitoring natural attenuation, the ability to sense degradation
processes observed during this experiment supports its viability for use in similar environments. Further
exploration into the sources of signals observed during this experiment may hold the key to using this
method in a more quantitative capacity.
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