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Neural-Network-Based State Feedback Control of
a Nonlinear Discrete-Time System

in Nonstrict Feedback Form
Sarangapani Jagannathan, Senior Member, IEEE, and Pingan He

Abstract—In this paper, a suite of adaptive neural network
(NN) controllers is designed to deliver a desired tracking perfor-
mance for the control of an unknown, second-order, nonlinear
discrete-time system expressed in nonstrict feedback form. In
the first approach, two feedforward NNs are employed in the
controller with tracking error as the feedback variable whereas
in the adaptive critic NN architecture, three feedforward NNs
are used. In the adaptive critic architecture, two action NNs
produce virtual and actual control inputs, respectively, whereas
the third critic NN approximates certain strategic utility function
and its output is employed for tuning action NN weights in order
to attain the near-optimal control action. Both the NN control
methods present a well-defined controller design and the non-
causal problem in discrete-time backstepping design is avoided via
NN approximation. A comparison between the controller method-
ologies is highlighted. The stability analysis of the closed-loop
control schemes is demonstrated. The NN controller schemes do
not require an offline learning phase and the NN weights can be
initialized at zero or random. Results show that the performance
of the proposed controller schemes is highly satisfactory while
meeting the closed-loop stability.

Index Terms—Adaptive critic control, near-optimal control,
neural network (NN) control, nonstrict feedback system.

I. INTRODUCTION

T HE adaptive backstepping control methodology [1], [2]
has been utilized to improve the performance of complex

nonlinear systems. When used under some mild assumptions,
many existing adaptive control techniques can be extended to a
general class of nonlinear systems. A drawback with the conven-
tional adaptive backstepping approach is that the system under
consideration must be expressed as linear in the unknown pa-
rameters (LIP) and the dynamics of the nonlinear system must
be known beforehand.

The backstepping methodology using NNs on the other hand
is a potential solution to control a larger class of nonlinear sys-
tems since the NNs are nonlinear in the tunable parameters. By
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using NNs in each stage of the backstepping to estimate cer-
tain nonlinear functions, a more suitable control law can be de-
signed without the LIP assumption and the need for the system
dynamics. The application of adaptive NN control of nonlinear
systems in both continuous and discrete time is dealt with in
several works [3]–[10].

Adaptive NN backstepping control has been extended to strict
feedback nonlinear systems in continuous time given in the fol-
lowing form [6]: , and

, where
, and are state variables and system

input, respectively. On the other hand, the backstepping-based
neural network (NN) control design in discrete time is far more
complex than continuous time due primarily to the fact that dis-
crete-time Lyapunov derivatives are quadratic in the state, not
linear as in the continuous case. Additionally, the design has to
overcome a causal control problem. In [7], a multilayer neural
networks backstepping controller is proposed for discrete-time
feedback system, where , are considered
unknown smooth functions whereas ,
are assumed as unknown constants. By contrast, in [6], both

, and , are considered
unknown smooth functions in discrete time. In all the above
controller design methods [3]–[7], tracking error is used as
the only performance measure to tune the NN weights on-
line. Nevertheless, tracking-error-based state feedback control
schemes are not available for a nonstrict feedback nonlinear
discrete-time system where the system nonlinearities are func-
tions of all the state variables.

On the other hand, adaptive critic NN control methods
[8]–[10], [15], [18] often use backpropagation-based NN
training offline and a utility function to meet certain complex
performance criterion. The adaptive critic family of NN control
[9], [10], [15]–[19] is a promising methodology to handle
complex optimal control problems. In the adaptive critic NN
control, the critic conveys much less information than the
desired output required in supervisory learning. Nevertheless,
their ability to generate correct control actions makes adaptive
critics prime candidates for controlling complex nonlinear
systems. However, an adaptive critic-based NN control scheme
using state variable feedback is not available for a nonstrict
feedback nonlinear discrete-time system.

Despite these developments in NN control, an adap-
tive-critic-based NN control scheme with an online reinforce-
ment learning capability is preferred over offline training

1045-9227/$25.00 © 2008 IEEE
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due to unavailability of a priori training data for approx-
imating complex nonlinear functions. However, reinforce-
ment-learning-based adaptive critic NN controller is far more
complex than a traditional online-learning-based NN controller
in terms of computational complexity, even though the former
can optimize the controller performance. Therefore, in this
paper, both tracking error and reinforcement-learning-based
adaptive critic NN controller designs with an online learning
feature are developed for a nonstrict feedback nonlinear dis-
crete-time system of second order.

In the first tracking-error-based approach, two feedforward
NNs with an online learning feature are used to approximate the
dynamics of the nonlinear discrete-time system. In the second
adaptive critic NN control architecture, two action-generating
NNs with feedforward architecture approximate the dynamics
of the nonlinear system and their weights are tuned using a
third critic NN output. In this work, the single critic NN not
only approximates a certain long term utility function but also
tunes the weights of two action-generating NNs, which is in con-
trast with the available works in the literature where a single
critic is normally used to tune the weights of an action-gener-
ating NN [9], [10]. Additionally, the closed-loop performance is
demonstrated by using the Lyapunov-based analysis and novel
NN weight updates in both controller methodologies. The NN
weights are tuned online with no preliminary offline learning
phase. Finally, a comparison between the two control methods
in terms of their online learning and computational complexi-
ties are highlighted and their performance is contrasted in the
simulation section.

In summary, the proposed work overcomes several deficien-
cies of the previous works, such as: 1) the control scheme is
applicable to a nonstrict feedback nonlinear system in discrete
time, 2) noncausal problem in the discrete-time backstepping
design is avoided via the NN approximation, 3) the need for
signs of unknown nonlinear functions , is
relaxed in the controller design, 4) a robustifying term to over-
come the persistency of excitation condition is not used in the
weight updates [6], 5) a well-defined controller is developed be-
cause a single NN is utilized to compensate two nonlinearities,
and 6) both online tracking error and reinforcement-based adap-
tive critic NN controllers are proposed.

This paper is organized as follows. Section II discusses back-
ground on neural networks and uniformly ultimately bounded
(UUB) definition. The proposed tracking-error-based NN con-
troller is presented in Section III. Section IV introduces an adap-
tive critic NN controller and provides a comparison with the
tracking-error-based NN controller. Section V details the simu-
lation results whereas Section VI carries the conclusions of the
work.

II. BACKGROUND

The following background is required for the development of
the adaptive NN controller. First, the NN approximation prop-
erty is introduced. Second, the definition of UUB is given. Then,
the nonstrict nonlinear system description is described.

A. Stability of Systems

Consider the nonlinear system given by

(1)

(2)

where is the state vector, is the input vector, and
is the output vector. The solution is said to be uniformly ulti-
mately bounded if for all and a , there exists
a number such that for all .

B. Discrete-Time Nonlinear System in
Nonstrict Feedback Form

Consider the following second-order nonstrict feedback non-
linear system described by:

(3)

where , are states, is the system
input, and and are unknown but bounded
disturbances.

Equation (3) represents a discrete-time nonlinear system in
nonstrict feedback form, since and are the functions
of both and , unlike in the case of a strict feedback
nonlinear system, where and are only a function of
state .

For simplicity, let us denote for and
for , where and are

smooth functions, which are considered unknown. The system
under consideration can be written as

(4)

Our objective is to design an NN controller using state feed-
back for system (4) such that: 1) all the signals in the closed-loop
remain UUB, and 2) the state follows a desired trajectory

.

III. ADAPTIVE TRACKING ERROR CONTROLLER DESIGN

First, a tracking-error-based NN controller approach with on-
line training of NN weights is introduced by assuming that the
states of the system are available for measurement. Then, in the
next section, an adaptive-critic-NN-based control design with
reinforcement learning scheme is introduced. Lyapunov-based
analysis is presented. To proceed, the following mild assump-
tions are required.

A. Controller Design

Assumption 1: The desired trajectory and its future
values are known and bounded over the compact .

Assumption 2: The unknown smooth functions and
are assumed to be bounded away from zero within the
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compact set , i.e., ,
, and ,

and , where , ,
, and . Without the loss generality,

we will assume , , and (to be defined later)
are positive in this paper. Next, the adaptive backstepping NN
control design is introduced.

Step 1 (Virtual Controller Design): Define the tracking error
as

(5)

Equation (5) can be rewritten after the substitution of system
dynamics from (4) as

(6)

By viewing as a virtual control input, a desired feedback
control signal can be designed as

(7)

where is a design constant selected, such that the tracking
error is asymptotically stable. Assumption 1 ensures that

is bounded away from zero.
Because and are unknown smooth functions,

the desired feedback control cannot be implemented
in practice. From (7), it can be seen that the unknown part

is a smooth function of
, , and . By utilizing NN to approximate

this unknown part consisting of the ratio of two unknown
smooth functions, can be expressed as [6]

(8)

where denotes the constant target weights of
the output layer, is the weights of the hidden layer,

is the nodes number of hidden layer, is the hidden layer
activation function, is the approximation error,
is the design constant, and the NN input is taken as

. Only the hidden-layer NN weights
are updated, whereas the input-layer weights are selected ini-
tially at random and held constant so that hidden-layer activa-
tion function vector forms a basis [11].

Consequently, the virtual control is given as

(9)

where is the actual NN weight. Define the error
in weights during estimation by

(10)

Define the error between and as

(11)

Equation (6) can be expressed using (11) for as

(12)
or, equivalently

(13)

where

(14)

and

(15)

Note that is bounded given the fact that , , and
are all bounded.

Step 2 (Design of the Control Input ): Write the error
from (11) as

(16)

where is the future value of . Here this problem
is solved by using a semirecurrent NN because it can be used as
a one-step predictor. The term depends on state ,
virtual control input , and desired trajectory .
By taking the independent variables as the NN inputs,
can be approximated during control input selection. From (11),

can be obtained as a nonlinear function of ,
where , i.e.,

, where is a nonlinear mapping.
Consequently, it can be approximated by the NN. Alternatively,
the value of can also be obtained by employing a
filter [5]. In this paper, a feedforward NN with properly chosen
weight tuning law rendering a semirecurrent or dynamic NN
will be used to predict the future value. The first layer of the
second NN using the system estimates, past value of
along with the desired value of the first state as inputs to an
NN, generates , which in turn is used by the second
layer to generate a suitable control input. On the other hand,
one can use a single-layer dynamic NN to generate the future
value of , which can be utilized as an input to a third
control NN to generate a suitable control input. Here, these two
single-layer NNs are combined into a single two-layer NN with
semirecurrent architecture.

Choose the desired control input and use the second NN to
approximate the unknown dynamics as

(17)

where is the matrix of target weights of the
output layer, is the weights of the hidden layer,

is the nodes number of hidden layer, is the vector of
activation functions, is the approximation error, is
the design constant, and the NN input is selected as . Here,
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Fig. 1. Tracking error adaptive NN controller structure.

Assumption 2 ensures that the function is bounded away
from zero. The actual control input is selected as

(18)

where is the actual weights for the second NN.
Substituting (17) and (18) into (16) yields

(19)
where

(20)

and

(21)

Equations (13) and (19) represent the closed-loop error dy-
namics. The next step is to design the NN weight tuning scheme
such that the closed-loop system stability can be inferred.

B. Weight Updates

In tracking-error-based NN controller, two NNs are employed
to approximate the nonlinear dynamics and their weights are
tuned online using tracking errors. It is required to show the er-
rors and and the NN weights and are
bounded. To accomplish this, first, an assumption to define the
bounds on the target weights and activation functions are pre-
sented. Second, a discrete-time online weight tuning algorithms
is introduced so that closed-loop stability is inferred.

Assumption 3: Both the target weights and the activation
functions for all NNs are bounded by known positive values so
that

and (22)

This assumption is used during the Lyapunov proof.
The proposed adaptive NN controller structure based on

tracking errors as feedback variables is shown in Fig. 1. The
desired and actual state of the first variable is utilized to obtain
the error, which when combined with the output of the first

NN generates the virtual control input. This virtual control
input is combined with the second state to become the NN
inputs for the second action NN. The second NN output along
with the tracking error of the second state is considered as the
input to the nonstrict feedback nonlinear discrete-time system.
The tuning of the two NN weights is accomplished using the
tracking errors.

Theorem 1: Consider the system defined in (3) along with
the Assumptions 1–3 hold. Let the disturbances and NN ap-
proximation errors be bounded, whose bounds are considered
known as , , , and

. Let the first NN weight tuning be given by

(23)

with the second NN weights tuning be provided by

(24)

where , , , and are design param-
eters. Let the virtual and actual control inputs be defined by (9)
and (18), respectively. The tracking errors from (5) and

from (11) and the NN weights estimates and
are UUB, with the bounds specifically given by (A.8)–(A.11)
provided the design parameters are selected as

(25)

(26)

(27)

(28)

Proof: See the Appendix.
Remark 1: A well-defined controller is developed in this

paper because a single NN in (7) and (17) is utilized to ap-
proximate a ratio of two unknown smooth nonlinear functions
thereby avoiding the problem of , becoming
zero. This is in contrast from using a single NN for each of these
individual functions consistent with the previous literature [6].

Remark 2: The NN weight tuning proposed in (23) and (24)
renders a semirecurrent NN due to the proposed weight tuning
law even though a feedforward NN architecture is utilized. Here,
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the NN outputs are not fed as delayed inputs to the network
whereas the outputs of each layer are fed as delayed inputs to
the same layer. This semirecurrent NN architecture renders a
dynamic NN, which is capable of predicting the state one step
ahead.

Remark 3: It is only possible to show boundedness of all the
closed-loop signals by using an extension of Lyapunov stability
[6] due to the presence of approximation errors and bounded
disturbances, a result consistent with the literature [4]–[6]. The
controller gains and can be selected using (27) and (28)
so that the closed-loop stability can be ensured.

IV. ADAPTIVE CRITIC CONTROLLER DESIGN

Next we present the development of an adaptive critic NN
controller. Our objective is to design an NN controller for sys-
tems (1) and (2) such that: 1) all the signals in the closed-loop
system remain UUB; 2) the state follows a desired tra-
jectory ; and 3) certain long term system performance
index is optimized. Though the adaptive critic NN controller
development uses the backstepping approach, the actual control
methodology is different from the one introduced in Section III
as given next.

A. Design of the Virtual Control Input

For simplicity, let us denote

(29)

(30)

and

(31)

System (3) can be rewritten as

(32)

(33)

Define the tracking error as

(34)

where is the desired trajectory and subscript “ ” is intro-
duced to minimize confusion between the error signals of the
two controllers developed in this paper. Using (32), (34) can be
expressed as

(35)

By viewing as a virtual control input, a desired virtual
control signal can be designed as

(36)

where is a design constant selected to stabilize the error
system (35).

Because is an unknown function, the desired virtual
control input in (37) cannot be implemented in practice.
By utilizing the first action NN to approximate this unknown
function , is given by

(37)

where is the input vector to the
first action NN, and denote the con-
stant ideal output- and hidden-layer weights, the hidden-layer
activation function represents ,
is the number of the nodes in the hidden layer, and

is the approximation error. It is demonstrated in [11] that, if
the hidden-layer weight is chosen initially at random and
kept constant and the number of hidden-layer nodes is suffi-
ciently large, the approximation error can be made
arbitrarily small so that the bound holds
for all because the activation function forms a basis.

Consequently, the virtual control is taken as

(38)

where is the actual output-layer weight matrix
to be tuned. The hidden-layer weight is randomly chosen
initially and kept constant. Define the weight estimation error

by

(39)

Define the error between and as

(40)

Equation (37) can be rewritten using (39) as

(41)
Combining (40) with (41), we get

(42)
or, equivalently

(43)
where

(44)

B. Design of the Control Input

Write the error from (40) as

(45)
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where is the future value of . To stabilize
the above system, the desired control input is chosen as

(46)

where is the controller gain to stabilize system (45).
Note that depends upon future states because
depends upon the . We solve this noncausal problem
by using the universal NN approximator. It can be clear that

is a nonlinear function of system state , virtual
control input , desired trajectory , and system
error . Therefore, can be approximated using
an NN. By taking

as the input to the NN, can be approximated as

(47)

where and denote the constant ideal
output- and hidden-layer weights, the hidden-layer activation
function represents , is the
number of the nodes in the hidden layer, and is
the approximation error.

The actual control input is selected as the output of the second
action NN

(48)

where is the actual output-layer weight.
Substituting (46)–(48) into (45), we get

(49)

where

(50)

Equations (43) and (49) represent the closed-loop error dy-
namics. The next step is to design the adaptive critic NN con-
troller weight updating rules. The critic NN is trained online
to approximate the strategic utility function (long term system
performance index). The critic signal, with a potential for esti-
mating the future system performance, is employed to tune the
two action NNs to minimize the strategic utility function and the
unknown system estimation errors so that closed-loop stability
is inferred.

C. The Strategic Utility Function

The utility function is defined based on the current
system errors and it is given by

if
otherwise

(51)

where is a predefined threshold. The utility function
is viewed as the current system performance index;
and refer to the good and poor tracking performance,
respectively.

The long term system performance measure or the strategic
utility function is defined as

(52)

where and , and is the horizon. The term
is viewed here as the long system performance measure

because it is the sum of all future system performance indices.
Equation (52) can also be expressed as

, which is similar to the standard Bellman equa-
tion.

D. Design of the Critic NN

The critic NN is used to approximate the strategic utility func-
tion . We define the prediction error as

(53)

where the subscript “ ” stands for the “critic,”

(54)

is the critic signal, and
represent the matrix of weight estimates, is the
activation function vector in the hidden layer, is the number
of the nodes in the hidden layer, and the critic NN input is given
by . The objective function to be minimized by the
critic NN is defined as

(55)

The weight update rule for the critic NN is a gradient-based
adaptation, which is given by

(56)

where

(57)

or

(58)

where is the NN adaptation gain.

E. Weight Updating Rule for the First Action NN

The first action NN weight is tuned by mini-
mizing the functional estimation error and the error be-
tween the desired strategic utility function and the
critic signal . Define

(59)
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Fig. 2. Adaptive-critic-NN-based controller structure.

where is defined in (44), , and the subscript
“ ” stands for the “first action NN.” The value for the desired
strategic utility function is taken as “0” [18], i.e., to in-
dicate that at every step, the nonlinear system can track the ref-
erence signal well. Thus, (59) becomes

(60)

The objective function to be minimized by the first action NN
is given by

(61)

The weight update rule for the action NN is also a gradient-
based adaptation, which is defined as

(62)

where

(63)

or

(64)

where is the NN adaptation gain.
The NN weight updating rule in (64) cannot be implemented

in practice because the target weight is unknown. However,
using (43), the functional estimation error is given by

(65)
Substituting (65) into (64), we get

(66)

Assume that bounded disturbance and the NN approxi-
mation error are zeros for weight tuning implemen-
tation, then (66) is rewritten as

(67)

Equation (67) is the adaptive-critic-based weight updating rule
for the first action NN . Next, we present the
weight updating rule for the second action NN .

F. Weight Updating Rule for the Second Action NN

Define

(68)

where is defined in (50), , and ,
where the subscript “ ” stands for the “second action NN.”
Following the similar design procedure and taking the bounded
unknown disturbance and the NN approximation error

to be zeros, the second action NN
weight updating rule is given by

(69)

The proposed adaptive critic architecture based on weight
tuning (67) and (69) with and is similar to su-
pervised actor–critic architecture [10] wherein the supervisory
signals and supply an additional source of eval-
uative feedback or reward that essentially simplifies the task
faced by the learning system. As the actor gains proficiency,
the supervisory signals are then gradually withdrawn to shape
the learned policy towards optimality.

To implement (69), the value of at the instant
has to be known, which can be obtained by the following steps.

1) Calculate , , , , , ,
, and at the instant.

2) Apply the control input to system (3) to obtain the
states and .

3) Use the tracking error definition to get as

(70)

4) Use the first action NN weight updating rule (66) to get
.

5) Once we have and , the value of
can be determined by using

(71)
and

(72)

The proposed adaptive critic NN controller is depicted in
Fig. 2 based on the development given in this section. The de-
sired and actual state of the first variable is utilized to obtain
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the error, which when combined with the output of the first ac-
tion NN generates the virtual control input. This virtual con-
trol input is combined with the second state and fed as inputs
for the second action NN. The output of the second action NN
becomes the input to the nonstrict feedback nonlinear discrete-
time system. The critic NN by using the states of the nonlinear
system approximates the strategic utility function, which is sub-
sequently employed to tune the NN weights of both action NNs.

G. Stability Analysis

Assumption 3 (Bounded Ideal Weights): Let , , and
be the unknown output-layer target weights for the two ac-

tion NNs and the critic NN and assume that they are bounded
above so that

and
(73)

where , , and represent
the bounds on the unknown target weights where the Frobenius
norm [11] is used.

Fact 1: The activation functions are bounded by known pos-
itive values so that

(74)

where , is the upper bound for
.

Assumption 5 (Bounded NN Approximation Error): The NN
reconstruction errors and are bounded
over the compact set by and , respectively
[6].

Fact 1 and Assumption 5 are required during the Lyapunov
proof.

Theorem 2: Consider the system given by (3). Let the As-
sumptions 1–4 hold and the disturbance bounds and
be known constants. Let the critic NN weight
tuning be given by (58), the first action NN
weight tuning provided by (67), and the second action NN

weight tuning provided by (69). Given the vir-
tual control input (38) and the control input (48),
the tracking errors and and the NN weight esti-
mates , , and are UUB, with the bounds
specifically given by (A.26)–(A.28) provided the controller
design parameters are selected as

(a) (75)

(b) (76)

(c) (77)

(d) (78)

(e) (79)

(f) (80)

where , , and are NN adaptation gains, and
are controller gains, and is employed to define the strategic
utility function.

Proof: See the Appendix.
Remark 4: The weight updates indicate that the critic NN and

the functional approximation NNs have a semirecurrent archi-
tecture where the output from each node both in the input and
output layers is fed back to the inputs.

Remark 5: The mutual dependence between the two NNs (ac-
tion-generating and critic NNs) in the adaptive critic NN archi-
tecture results in coupled tuning law equations because the critic
output is utilized to tune the action NNs whereas the action
NN outputs are utilized as inputs by the system to generate new
states, which in turn are used by the critic NN. Moreover, addi-
tional complexities arise due to the addition of the second action
NN because this addition causes further interaction among the
three NNs. However, the Lyapunov stability analysis presented
in the Appendix guarantees that the closed-loop system with all
the three NNs is stable while ensuring the boundedness of all
the signals.

Remark 6: The weights of the action and critic NNs can be
initialized at zero or random. This means that there is no ex-
plicit offline learning phase needed in the proposed controller
in contrast with the existing works where a preliminary offline
training phase is normally used.

Remark 7: The proposed scheme results in a well-defined
controller by avoiding the problem of , be-
coming zero because a single NN is employed to approximate
the ratio of two nonlinear smooth functions. Moreover, the con-
troller gains and are selected using (78) and (79) to ensure
closed-loop stability.

Remark 8: Condition (78) can be verified easily. For instance,
the hidden layer of the critic NN consists of nodes with the
hyperbolic tangent sigmoid function as its activation function,
then . The NN adaptation gain can be se-
lected as to satisfy (78). Similar analysis can
be performed to obtain the NN adaptation gains and .

Remark 9: The number of hidden-layer neurons required for
suitable approximation can be addressed by using the stability of
the closed-loop system and the error bounds of the NNs. From
(75)–(80) and Remark 8, to stabilize the closed-loop system,
the numbers of the hidden-layer nodes can be selected as

, , and once the
NN adaptation gains , , and are selected. However,
to get a better approximation performance and according to
[11], the hidden-layer nodes have to be selected large enough
to make the approximation error approach zero. To bal-
ance stability and good approximation requirement, we start
with a small number of nodes, and increase it until the controller
achieves the satisfactory performance.

Corollary 3: Given the hypothesis, the proposed adaptive
critic NN controller, and the weight updating rules in Theorem
2, the state approaches the desired virtual control input

.
Proof: Combining (37) and (38), the difference between

and is given by

(81)

where defined in (39) is the first action NN
weight estimation error and is defined in (44). Be-
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cause both and are bounded,
is bounded to . In Theorem 2, we show that is
bounded, i.e., the state is bounded to the virtual control
signal . Thus, the state is bounded to the desired
virtual control signal .

Remark 10: Feedforward NNs are used as building blocks
both in tracking error and adaptive-critic-based NN controllers.
In the case of the first control methodology, tracking error is
used as a feedback signal to tune the NN weights online. The
only objective there is to reduce the tracking error, and there-
fore, no performance criterion is set. To the contrary, adaptive
critic NN architectures use reinforcement learning signal gener-
ated by a critic NN. The critic signal can be generalized using
complex optimization criteria including the variant of the stan-
dard Bellman equation. As a consequence, an adaptive critic
NN architecture results in a considerable computational over-
head due to the addition of a second NN for generating the
critic signal. In the proposed work, a single NN is used to gen-
erate a critic signal for tuning the two action-generating NN
weights. As a result, computational complexity is slightly re-
duced but still requires three NN when compared to two NN in
the case of tracking-error-based NN controller. Moreover, all the
NNs are tuned online compared to standard work in the adap-
tive critic NN literature [11]–[13]. Lyapunov-based analysis is
demonstrated for stability whereas available adaptive critic pa-
pers use purely numerical simulation results without any ana-
lytical proofs. Simulation results are presented in Section V to
justify the theoretical conclusions.

V. SIMULATIONS

The purpose of the simulation is to verify the performance
of the adaptive critic NN controller. Two cases are considered.
The first is to apply the proposed adaptive critic NN controller
to a nonlinear system. Then, a practical nonlinear system [e.g.,
emission control in spark ignition (SI) engine] is considered and
the proposed approach is employed.

Example 1 (Adaptive Critic Controller for Nonstrict Feed-
back Nonlinear System): The control objective is to make the
state follow the desired trajectory . The proposed
adaptive critic NN controller is used on the following nonlinear
system, given in nonstrict feedback form:

(82)

(83)

where , are the states and is
the control input. Note that both and include state

.
The reference signal was selected as
, where and with a sampling interval of

. The total simulation time is taken as 250 s. The
gains of the standard proportional controller are selected a priori

and using (78) and (79).

Fig. 3. Performance of a standard controller without NN.

Fig. 4. Control input.

NN1 , NN2 , and critic NN3 each
consists of 15 nodes in the hidden layer. For weight updating,
the learning rates are selected as , , and

. All the initial weights are selected at random over
an internal of and all the activation functions used are hy-
perbolic tangent sigmoid functions.

Figs. 3 and 4 present the performance of the standard propor-
tional controller alone from the adaptive critic controller and as-
sociated control input, respectively, without the NNs included.
From Fig. 3, it is clear that the tracking performance has deterio-
rated in comparison with Fig. 5 when the NNs were included in
the controller. Fig. 5 illustrates the superior performance of the
adaptive critic NN controller. The gains were not altered in both
simulations. Fig. 6 depicts the NN control input that appears
to be sufficiently smooth such that it can be implemented in
today’s embedded system hardware. Because the control input
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Fig. 5. Performance of the adaptive critic NN controller.

Fig. 6. Adaptive critic NN control input.

is bounded and according to (38) and (48), the NN weights are
indeed bounded. The NNs are not trained offline and the output
layer weights are initialized at zero. Next, we present another
simulation example where a practical nonlinear system is con-
sidered and the proposed controller is applied.

Example 2 (Adaptive NN Controller for SI Engines: A Prac-
tical Example): Lean operation of SI engine allows low emis-
sions and improved fuel efficiency. However, at lean opera-
tion, the engine becomes unstable due to the cyclic dispersion
in heat release. Literature shows that by controlling engines at
lean operating conditions can reduce emissions as much as 60%
[18] and it improves fuel efficiency by about 5% to 10%. Un-
fortunately, the engine exhibits strong cyclic dispersion, which
causes instability. The simulation is designed to verify the per-
formance of the proposed adaptive NN controller for the prac-
tical application, where the objective is to reduce cyclic disper-
sion. The adaptive NN controller is designed to stabilize the

SI engine operating at lean conditions. The engine dynamics
can be expressed as a nonstrict feedback nonlinear discrete-time
system of second order of the form [12]–[14] given by

(84)

(85)

(86)

(87)

where and are the mass of air and fuel before th
burn, respectively, is the unknown residual gas fraction,

is the mass of fresh air fed per cycle, is the stoichio-
metric air–fuel ratio, , is the combustion effi-
ciency, is the mass of fresh fuel per cycle, is the
small changes in mass of fresh fuel per cycle, is the
maximum combustion efficiency, which is a constant, is
the equivalence ratio, are constant system parame-
ters, and is the heat release in the th cycle. Because
varies cycle by cycle, the engine is considered unstable without
any control. In (56) and (57), and are unknown
nonlinear functions of both and , so the system is a
nonlinear discrete-time system of second order in nonstrict feed-
back form.

Given Theorem 2 and Corollary 3 and using the proof in [6],
we could show that, with the proposed controller, both states can
be bounded to their respective target values and . Then,
the equivalence ratio (86) combustion efficiency
(86), heat release (87), and the engine dynamics are sta-
bilized.

The cyclic dispersion is reduced when the variation in equiv-
alence ratio is reduced, and this goal can be
achieved by driving both states close enough to their desired
target. The system parameters are selected as the following:

, , , , ,
, , , and .

We add the unknown white noise with the deviation of
and to the and .

The controller gains are selected as using
(27) and (28). For weight updating, the adaptation gains are se-
lected as and . The two NNs have 15
hidden-layer nodes each. All the hidden-layer weights are se-
lected uniformly within an interval of and all the activation
functions are selected as hyperbolic tangent sigmoid functions.

The cyclic dispersion observed at a lean equivalence ratio of
is presented in Fig. 7 when no control scheme is employed

for 10 000 cycles. It shows that, without any control, the engine
performance is unsatisfactory. Fig. 8 illustrates the performance
of the NN controller. The dispersion is small and bounded and
can be tolerable. Fig. 9 depicts the error between actual equiv-
alence ratio and its desired value, which is bounded. Fig. 10
displays the norm of the weights , , ,
and . It is clear that the NN weights and the error
converge and are bounded. The performance of a tuned conven-
tional proportional and derivative controller is illustrated in [13]
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Fig. 7. Cyclic dispersion without control.

Fig. 8. Heat release with NN controller.

and from the results in [13], the NN controller outperforms the
conventional controllers. Next the proposed adaptive critic NN
controller is applied.

Adaptive Critic NN Controller: The simulation parameters
are selected as follows: 1000 cycles are considered at equiva-
lence ratio of 0.71 with , , mass of new
air , the standard deviation of mass of new fuel is ,

, , the desired mass of air is taken as
, and the desired mass of fuel is calculated as

. A 5% unknown noise is
added to the residual gas fraction as a way to include stochastic
perturbation of system parameters. The gains of controllers are
selected as , respectively, using (78) and (79).

NN1 , NN2 , and critic NN3 each
consists of 15 nodes in the hidden layer. For weight updating,
the learning rates are selected as , , and

. The initial weights are selected randomly over an

Fig. 9. Error in equivalence ratio.

internal of and all the activation functions are hyperbolic
tangent sigmoid functions.

Fig. 10 shows the cyclic dispersion without control now for
1000 cycles at an equivalence ratio of . Here, the combus-
tion process dynamics consisting of residual gas fraction and
combustion efficiency are taken unknown. The cyclic disper-
sion is presented in Fig. 11, which indicates that, without any
control, the engine performance is unsatisfactory. By contrast,
Fig. 12 displays that the engine works satisfactorily at lean con-
ditions, but the heat release appears to exhibit minimal disper-
sion. The overall controller performance appears to be satisfac-
tory and fuel efficiency is 8% better than the standard adaptive
NN controller due to optimal design.

A comparison of the two controller approaches—a tracking
error NN based and adaptive critic NN based—is shown in Ex-
ample 2 highlighting the differences, whereas in Example 1, an
adaptive critic NN controller is compared with that of a standard
controller. These clearly show that an adaptive critic NN con-
troller is far superior even though it is computationally intensive
than a tracking-error-based NN controller. On the other hand,
Example 1 illustrates that a tracking-error-based NN controller
performs better than a conventional controller. These clearly
demonstrate that an adaptive critic NN controller renders a near-
optimal performance for a nonlinear discrete-time system in
nonstrict feedback form.

VI. CONCLUSION

This paper proposes a novel adaptive critic NN controller to
deliver a desired tracking performance for a class of discrete-
time nonstrict feedback nonlinear systems under the assump-
tion that the states are available for measurement. A well-de-
fined controller is developed since a single NN is utilized to
approximate the ratio of two smooth nonlinear functions. Two
NNs are employed for generating suitable control inputs in the
case of tracking-error-based controller whereas three NNs are
employed for the adaptive critic NN controller. The stability
analysis of the closed-loop control system is introduced and the
boundedness of the tracking error is demonstrated for both de-
signs. The performance of the controller is demonstrated on a
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Fig. 10. NN weight norms and error � ���.

Fig. 11. Cyclic dispersion without control.

practical nonlinear system. This paper proposes a novel adap-
tive NN controller to deliver a desired tracking performance for
the control of a second-order unknown nonlinear discrete-time
system in nonstrict feedback form. The NN controllers do not
require an offline learning phase and the weights can be initial-
ized at zero or random. Results show that the performance of

Fig. 12. Cyclic dispersion with control.

the proposed controllers is highly satisfactory while meeting the
closed-loop stability.
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APPENDIX

Proof of Theorem 1: Define the Lyapunov function candidate

(A.1)
where and are the upper bounds of function and

, respectively, given a compact set (see Assumption 2), and
, , and are design parameters (see Theorem 1).
The first difference of Lyapunov function is given by

(A.2)

The first difference is obtained using (13) as

(A.3)

Now take the second term in the first difference (A.1) and
substitute (19) into (A.1) to get

(A.4)

Take the third term in (A.1) and substitute the weights updates
from (23) and simplify to get

(A.5)

Take the fourth term in (A.1) and substitute the weights up-
dates from (24) and simplify to get

(A.6)

Combine (A.3), (A.4), (A.5), and (A.6) to get the first differ-
ence and simplify to get

(A.7)

This implies that as long as (25) through (28) hold
and

(A.8)
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or

(A.9)

or

(A.10)

or

(A.11)

where

(A.12)

According to a standard Lyapunov extension theorem [6], this
demonstrates that the system tracking errors and the weight esti-
mation errors are UUB. The boundedness of and
implies that and are bounded, and this further
implies that the weight estimates and are bounded.
Therefore, all the signals in the closed-loop system are bounded.

Proof of Theorem 2: Define the Lyapunov function

(A.13)

where , are constants, is defined
as

(A.14)

and is defined as

(A.15)

and , , and are the NN adaptation gains. The Lya-
punov function consisting of the tracking errors and the weights
estimation errors obviates the need for certainty equivalence as-
sumption.

The first difference of Lyapunov function is given by

(A.16)

The first difference is obtained using (43) as

(A.17)

Now taking the second term in the first difference (A.13) and
substituting (49) into (A.16), we get

(A.18a)

Taking the third term in (A.16) and substituting the weights
updates from (67) and simplifying, we get

(A.18b)

Taking the fourth term in (A.16) and substituting the weights
updates from (69) and simplifying , we get

(A.19)

Using the critic NN weights updating rule (58) to calculate
the fifth and sixth item in (A.16), we obtain

(A.20)

(A.21)

Taking , and combining (A.17)–(A.21) to get the
first difference of the Lyapunov function and simplifying it, we
get

(A.22)

where

(A.23)

Select

(A.24)
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and (A.25)

This implies as long as (75)–(80) hold and

or

(A.26)

or

or

(A.27)

or

(A.28)

According to a standard Lyapunov extension theorem [6],
this demonstrates that the system tracking error and the weight
estimation errors are UUB. The boundedness of ,

, and implies that , , and
are bounded, and this further implies that the weight

estimates , , and are bounded. Therefore,
all the signals in the closed-loop system are bounded.
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