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DC Power-Bus Noise Isolation With
Power-Plane Segmentation

Wei Cui, Member, IEEE, Jun Fan, Member, IEEE, Yong Ren, Hao Shi, Member, IEEE,
James L. Drewniak, Senior Member, IEEE, and Richard E. DuBroff, Senior Member, IEEE

Abstract—Power-plane segmentation is often used for dc
power-bus noise isolation in multilayer printed circuit board
(PCB) designs. To achieve a desirable noise isolation, different
power-plane segmentations can be used. A suitable modeling
approach, as well as measurements, were employed in this work
to study the noise isolation with several power-plane segmentation
designs. The geometries studied include power islands, and totally
segmented power planes. The effects of the power-bus noise iso-
lation with different types of power island connections, locations
of segmentation, and shapes were analyzed, and compared. The
modeled and measured results show that suitable power-plane
segmentation can result in significant power-bus noise isolation.

Index Terms—DC power-bus design, noise isolation, power is-
land, power-plane segmentation.

I. INTRODUCTION

L OGIC transitions of digital integrated circuits (ICs) are a
major source of power-bus noise [1], [2]. For PCBs that

use complete planes or large area fills as power and ground,
this high-frequency noise can propagate throughout the enitre
power bus, and result in significant signal integrity (SI) and
electromagnetic interference (EMI) problems. In addition to
techniques using decoupling capacitors to mitigate the noise,
an isolation technique using power-plane segmentation can
also be an effective method for minimizing noise propaga-
tion. Two types of segmentation, segmented power planes
and power islands, are commonly used in high-speed digital
designs. A power island can be employed to provide power to
some fast switching or noisy IC devices. If these IC devices
share a common power supply with the rest of the circuit,
a conducting bridge can be employed to connect the power
island to the larger power area. However, the low-frequency
isolation performance of this topology is relatively poor. Ferrite
beads are more suitable for this kind of application due to their
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frequency-selective loss characteristics. For multilayer PCBs,
the parallel interplane capacitances between the power areas
and the reference plane are often considered as shunt capacitors
on both sides of the connection bridge, and the bridge itself
treated as a series inductor. As a result, a simple intuitive
model for power islands as a network can be established.
The performance of power islands might then be optimized by
tuning the parameters. However, in practice, thisnetwork
does not work out as well as speculated at high frequencies due
to the distributed resonances of the power planes. An improved

network using two lumped surface-mount-technology (SMT)
capacitors and an SMT ferrite bead was found to have a superior
performance for noise isolation in this study. The effect of the
power island location on the noise isolation was also studied,
and found to have little impact.

Segmented power planes are similar to power islands except
that they are used to isolate a larger portion of the power plane
from the rest. In some applications, PCB layouts are partitioned
into different functioning portions, for example, digital and
analog circuits. Studies on some geometric dimensions of the
segmented power planes with conducting connections using a
numerical modeling approach are also reported in this paper.
Similar results to the power island were achieved in cases
without dc connections. For the complete segmented power
planes, although noise can be coupled capacitively between
different power areas, or through the modes supported by
the parallel power/ground plane pair, the coupling can be
reduced by careful design. Previous experimental work on
power-plane segmentation has been reported [3], [4]. A hybrid
FEM/MoM numerical method was also employed to model
totally isolated power planes [5]. This work presents a study
on effects of gap shape on board resonances and RF isolation
using acircuit extraction technique based on amixed potential
integralequation (CEMPIE) approach. Further, an approach is
developed for isolating power areas at high frequencies, while
maintaining a dc connection.

Numerical methods are suitable for modeling power-plane
segmentations. A proven modeling approach can greatly facili-
tate the power-bus design at early stages without the need for
prototype hardware. The CEMPIE approach is employed herein
to model various configurations of power-plane segmentation.
One significant advantage of the CEMPIE approach is that
lumped element models can be extracted from the formulation.
As a result, the high-frequency power-bus performance can be
analyzed with general SPICE simulators. With this approach,
other circuit models, and device models can be incorporated.
The CEMPIE approach is an application of the partial element

0018-9375/03$17.00 © 2003 IEEE
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equivalent circuit (PEEC) method in general multilayer media
[6]. Previous studies have demonstrated that the CEMPIE
modeling approach is suitable for modeling dc power-bus
structures [7].

II. POWER–BUS NOISE ISOLATION WITH POWERISLANDS

The CEMPIE modeling approach is used herein to study the
power-bus noise isolation with power islands. The CEMPIE for-
mulation is based on a mixed-potential integral equation ap-
proach, and it is similar to the formulation of classic scattering
problems [8], [9]. A scattered electric field is excited on the
exposed conducting surfaceas a result of an incident electric
field . The boundary condition on is

(1)

which is the electric field integral equation (EFIE). The
scattered electric field results in surface current densities
and surface charge densities on the conducting surface. For
typical PCB configurations, the conducting surface includes
the metal planes, and the interconnects between the planes. In
the CEMPIE modeling of power buses, the horizontal power
planes are discretized into triangular cells, and the vertical dis-
continuities, for example, vias, are discretized into rectangular
cells. The triangular cells are amenable to model arbitrary
power-plane shapes. The induced surface current densities are
expanded with vector basis functions. Two types of current
vector basis functions are used to facilitate the analysis of the
problem. For the triangle surface cells, the Rao, Wilton, and
Glisson (RWG) current vector basis functions are anchored
by the interior edges [8]. For the vertical rectangular cells,
the basis functions are one-dimensional linear functions, and
associated only with horizontal edges of the rectangles. This
approach neglects the horizontal surface current densities on
the vertical discontinuities, which is adequate, since the vertical
discontinuities have electrically small dimensions in this study.
The surface charge density is assumed as a constant over each
discretized cell. When enforcing the boundary conditions, an
integral equation results. This integral equation is then tested
using testing functions that have the same form as the basis
functions. Finally, lumped element models between all basis
functions are extracted from the method of moments (MOM)
impedance matrix [10]. In the equivalent circuit, each node
corresponds to a discretized cell. The interconnecting circuit
elements are calculated with some manipulations from the
elements of the MOM impedance matrix.

Dyadic and scalar Green’s functions for a stratified medium
are used in the CEMPIE/PEEC formulation for the vector
magnetic and scalar electric potentials, respectively, instead of
the free-space Green’s function [11], [12]. The dielectric losses
of the substrate are included in the scalar Green’s functions.
The ground plane and the dielectric layers are assumed to
have infinite planar extent. To calculate the Green’s functions,
closed-form expressions of the spectral-domain Green’s
functions are developed. The complex images of the spectral
Green’s functions are calculated with a generalized pencil of
function (GPOF) method. Then, the spatial-domain Green’s

Fig. 1. Test board geometry for a power island connected to the larger power
area with a PEC bridge. Units are in millimeters.

functions are determined by taking an inverse Fourier transform
with the Sommerfeld identity [13]. For circuit extraction, a
quasistatic approximation of the Green’s functions is used. This
approximation is adequate for suitably defined discretization
[9].

A test board was constructed to study the power-bus noise iso-
lation with a power island structure. Measurements were made
to corroborate the CEMPIE modeling. The test board was a
two-sided board, with dimensions of 9 cm15 cm, as shown
in Fig. 1. The board thickness was 45 mils, and the relative di-
electric constant was . The top plane was designated as
the power plane, and the bottom plane was the reference plane.
A square power island was constructed in the lower left portion
of the power plane, and offset to avoid any symmetry. The island
was used to mimic the power area of an IC device for studying
the noise propagating from the island to the larger power area.
The dimension of the power island was 3 cm3 cm, and the
power island was isolated from the larger power area with a gap
width of 2.5 mm, which was approximately twice the dimen-
sion of the board thickness. The square power island was con-
nected to the larger power area in the middle of the right edge
with a conducting bridge, or perfect electric conductor (PEC)
bridge. The width of the PEC bridge was mm. Three
test ports were built on the test board with SMA connectors. The
vias for the SMA connectors had a diameter of 50 mils. Port 1
was located in the power island as the incident port. Ports 2 and 3
were used as remote and near observation ports. In the measure-
ments, was measured with an HP8753D network analyzer
between the incident port and one observation port. The other
unused observation port was open-circuited. The power island
and the test ports were placed in asymmetric locations, as shown
in Fig. 1, so that all excited wave modes could be observed.

The same test board was also modeled with the CEMPIE ap-
proach. The power-plane surface was discretized using approx-
imately 780 triangular cells. The vertical interconnects associ-
ated with the test ports were discretized as well, and each ver-
tical interconnect was discretized into six rectangular cells. The
total number of unknowns in this problem was approximately
800. The dielectric loss of the FR-4 material was included in the
modeling with a loss tangent of . Finally, equiv-
alent lumped circuit models were extracted, and the was
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Fig. 2. Measured and modeledjS j at Port 2 for a power island with a PEC
bridge connection.

Fig. 3. Measured and modeledjS j at Port 3 for a power island with a PEC
bridge connection.

determined. The was calculated at the same 401 frequency
points from 10 MHz to 3 GHz as in the measurements.

The measured and modeled are shown in Fig. 2 for Port
2 as the observation port, and Fig. 3 for Port 3 as the observa-
tion port. The modeled and measured results agree well over
the studied frequency range. Peaks occurred at the board reso-
nances, for example, the peak at 461 MHz is approximately that
for the mode of the continuous board, and 896 MHz for
the mode. These TM wave modes were excited when the
power plane behaved in a microstrip patch antenna fashion [14],
[15]. The peak at 2.3 GHz was a resonance due to the power is-
land dimensions. Several factors contributed to the amplitudes
at these resonances, including the dielectric loss and skin-effect
loss. The dielectric loss was found to be the dominant factor,
which was modeled in the CEMPIE modeling approach. For a
comparison, the test board was modeled again where the entire
top plane was a continuous power plane. The modeled at
Port 2 and Port 3 are also shown in Figs. 2 and 3. The results

indicate the can be dramatically reduced with the use of
the power island, though the reduction is very frequency depen-
dent. Although the decrease of the peaks below 1.7 GHz
was marginal for the island with a PEC bridge, the peaks be-
yond 1.7 GHz were reduced by approximately 10 to 20 dB. The
significance of the spectrum is that a clock harmonic or
other noise source that excites the power bus that occurs at a
maximum of will drive the power-plane resonances, and
result in appreciable noise on the power bus that can lead to SI
and EMI problems.

Studies were then performed using the CEMPIE modeling
to investigate the noise isolation effects resulting from different
bridge and gap widths, locations of the power islands, and other
connection topologies besides the conducting PEC bridge. The
same board geometry as shown in Fig. 1 was used. Port 2 was
used as the observation port hereafter. First, three cases where
the PEC bridge had a width of mm, 2.5 mm, and 5 mm
were modeled. In all cases, the gap width was 2.5 mm, and the
board thickness was 45 mils. There was little change of ,
indicating the PEC bridge width does not significantly impact
the noise isolation for practical widths. Next, several gap widths
between the power island and the larger power area were chosen.
The range of gap widths studied was chosen to conform to prac-
tical design limits. The was calculated with a gap width of

mils, 50 mils, 100 mils, and 200 mils, respectively. In
these cases, the PEC bridge width was 2.5 mm, and the board
thickness was 45 mils. Although the for mils was
approximately 3 to 5 dB higher than the other three cases at
some peaks, the difference between these cases was marginal.
The coupling was dominated by the conducting bridge, and, in-
creasing the gap width resulted in little improvement in the noise
isolation.

Connecting the power island to the larger power area with
a surface mount ferrite was also studied with CEMPIE mod-
eling. Two ferrite parts were chosen, and used to replace the
PEC bridge shown in Fig. 1. The ferrite parts were a 90(at 100
MHz) component (Steward 25Z1206–1, denoted as Ferrite 1),
and a 600 (at 100 MHz) component (Murata BLM31A601S,
denoted as Ferrite 2). The impedance of the ferrite beads was
determined by measuring the from 10 MHz to 3 GHz with
an HP8753D network analyzer, and converting to input
impedance. An SMA-type PCB mounting connector was used
in this measurement, and the ferrite component was soldered be-
tween the center conductor and the ground. This PCB mounting
connector was compensated in the measurements with the same
type of connectors that were built as open and short. The mea-
sured magnitudes of the ferrite impedances are shown in Fig. 4.
Both the magnitude and phase of the ferrite bead were incor-
porated in the CEMPIE modeling to determine [13]. The
modeled using Ferrite 1 and Ferrite 2, as well as the
using the PEC bridge, are compared in Fig. 5. Again, the board
with the geometry of Fig. 1 was used. As compared to the PEC
bridge, the using ferrite beads decreased dramatically, by
approximately 10 to 25 dB below 1.3 GHz. In addition, since
Ferrite 2 had a larger impedance than Ferrite 1 from 10 to 350
MHz, the resulting was smaller, by approximately 13 dB
at 200 MHz. Using a ferrite bead of high impedance improved
the noise isolation in this frequency range.
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Fig. 4. Measured impedance magnitude of the ferrite beads connecting the
power island to the larger power area.

Fig. 5. ModeledjS j at Port 2 for connecting the power island with a PEC
bridge, a ferrite bead, and a� network, as compared to a continuous power
plane.

The geometry using a ferrite bead across two power areas
is essentially a network. The parallel plane capacitances be-
tween the power and the ground planes on both sides of the
ferrite bead behave as shunt capacitors at lower frequencies.
Since the interplane capacitances have small values, as well
as distributed properties at higher frequencies, lumped capac-
itors can be placed on each side of the ferrite to improve the
low-frequency performance. This configuration was modeled.
Two 0805 SMT 0.1 F lumped capacitors were located 1mm
from the gap edges, and on both sides of the connecting fer-
rite bead, as shown in Fig. 6. Ferrite 1 was used to connect the
power island to the larger power area, and the power-plane con-
figuration remained the same as shown in Fig. 1. The vertical
interconnects, as well as the equivalent series inductance (ESL)
of the lumped capacitors were included in the CEMPIE mod-
eling. The ESL of the capacitors in this study was 0.7nH as de-
termined from component impedance measurements. The vias

Fig. 6. Modeled configuration for two power areas connected with a�

network.

Fig. 7. Three locations tested for a totally isolated power island.

connecting the shunt capacitors to the planes can limit the per-
formance of the network if the interconnect inductance be-
comes too large. It is critical to have the ferrite impedance much
greater than the impedance of the capacitors and associated in-
terconnect inductance. The modeled is shown in Fig. 5,
and compared with other configurations. The results indicate
this lumped network connection achieved superior noise iso-
lation. Although the two power areas were still connected with
dc continuity, there was a significant reduction of at ap-
proximately 10 MHz due to the shunt capacitors. An additional
10 dB improvement in noise isolation was achieved at most fre-
quencies as opposed to the use of a ferrite bead alone. The noise
isolation as compared to a continuous plane was approximately
20 to 25 dB.

Noise isolation with regard to island location was studied with
a totally isolated power island, i.e., one having no dc connection.
For this purpose, three power island locations were chosen, as
shown in Fig. 7. The power island on the left portion of the board
(Location 1) had the same configuration as in Fig. 1, but had no
PEC bridge. Location 2 was in the center of the board. Location
3 was on the right portion of the board, and symmetric to Lo-
cation 1 with regard to the centerline perpendicular to the long
edges of the board. The incident port (Port 1) remained in the
same relative location within the power island, and the location
of Port 2 was unchanged. The was determined with the
CEMPIE approach, and the results are shown in Fig. 8. For dif-
ferent locations, some of the peaks shifted in frequency due to
the change of the modes within the larger power area, and the
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Fig. 8. ModeledjS j for the totally isolated power island at three locations.

Fig. 9. Test geometry of segmented power plane.

distance between the two test ports. However, no significant dif-
ference in the overall envelope resulted between these three lo-
cations. It is more helpful to compare the overall envelopes than
the resonances at specific frequencies, because the resonances
and clock frequencies vary in applications. In these cases, the
island location had little impact on the power-bus noise isola-
tion. The shape of the island was also altered by trimming the
corners, but this had little impact on the noise isolation as well.

III. POWER-BUS NOISE ISOLATION WITH SEGMENTED

POWER PLANES

Previous results demonstrated the isolation performance of
a power island with a network comprised of a series ferrite
and two shunt capacitors. The CEMPIE modeling was also used
for examining the isolation of larger board areas as a function
of geometry factors such as gap and neck sizes, location, gap
type,etc. A simple segmented power-plane structure as shown
in Fig. 9, with sizes of mm, mm, mm,

mm, mm, and mm, was modeled with one
geometry factor varying at a time. The board thickness was 43
mils. Fig. 10 illustrates the effect on isolation when changing the
neck width. The neck was located in the center of the board, and
the neck width was 2, 5, and 10 mm, respectively. The change
of neck width affects the series impedance between the two seg-
mented portions in the low frequency band so that a dramatic
shift of the first resonance results. A wider neck has a lower in-
ductance, resulting in a higher first resonant frequency. In the

Fig. 10. Power-bus noise isolation versus neck width.

Fig. 11. Power-bus noise isolation versus gap location.

high-frequency band, conductive coupling through the neck is
no longer dominant, and there is little difference between the
three cases when the frequency is higher than 1 GHz.

A change in gap width also results in little difference in the
results. The studied cases included a gap width of

mm, 2 mm, and 2.5 mm. The gap was located at the center of
the board. The effect of changing the neck location was studied
as well. In these cases, the neck width was kept unchanged at

mm, while , 20, and 25 mm. The gap was at
the center of the board, and mm. The results in-
dicated little change for these cases. Another three cases are
shown in Fig. 11 where mm, mm, mm, and

, 39, and 49 mm. The change of gap location results in a
change of the relative sizes of the two segmented portions, thus
moving the resonant frequencies associated with these dimen-
sions. The first resonance was a lumped resonance due to the
inductance of the bridge with the interplane capacitance of each
segmented plane portion (a lumpednetwork). The change of
gap location changed the value of each capacitance. However,
when was changed from 49 mm to 39 mm, the first resonance
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had little change, which is surmised that the change of the ca-
pacitance values might not be significant enough to affect the
performance of the network. And, when was changed to
29 mm, the two capacitances had such different values that the
first resonant frequency started to shift. The second resonant fre-
quencies in all three cases were associated with board dimen-
sions. When mm, the second resonance was due to the

mode, in other words associated with the 55 mm edge.
When mm, the second resonance was associated with
the longer edge of the larger segmented plane portion (59 mm),
which possibly overlapped with the resonance associated with
the mode. The second resonant frequency was close to
1.5 GHz for the test board in these two cases. However, when

mm, the second resonance was associated with a 69
mm edge (the longer dimension of the larger segmented plane
portion), which corresponded to 1.2 GHz in frequency. The res-
onance associated with the mode became the third reso-
nance in this case. The behaviors in all three cases were quite
different over a broad frequency range, though the coupling be-
tween the two portions was negligibly impacted. Overall, the
few cases studied here for a conducting neck indicate that its
configuration has insignificant impact on power-bus noise iso-
lation.

A conducting neck is used when the segmented portions have
the same logic level. Similar to the power island cases, using a
ferrite bead connection, rather than a conducting bridge, results
in much better noise isolation, as indicated in the previous power
island case. Sometimes, totally isolated power planes are used
to provide power supplies that are required by many IC devices.
Since there is no direct conducting path for the noise, a consider-
able power-bus isolation can be achieved, especially at low fre-
quencies. In addition, at higher frequencies, the modal coupling
across the gap can be reduced, and some wave modes can be
disturbed due to the segmentation. As a result, some board res-
onances disappear, or move to higher frequencies corresponding
to the wave modes excited by the smaller power areas. In gen-
eral, the structures of the segmentation have a great impact on
the power-bus excitation, and noise isolation. For example, the

mode cannot be excited on the power plane with a com-
plete gap in the middle, while the same gap does not impact
the mode. Therefore, many designs of power areas and
gaps have been tested in an attempt to improve the power-bus
isolation [4]. An approach using meandering lines for isolating
the power areas was also studied herein. Since the currents and
charges must satisfy the boundary conditions at the meandering
line edges, it is difficult for some wave modes to be established
on the power plane, and potentially, the power-bus excitation is
minimized, and the noise isolation is improved. However, the
method of using meandering gap lines may introduce some dif-
ficulties in component placement. As a compromise, the mean-
dering lines can be routed in a small area so that the power-plane
segmentation has little impact on the layout.

Three shapes of gap lines were studied with the CEMPIE ap-
proach. The test board had the same configuration as in Fig. 1.
The test port locations were identical. However, in this study,
the top power plane was divided into two totally isolated large
power areas. Three gap configurations were modeled, a straight
line, a square meander, and a sawtooth meander, as shown in

Fig. 12. Two totally isolated power areas with three gap shapes. Units are in
mm.

Fig. 13. The modeledjS j for two totally isolated power areas with three gap
shapes.

Fig. 12. The gap width was 2.5 mm in all three cases. In the first
design, the two large power areas were isolated by a straight
gap. The dimensions of the power areas were 9.9 cm9 cm,
and 4.85 cm 9 cm. Triangular and square shape meandering
lines were used in the other two cases. The meandering lines
were confined to a 1.25 cm 9 cm area, and the two power
areas maintained approximately the same size as in the case of
a straight gap. The CEMPIE modeling approach was employed
to determine the . The vertical interconnects of the ports
were modeled. The modeled results for these three gap
shapes are compared in Fig. 13. There were approximately 10-
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and 15-dB decreases of the peaks at 735 MHz with the mean-
dering gap lines as compared to the case of straight gap line. The
peaks were resonances due to the short edge dimension of the
board (90 mm), and also the long edge of the larger power area
(99 mm). The corresponding wave modes were disturbed by the
meandering gap lines, and therefore the peak values varied at
the same observation port. At frequencies beyond 1 GHz, some
peaks shifted in frequency, but the general envelopes of these

peaks were approximately the same. In general, the three
studied gap shapes did not show significant difference with re-
gard to the noise isolation. However, comparing the of a
continuous power plane, the reduction of using two totally iso-
lated power areas was more than 10 dB at most frequencies. At
low frequencies, the reduction was up to 40 dB. The totally iso-
lated power planes have a high degree of power-bus noise isola-
tion, but the high-frequency noise isolation can also be achieved
for power planes with dc continuity using thenetwork de-
scribed in the previous section for power islands.

IV. CONCLUSION

Both segmented power planes and power islands were studied
in this paper. Comparing with a continuous power plane, com-
plete segmentation (no dc connection) can achieve significant
power-bus noise isolation. A conducting bridge to provide dc
connection greatly degrades the isolation at low frequencies. A
better approach to provide dc continuity was found to be using a
ferrite bead. With added lumped capacitors to form anetwork,
the power-bus isolation can be improved by an additional 10 dB
over a ferrite bead connection in a wide frequency range. The
CEMPIE approach is a powerful tool to model the power-plane
segmentations, and a design approach was developed with this
method to achieve significant noise isolation between different
power areas.
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