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Demodulation of Fiber-Optic Sensors for Frequency
Response Measurement

Abdeq M. Abdi and Steve E. Watkins, Senior Member, IEEE

Abstract—The neural-network-based processing of extrinsic
Fabry–Perot interferometric (EFPI) strain sensors was investi-
gated for the special case of sinusoidal strain. The application area
is modal or cyclic testing of structures in which the frequency re-
sponse to periodic actuation must be demodulated. The nonlinear
modulation characteristic of EFPI sensors produces well-defined
harmonics of the actuation frequency. Relationships between
peak strain and harmonic content were analyzed theoretically.
A two-stage demodulator was implemented with a Fourier series
neural network to separate the harmonic components of an EFPI
signal and a backpropagation neural network to predict the
peak-to-peak strain from the harmonics. The system performance
was tested using theoretical and experimental data. The error for
high-strain cases was less than about 10% if at least 12 harmonics
were used. The frequency response of an instrumented cantilever
beam provided the experimental data. The demodulator pro-
cessing closely matched the actual strain levels.

Index Terms—Fiber-optic strain sensors, modal testing, neural
networks, smart structures.

I. INTRODUCTION

SMART STRUCTURES technology combines a sensor or
sensor networks with intelligent processing to monitor the

environment of structure or react to structural changes [1]–[4].
The sensor choice and capabilities must be integrated with both
the structure and the processing system to provide meaningful
signal interpretation. Load-induced strain is an important mea-
surand for structural applications since dimensional changes can
be related to various performance, health, and safety issues.
Fiber-optic-based systems have been developed that exploit the
low profile and low loss of optic fiber [3]–[5]. Fiber-optic strain
sensors based on Fabry–Perot etalons and Bragg grating struc-
tures [3], [4] have excellent capabilities for permanent, nonde-
structive testing in civil engineering [6], aerospace [7], [8], ma-
rine, and automotive structures. Their advantages include envi-
ronmental ruggedness, temperature tolerance, low fatigue, and
high sensitivity [3]–[10]. In particular, extrinsic Fabry–Perot in-
terferometric (EFPI) strain sensors have been successfully ap-
plied in in situ strain sensing [5], [9], damage detection [10], and
dynamic performance tests [7]. However, they are limited by
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specialized demodulation and signal processing requirements
because the output response is periodic with strain [10]–[12].
The intelligent processing needs can be meet using artificial
neural networks. These parallel computing architectures can ac-
commodate complex and noisy signals from multiple sensors
for pattern recognition, classification, and function approxima-
tion [13]. They have been used to process optical signals for
impact, damage, fatigue, and performance assessment in struc-
tures [5]–[10].

A special case of strain sensing involves frequency response
measurement. Modal analysis uses the resonant characteristics
of a structure to provide information on its health and perfor-
mance. Specific periodic excitation must be applied and sensor
information collected. For instance, delamination, defects, and
other damage has been characterized for composite structures
[14]–[16]. Cyclic tests to determine fatigue also use sensor
response to periodic excitation. The measurement of local
strains during such tests, and particularly for failure or fatigue
events, is useful. Example applications include bridges and
propeller blades [7], [17]. Traditional resistive strain gages
often fail as strain deltas and cycle counts increase. Alterna-
tively, fiber-optic sensors show excellent fatigue characteristics
and can be embedded for measurement of internal strain [18].
In addition to regulatory and quality assurance testing during
development or installation, long-term health monitoring could
be aided with a permanent intelligent system. Maintenance
costs could be reduced as periodic inspections are done more
easily and as quantitative information flags problems prior to
severe or catastrophic failure.

Neural network processors have the ability to locate and clas-
sify damage using resonant frequencies measured in vibration
tests [14]–[16]. Fiber-optic strain sensors can supply accurate
information as high performance or permanent instrumentation,
but the demodulation approaches for an EFPI system are limited
by the signal nonlinearity. For sinusoidal actuation, a modal test
using EFPI sensors can exploit the periodic modulation char-
acteristic [19]. This research develops an intelligent demod-
ulation processor that is simple and flexible. An EFPI-based
health monitoring system has been proposed with an alternative
neural-network approach [20]. While fast once trained, this de-
modulator is more complex and requires more preprocessing. A
range of demodulation choices for EFPI-based modal or cyclic
testing is needed to meet different application requirements.

This work reports the performance of a neural-network-based
demodulation system for frequency response applications. This
dedicated system is used to process the strain measured by EFPI
sensors at high-strain levels. This demonstration of intelligent
processing for a versatile sensor type can be applied to modal or

1530-437X/$25.00 © 2007 IEEE
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Fig. 1. Fiber-optic sensor system. (a) EFPI sensor. (b) Sensor instrumentation.

cyclic testing of structures and associated health monitoring. A
sinusoidal strain is theoretically shown to produce well-defined
harmonics in the nonlinear EFPI output signal for sensors with
both low and high finesse. A Fourier series neural network is
shown to separate the harmonic signal components and a back-
propagation neural network to predict the peak-to-peak strain
from the harmonics. A two-stage implementation was simulated
with theoretical EFPI output data. The performance is compared
for five and eight training sets containing 5, 6, and 12 harmonics
of the EFPI signal as the peak-to-peak strain is varied from 10 to
200 . The two-stage system was also implemented and tested
with experimental data from an instrumented cantilever beam.
The strain variation was again 10–200 and the frequency
variation was 10–900 Hz. The actual frequency response for the
beam is compared with that given by the processing system.

II. FIBER-OPTIC STRAIN INSTRUMENTATION

AND HARMONIC CONTENT

A. Extrinsic Fabry–Perot Interferometric (EFPI) Fiber-Optic
Sensors

A Fabry–Perot interferometer utilizes multiple-beam interfer-
ence in a cavity between two semireflective parallel surfaces and
produces a transmittance (ratio of reflected irradiance to in-
cident irradiance ) [21]

where F is the cavity finesse (which depends on surface reflec-
tion) and is the round-trip phase between beams. This phase

is 4 , where is cavity index, is the distance be-
tween surfaces, and is the optical wavelength. Note that the
transmittance is periodic with phase , and hence the modula-
tion is nonlinear.

An EFPI fiber-optic sensor is shown in Fig. 1(a) where an air
cavity is formed between two polished end-faces
of a single-mode fiber and a multimode fiber [9], [11], [12],
[21]–[23]. A capillary tube is bonded to the two fibers and main-
tains the alignment of their end faces. The tube is bonded to
a material under strain. The gage length is determined by the
length of this capillary tube rather than the cavity and can be
built to varying lengths. As the material and attached tube are
strained, the reflected interference signal varies in response to
changes in cavity spacing and the strain is , where

L is the gage length. The period of the EFPI sensor response,
i.e., the strain change per output fringe, is 1/2 the wavelength
divided by the gage length. The peak-to-peak sensor output de-
pends on the cavity finesse, i.e., a parameter related to end-face
reflectances [21]. The sensor has little transverse coupling and
effectively evaluates the axial component of strain [24]. The in-
strumentation for the EFPI sensor is shown in Fig. 1(b). A laser
diode provides the optical input to the single-mode fiber. A cou-
pler directs the light to the sensor and directs the reflected signal
to a high-speed photodetector.

B. Harmonic Content of the EFPI Signal

A special case in strain measurement using EFPI sensor oc-
curs for sinusoidal strain. The periodic sensor response modu-
lates the sinusoidal strain. A sinusoidal strain excitation of this
nonlinear response will produce a signal with components at the
excitation angular frequency and its harmonics [19], [20],
[25]. For a sinusoidal excitation, the phase is modulated as

where is the peak strain, and and
are angular frequency and phase of the excitation, respectively.
The transmittance becomes

This transmittance consists of well-defined harmonics of the ex-
citation frequency. The weights vary with peak strain . For
example, consider the transmittance for low finesse, i.e., small
F [21]

The theoretical response was determined for an EFPI sensor
with a low finesse F of 0.15 (reflection coefficient

of 0.04), an initial cavity spacing d of 101 m, a gage length L
of 8.00 mm, and a wavelength of 1300 nm. Fig. 2 shows an
excitation signal of 100 Hz and a peak-to-peak strain of 200 ,
the simulated EFPI response, and associated frequency content.
A 200 m excitation corresponds to a peak-to-peak change in



ABDI AND WATKINS: DEMODULATION OF FIBER-OPTIC SENSORS FOR FREQUENCY RESPONSE MEASUREMENT 669

Fig. 2. (a) Strain excitation at 100 Hz and 200 �". (b) EFPI output for sinu-
soidal strain. (c) Fast Fourier transform of signal.

cavity distance of 1.66 m. Sinusoidal strain also produces well-
defined harmonic content using the full equation with higher
values of finesse F [20], [25], as will be shown in the theoretical
and experimental results.

III. DEMODULATION—THEORETICAL IMPLEMENTATION

A. Neural Network Implementation of Demodulation System

A two-stage demodulator is proposed that uses the time-do-
main signal directly from the EFPI system as an input and gives
the peak-to-peak strain 2 as the output. Sinusoidal excitation
is assumed. The first stage consists of a Fourier Series Neural
Network (FSNN) [26], [27] which determines the harmonics
in the signal. The second stage consists of a backpropagation
neural network (BPNN) which predicts the peak strain from the
harmonics. (The peak strain(s) could be used by other proces-
sors, perhaps neural network based, to provide further intelligent
functions [16].)

The FSNN is shown in Fig. 3. The inputs are the time-domain
EFPI signal and the angular frequency of the excitation . This
ADALINE network has 2 N activation neurons and a summer
and is based on the Fourier series expansion

where represents the actual time-domain signal, and
are the coefficients of the Fourier series expansion, is the
angular frequencies of the harmonics (e.g., , and
is the total number of harmonics in the expansion. The FSNN
creates an approximation signal

where and are the magnitude weights for the harmonics.
A teaching algorithm continually adjusts the these weights to
find the minimum error point using the Widrow–Hoff (Delta)
learning rule

where is the error between and and is the learning
rate with [27]. Once the minimum error
criterion is reached, the weights are passed as outputs for the

harmonics to the next stage. For the theoretical study, each
harmonic had the cosine and sine weights, i.e., the ’s and

’s, and the FSNN had 2 N outputs. For the experimental
study, each of the harmonics are assigned the weight

and the FSNN had outputs, i.e., the ’s. The use of ,
rather than both cosine and sine weights, was necessary since the
experimental storage configuration was limited to the combined
parameter. The combined weight facilitates use of a some-
what simpler neural network and instrumentation configuration.

The BPNN is triggered once the first stage meets the error
threshold and uses the resulting harmonic weights. It had the

’s and ’s as the 2 N inputs for the theoretical study and
the ’s as the inputs for the experimental study. The archi-
tecture had an input layer with four neurons, a hidden layer with
eight neurons, and an output layer with one neuron. All activa-
tion functions are linear transfer functions. The gradient descent
method was employed using random initial weights, momentum
of 0.90–0.99, and a learning rate of 0.0154–0.0001 (the first pa-
rameter was for the theoretical data and the second for the ex-
perimental data). The BPNN was trained using inputs from the
FSNN until the mean square error was less than 1 . The output
is the peak-to-peak strain .

B. Data Simulation and Training

Theoretical data was simulated for training the BPNN and
for testing the two-stage demodulator. EFPI signals were
simulated using the full transmittance equation in Section II-B
and used the parameters: optical index , finesse

(reflection coefficient of 0.1), initial cavity spacing
m, gage length mm, wavelength

nm, and excitation frequency Hz. Data sets were
calculated for a peak-to-peak strain from 10 to 200 in steps
of 5 . The time-domain input signals for the FSNN were
sampled with sampling frequency and the sampling points per
waveform of 20 kHz and 600 points, respectively. The FSNN
was tested with all of the data sets, since it requires no training
and uses a dynamic teaching algorithm. Four versions of the
BSNN were trained. In the first case (5th 5train), only the first
five harmonics were considered and five distributed data sets
were used. Hence, the FSNN produced 2 N or ten weights
for the BSNN, i.e., the cosine and sine weights for each of
the five harmonics. In the second case (6th 5train), the first
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Fig. 3. Fourier series neural network architecture.

six harmonics are considered and again five data sets were
used. In the third case (12th 5train), the first 12 harmonics are
considered for 24 weights to the BSNN and again five training
sets were used. In the fourth case (12th 8train), the first 12
harmonics are considered and eight training sets were used. The
eight training sets corresponded to data at 10, 25, 50, 75, 100,
125, 165, and 200 . In each case, the remaining theoretical
data sets were used for testing with the appropriate number of
harmonics considered.

C. Neural Network Test Results

Figs. 4–7 show the harmonic magnitudes from the FSNN
as a function of peak-to-peak strain for the first through the
twelfth harmonic. The fundamental component is initially linear
with strain as is expected for low-strain perturbations less than
50 . The nonlinear components grow and the higher order
harmonics become progressively more significant as strain in-
creases. The relative magnitudes of the harmonic components
closely matched that obtained from fast Fourier transforms of
the EFPI signals. For example, the FSNN magnitudes at
200 are 0.048813, 0.026333, 0.061728, 0.026827, 0.040688,
0.081441, 0.064022, 0.055386, 0.033921, 0.016497, 0.008265,
and 0.001391 for harmonics 1–12, respectively. These relative
magnitudes closely follow the fast Fourier transform harmonic
content, as given in Fig. 2(c).

The BPNN was trained using 5, 6, or 12 harmonics and five or
eight data sets, i.e., the cases identified as 5th 5train, 6th 5train,

Fig. 4. First to third harmonic from Fourier series neural network for theoretical
data.

12th 5train, and 12th 8train. Figs. 8 and 9 show the strain results
and errors for the testing data sets with the two-stage demodu-
lator. An increase in the number of harmonics considered and in
the number of training sets improved the performance. The 12th
8train BPNN gave the best results in which a 7% error occurred
for the low-strain levels, less than a 1% error for mid-strain
levels, and about 2% error at high-strain levels. Note that the
case with only five harmonics considered had a large error for
high-strain levels at which the harmonic content was large, cf.
Figs. 5–7.



ABDI AND WATKINS: DEMODULATION OF FIBER-OPTIC SENSORS FOR FREQUENCY RESPONSE MEASUREMENT 671

Fig. 5. Fourth to sixth harmonic from Fourier series neural network for theo-
retical data.

Fig. 6. Seventh to ninth harmonic from Fourier series neural network for the-
oretical data.

Fig. 7. Tenth to twelfth harmonic from Fourier series neural network for theo-
retical data.

A pseudofrequency response with five natural frequencies
was created using mass-spring-damper models [25]. The re-
sponse was designed to roughly approximate that of a beam as
was used in the experimental part of this study. Corresponding

Fig. 8. Two-stage demodulator strain prediction compared with theoretical
simulated strain. For the “XthYtrain” cases, the first through Xth harmonics
were BPNN inputs and Y data sets were used for training.

Fig. 9. Percent error in the demodulator as a function of simulated strain.

theoretical EFPI data sets were applied to the system to illus-
trate its behavior in this application. Fig. 10 shows the demodu-
lator prediction using the 12th 8train BPNN. The frequency re-
sponse was closely predicted except for the low-strain points,
e.g., the response near minima for which strains were below
50 . The largest error for the low-strain prediction was about
7%. For mid-strain and high-strain levels, the error was small at
less that 2%.
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Fig. 10. Two-stage demodulator strain prediction compared with the theoret-
ical pseudofrequency response.

IV. DEMODULATION—EXPERIMENTAL IMPLEMENTATION

A. Smart Beam System and Frequency Response Measurements

An instrumented cantilever beam was used in a frequency
response test. This glass-epoxy composite beam contained eight
laminated layers oriented [0/90/0/90] degrees with respect
to each other. (The part was used in the prior delamination
study and contained no delaminations [16].) Its overall physical
dimensions were 28.5 cm long, 2.5 cm wide, and 0.15 cm thick.
It was fabricated from prepreg tapes using a Drake hydraulic
hot press. The material properties were GPa,

GPa, GPa, , and
kg/m . A cantilever clamp used 2.0 cm of the

beam to give a cantilever length of 26.5 cm. A surface-mounted
piezoelectric lead zirconate (PZT) ceramic actuator was located
3.5 cm from the clamp. A polyvinylidene fluoride (PVDF)
sensor and a Luna Innovations model FOSS EFPI sensor, with
an optical index , a gap length of 101 m, gage length
of 8.31 mm, and a high finesse of 360 (reflection coefficient of
0.9) were placed on either side of the composite beam located
5.5 cm from its other end. The EFPI instrumentation was a
Luna Innovations 1300-nm, FOSS support system, cf. Fig. 1(b).

Fig. 11 shows the experimental configuration. The beam was
excited by the PZT and PZT amplifier through either the sinu-
soidal sweep output of a spectrum analyzer or the sinusoidal
output of a programmable function generator. The strain output
from the PVDF and EFPI sensors were displayed on an oscillo-
scope. EFPI calibration was performed using the PVDF sensor
and applying fringe counting to selected EFPI signals [25], [28].
The EFPI output was also recorded with a storage oscilloscope
and the spectrum analyzer. The measured frequency response
of the beam is shown in Fig. 12 for low actuation levels using
the PVDF sensor. High actuations produced the same natural
frequencies. These frequencies were 12, 76.3, 211, 412, and
690 Hz.

Fig. 11. Experimental configuration for the cantilever-beam frequency test.

Fig. 12. Measured frequency response of the beam.

B. Neural Network Implementation, Experimental Data, and
Training

The two-stage demodulator again consisted of the FSNN fol-
lowed by the BPNN. For the experimental study, the FSNN pro-
duced the ’s as the inputs for the BPNN. Experimental
data was taken for training the BPNN and for testing the two-
stage demodulator. The testing consisted of comparing the con-
vergence results for the FSNN and of the prediction results of
the BPNN to the actual harmonics and strain levels, respectively.
The BPNN was trained with eight experimental training sets that
contained the first 12 harmonics of the EFPI signal, i.e., similar
to the 12th 8train theoretical case.

Data sets were recorded at 690 Hz as the peak-to-peak strain
varied between 10–200 in steps of 5 . The excitation fre-
quency of 690 Hz was chosen for the training since this nat-
ural frequency of the beam was the most stable. Eight of these
sets were used for training and the rest for testing. The eight
training sets corresponded to data at 10, 30, 55, 80, 105, 145,
175, and 200 . In each case, the remaining theoretical data
sets were used for testing with the appropriate number of har-
monics considered. Also, the strains were measured for which
the various harmonics reached local maxima and minima. Fi-
nally, the EFPI signals corresponding to the frequency response
up to 900 Hz, i.e., through the first five natural frequencies, were
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Fig. 13. First to third harmonic from Fourier series neural network for experi-
mental data.

Fig. 14. Fourth to sixth harmonic from Fourier series neural network for ex-
perimental data.

recorded. Note that these sets show the performance as strain is
varied and as excitation frequency is varied. All experimental
signal sets were operated on by the FSNN. No preprocessing or
filtering were performed on the EFPI analog output except for
amplitude normalization and digitization (100 000 samples/s);
the analog output from the EFPI sensors has been shown to be
relatively noise free [10], [16].

C. Neural Network Test Results

Figs. 13–16 show the harmonic magnitudes from the
FSNN for experimental data as a function of peak-to-peak strain
for the first through the twelfth harmonics with an excitation of
690 Hz. The FSNN was able to converge to a clear minimum
error point for all strain levels and gave a good representation of
the experimental EFPI signal. While the relative harmonic mag-
nitudes differ slightly, the strains corresponding to harmonic
maxima and minima are very similar to the theoretical cases,
cf. Figs. 4–7. Table 1 shows the comparison between the exper-
imental and simulated theoretical curves.

The BPNN was trained using 12 harmonics and 8 data sets,
i.e., the case identified as 12th 8train. Figs. 17 and 18 show
the strain results and errors for the testing data sets with the
two-stage demodulator. For all mid-strain and high-strain levels,
the error was less than about 6%. Also, the demodulator fre-
quency response shows good performance. Fig. 19 gives the

Fig. 15. Seventh to ninth harmonic from Fourier series neural network for ex-
perimental data.

Fig. 16. Tenth to twelfth harmonic from Fourier series neural network for ex-
perimental data.

predicted strain that closely reproduces the measured PVDF re-
sponse, cf. Fig. 12. Fig. 20 shows the predicted strain (EFPI
and demodulator) and the measured strain (PVDF) at each of
the five natural frequencies of the beam. Neglecting the ini-
tial, small-magnitude natural frequency point, the strain level
errors for the second through fifth natural frequencies are 2.4%,
15.2%, 15.8%, and 13.7%.

V. CONCLUSION

A two-stage neural network was developed to demodulate
strain for EFPI strain sensors. The system was limited to sinu-
soidal strain measurement, but well-defined harmonic content
of the EFPI signal was present for both small and large sensor
finesse. The first stage employed a FSNN which determined the
well-defined harmonics of an EFPI signal and the second stage
used a BPNN which predicted the peak-to-peak strain from the
harmonic information. The demodulation processor was trained
and tested with both theoretical and experimental data. The cor-
relation of predicted strain and actual strain was good with the
best performance for mid-strain and high-strain levels. The ap-
proach was demonstrated with the cosine and sine harmonic
coefficients and with the combined harmonic coefficient. This
capability meets the needs of many structural monitoring appli-
cations. A typical frequency response measurement is illustrated
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TABLE I
HARMONIC MAXIMA AND MINIMA FOR EXPERIMENTAL AND SIMULATED FSNN HARMONICS

Fig. 17. Two-stage demodulator strain prediction of the experimental strain
levels.

in Fig. 21. The demodulator can give rapid processing using just
the excitation frequency and the EFPI sensor output.

The work demonstrated a simple and flexible approach for
processing the signals from fiber-optic sensors using neural net-
works. The approach takes advantage of the amplitude modu-
lation for EFPI sensors (and the simple associated support in-
strumentation) and exploits the periodic response with strain.
For some dedicated applications, the total demodulation system
may yield lower expense and speed advantages over fiber-optic
systems based on the wavelength demodulation for Bragg sen-
sors. EFPI sensor instrumentation can accurately measure dy-
namic strain in many extreme laboratory and field environments,
but traditional demodulation techniques can be difficult to im-
plement especially for dynamic events and can require com-

Fig. 18. Percent error in the demodulator as a function of experimental strain.

plex processing. The FSNN and BPNN neural network archi-
tectures that are proposed here can be easily implemented in
software or hardware. As an intelligent processing system, the
demodulator can be rapidly trained with both theoretical or ex-
perimental data and can use the EFPI output directly with little
or no preprocessing. The system must use sufficient harmonic
content to represent the modulated EFPI signal (the higher the
peak-to-peak strain, the more harmonics are needed). For the
200 case, 12 harmonics were necessary. Also, a relatively
small number of training sets, i.e., eight sets, were required for
good performance.

The target applications for the intelligent demodulator are
modal tests and cyclic tests. Frequency response measurements
can be linked to structural health and performance. Cyclic tests
are needed to establish regulatory compliance and to assure
quality behavior, e.g., fatigue. The experiment was limited
to excitation frequencies below 900 Hz since only the first
five harmonics are needed to assess this particular beam [16].
The approach should be effective for higher frequencies as
long as the analog EFPI signal can be captured with sufficient
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Fig. 19. Two-stage demodulator strain prediction of the experimental fre-
quency response.

Fig. 20. Demodulator strain prediction at the natural frequencies compared to
the measured strain levels.

Fig. 21. Block diagram of the neural network demodulator applied to the fre-
quency response measurement of an instrumented beam.

resolution. With an appropriate processing systems, smart
structures can be implemented efficiently which use the EFPI
as permanent, high-performance instrumentation for long-term
monitoring. Further work toward this end will require refine-
ment of the demodulator. The use of cosine and sine weights
or the use of the combined harmonic coefficient will affect the
required instrumentation and network complexity. The pro-
cessing speed of a dedicated system and calibration procedures
should be explored, as well as the number of harmonics and
training data sets needed for varying levels of strain, especially
higher strain levels. Also, the demodulator could be integrated
with other higher level neural network processors to interpret
structural parameters such health or fatigue [7], [16].
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