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Power System Control With an Embedded Neural
Network in Hybrid System Modeling
Seung-Mook Baek, Student Member, IEEE, Jung-Wook Park, Member, IEEE, and

Ganesh Kumar Venayagamoorthy, Senior Member, IEEE

Abstract—Output limits of the power system stabilizer (PSS)
can improve the system damping performance immediately fol-
lowing a large disturbance. Due to nonsmooth nonlinearities aris-
ing from the saturation limits, these values cannot be determined
by the conventional tuning methods based on linear analysis. Only
ad hoc tuning procedures can been used. A feedforward neural
network (with a structure of multilayer perceptron neural net-
work) is applied to identify the dynamics of an objective function
formed by the states and, thereafter, to compute the gradients
required in the nonlinear parameter optimization. Moreover, its
derivative information is used to replace that obtained from the
trajectory sensitivities based on the hybrid system model with the
differential-algebraic-impulsive-switched structure. The optimal
output limits of the PSS tuned by the proposed method are evalu-
ated by time-domain simulation in both a single-machine infinite
bus system and a multimachine power system.

Index Terms—Feedforward neural network (FFNN), hybrid
system, nonlinearities, nonsmoothness, parameter optimization,
power system stabilizer (PSS).

I. INTRODUCTION

THE HYBRID systems have recently attracted considerable
attention for the researches of many physical systems,

which exhibit a mix of continuous dynamics, discrete-time and
discrete-event dynamics, switching action, and jump phenom-
ena [1], [2]. For a typical disturbance, power system stabi-
lizer (PSS) used to mitigate system damping of low-frequency
oscillations is an important control objective in the hybrid
system application because the nonsmooth nonlinear dynamic
behaviors due to a saturation limiter fall into a category of the
hybrid systems in that an event occurs when a controller signal
saturates.

The dynamic behavior of the PSS is affected by linear
parameters (the gain and time constants of phase compensator)
and constrained parameters (saturation output limits) resulting
in nonsmooth nonlinear behavior. The proper selection of linear

Paper MSDAD-07-73, presented at the 2006 Industry Applications Society
Annual Meeting, Tampa, FL, October 8–12, and approved for publication in
the IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS by the Industrial
Automation and Control Committee of the IEEE Industry Applications Society.
Manuscript submitted for review November 30, 2006 and released for publica-
tion January 11, 2008. Current version published September 19, 2008. This
work was supported by the Korean Government (MOEHRD, Basic Research
Promotion Fund) under Grant KRF-2006-311-D00483.

S.-M. Baek and J.-W. Park are with the School of Electrical and Electronic
Engineering, Yonsei University, Seoul 120-749, Korea (e-mail: sm_baek@
yonsei.ac.kr; jungpark@yonsei.ac.kr).

G. K. Venayagamoorthy is with the Department of Electrical and Computer
Engineering, Missouri University of Science and Technology, Rolla, MO 65409
USA (e-mail: ganeshv@mst.edu).

Digital Object Identifier 10.1109/TIA.2008.2002172

parameters has been usually made based on conventional tun-
ing techniques by using small-signal stability analysis [3]–[6].
However, by focusing only on small-signal conditions, the
dynamic damping performance immediately following a large
disturbance is often degraded. The PSS output limits (which
cannot be determined by linear approach) can provide a solution
to balance these competing effects. In particular, these limit
values attempt to prevent the machine terminal voltage from
falling below the exciter reference level while speed is also
falling. This means that the reduced transient recovery can
be improved after a disturbance (faster recovery to its initial
steady-state points; therefore, it allows the system to save
energy), particularly in multimachine power systems (MMPSs).

In this paper, the hybrid systems applied to the parameter
optimization for the PSS output limits are modeled by a set
of differential-algebraic-impulsive-switched (DAIS) structure
as reported in [7], where the derivative information of a model
was obtained by the computation of the trajectory sensitivities
through the exact modeling of a plant. However, in some prac-
tical applications, the exact modeling for a physical nonlinear
device (for example, a switching device such as a pulsewidth-
modulated inverter) may not be accomplished. Furthermore,
the calculation of derivatives of a complex system (such as a
large-scale power system) also requires highly computational
efforts. Artificial neural network (ANN) can be an alternative
to replace the computation of the first-order derivatives from
the trajectory sensitivities in the DAIS structure for the hybrid
system model, because the ANN is able to adaptively model
or identify a nonlinear multiple-input–multiple-output plant
without requiring the exact mathematical modeling of plant [8].

This paper makes a new contribution by applying a feedfor-
ward neural network (FFNN) to the hybrid system modeling
to compute the first-order derivatives required for nonlinear
parameter optimization of the PSS in power systems. The
performance of the PSS nonlinear controller tuned optimally
by the proposed method is assessed by case studies carried out
on a single-machine infinite bus system (SMIB) and an MMPS.

II. HYBRID SYSTEM PRESENTATION

As already mentioned, hybrid systems, which include power
systems, are characterized by the following:

1) continuous and discrete states;
2) continuous dynamics;
3) discrete events or triggers;
4) mappings that define the evolution of discrete states at

events.

0093-9994/$25.00 © 2008 IEEE
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In other words, the hybrid system is a mathematical model
of physical process consisting of an interacting continuous and
discrete event system. A formal presentation of the hybrid
system is given in [9], where a general hybrid dynamical system
is defined as H = [Q,Σ, A,G], where
Q set of discrete states;
Σ = {Σq}q∈Q collection of dynamical systems Σq =

[Xq,Γq, fq], where Xq is an arbitrary topo-
logical space forming the continuous state
space of Σq, Γq is a semigroup over which
the states evolve, and fq generates the contin-
uous state dynamics;

A = {Aq}q∈Q Aq ⊂ Xq for each q ∈ Qcollection of au-
tonomous jump sets, i.e., the conditions which
trigger jumps;

G = {Gq}q∈Q where Gq : Aq → S = ∪q∈Q(Xq × {q}) au-
tonomous jump transition map. The hybrid
state space of H is given by S.

The aforementioned level of abstraction of the general hy-
brid system does not suit the implementation of a numerical
optimization method carried out in this paper, for which the
first-order derivative information can be exploited efficiently.
A hybrid model with the DAIS structure, which is more con-
ductive to such analysis, can be presented without loss of
generalities as follows [7]:

ẋ = f(x, y) (1)

0 = g(x, y) (2)

0 =
{
g(i−)(x, y), yd,i < 0,
g(i+)(x, y), yd,i > 0,

i = 1, . . . , d (3)

x+
=hj(x

−, y−), ye,j = 0, j ∈ {1, . . . , e} (4)

where

x =

⎡
⎣ xz
λ

⎤
⎦ , f =

⎡
⎣ f0

0

⎤
⎦ , hj =

⎡
⎣ x
hj

λ

⎤
⎦ ,

x ∈ X ⊆ �n, y ∈ Y ⊆ �m, z ∈ Z ⊆ �l, λ ∈ L ⊆ �p

where
x’s continuous dynamic states, such as generator angles,

speed, and fluxes;
z’s discrete dynamic states, such as transformer tap positions

and protection relay logic states;
y’s algebraic states, e.g., load bus voltage magnitudes and

angles;
λ’s parameters such as generator reactance, controller gains,

switching times, and limit values.
The differential equation f in (1) is correspondingly struc-

tured for ẋ = f(x, y), while z and λ remain constant away from
events. Similarly, the reset equation hj in (4) ensures that x and
λ remain constant at reset events, but the dynamic states z’s are
reset to new values according to z+ = hj(x−, y−). The notation
x+ denotes the value of x just after the reset event, whereas x−

and y− refer to the values of x and y, respectively, just prior to
the event. The algebraic function g in (2) is composed of g(0)

Fig. 1. SMIB.

Fig. 2. AVR/PSS block representation.

together with appropriate choices of g(i−) or g(i+), depending
on the signs of the corresponding elements of yd in (3). An
event is triggered by an element of yd changing sign and/or an
element of ye in (4) passing through zero. In other words, at
an event, the composition of g changes, and/or the elements of
z are reset. Then, the system flows φ are defined accordingly as

φ(x0, t) =
[
φx(x0, t)
φy(x0, t)

]
=
[
x(t)
y(t)

]
. (5)

The full detailed explanation and associated mathematical
equations of the DAIS model (particularly for the switching and
impulse effects) are given in [7] with comprehensive studies of
the hybrid system.

III. NONLINEAR CONTROLLER OPTIMIZATION

In engineering multivariable nonlinear problems, numerical
optimization methods play a significant role in finding solutions
of nonlinear functions on complex systems or may select the
parameters by which the objective function J can be minimized
or maximized. The optimal tuning problem for the PSS output
limits described in this paper is the case of the latter. Again, in
this paper, the gradient information required for the nonlinear
parameter optimization is obtained by the FFNN applied to the
hybrid system, rather than the computation of the trajectory
sensitivities through the exact modeling of a plant.

A. Implementation of Optimal Tuning Applied to PSS

An SMIB is shown in Fig. 1. The PSS and the automatic
voltage regulator (AVR) controllers in Fig. 2 are connected to
the generator (G) of the SMIB system. The generator (G)
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is accurately represented by a six-order machine model, viz.,
a two-axis (d−q) model with two damper windings in each
axis [10].

In Fig. 2, the output (clipping) limits on the PSS output VPSS

and the antiwindup limits on the field voltage Efd introduce
events that can be captured by the DAIS model. In other words,
the event occurs when a controller signal saturates in response
to the large inputs (Δω and Vt) by disturbance. This indicated
phenomenon is implemented by the DAIS structure as given
in (6) and (7), shown at the bottom of the page, for the PSS
clipping limits and the AVR antiwindup limits, respectively.

Many practical optimization problems can be formulated
using a Bolza form of the objective function J

min
λ,tf

J(x, y, λ, tf) (8)

subject to

[
x(t)
y(t)

]
= φ(x0, t), wherex ∈ S (constraint set)

(9)

J = ϕ (x(tf), y(tf), λ, tf) +
∫ tf

t0

ψ (x(t), y(t), λ, t) dt (10)

where λ’s are the optimized parameters (output limits in this
paper) that are adjusted to minimize the value of objective func-
tion J in (10), and tf is the final time. The objective of tuning
PSS controller is to mitigate system damping and force the sys-
tem to recover to the postdisturbance stable operating point as
quickly as possible. The speed deviation (Δω) and the terminal
voltage deviation (ΔVt) of the generator in Fig. 2 are con-
sidered as good assessments of the damping and recovery [6].
Therefore, the objective function J in (10) can be reformulated

Fig. 3. FFNN applied to the hybrid system.

for the optimal tuning of the PSS with specific time tf as
follows:

J(λ) =
∫ tf

t0

([
ω(λ, t) − ωs

Vt(λ, t) − V s
t

]T
V
[
ω(λ, t) − ωs

Vt(λ, t) − V s
t

])
dt

(11)

where V is the weighting matrix, and ωs and V s
t are the post-

fault steady-state values of ω and Vt, respectively. Note that the
diagonal terms in the matrix V are determined by considering
the balance of conflicting requirements on the speed and voltage
deviations.

B. Computation of Gradient by the FFNN

To minimize the value of the function J(λ) in (10), the first-
order derivatives of J with respect to λ (Vmax and Vmin) need
to be estimated by the FFNN, as shown in Fig. 3. The proposed

y1 =Vmax − Vout

y2 =Vout − Vmin

0 =

⎧⎪⎨
⎪⎩
g
(i−)
1 (x, y) = VPSS − Vmax, y1 < 0
g
(i−)
1 (x, y) = VPSS − Vmin, y2 < 0
g
(i+)
1 (x, y)=g(i+)

2 (x, y)=VPSS−Vout, y1>0, y2>0

(6)

y3 =Efdmax − Efd;

y4(upper limits switch) : (+when y3 < 0)

y5 =Efd − Efdmin;

y6(lower limits switch) : (+when y5 < 0)

0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
(i−)
3 (x, y) = y4 − 1, y3 < 0
g
(i−)
4 (x, y) = Efd − Efdmax, y3 < 0
g
(i−)
5 (x, y) = y6 − 1, y5 < 0
g
(i−)
6 (x, y) = Efd − Efdmin, y5 < 0
g
(i+)
3 (x, y) = g

(i+)
5 (x, y) = y4 = y6, y3 > 0, y5 > 0

g
(i+)
4 (x, y) = g

(i+)
6 (x, y) = KA · xtrg − Efd, y3 > 0, y5 > 0

(7)
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Fig. 4. Structure of the FFNN.

FFNN (with the multilayer perceptron structure) consists of
three layers (input, hidden, and output layers) of neurons in
Fig. 4 interconnected by the weight matrices Wl and WL. It
is firstly designed to identify the dynamics of the plant. The
activation function for neurons in the hidden layer in Fig. 4 is
given by the following sigmoidal function:

s(x) =
1

1 + exp(−x) . (12)

The output layer neurons are formed by the inner products
between the nonlinear regression vector from the hidden layer
and the output weight matrix. Generally, the FFNN starts with
random initial values for its weights and then computes a one-
pass backpropagation algorithm [11] at each time step k, which
consists of a forward pass propagating the input vector through
the network layer by layer and a backward pass to update the
weights with the error signal between J and J̃, as shown in
Fig. 3.

The functional expression ζ of the FFNN used for this paper
is given as

(
J̃(k),

∂J̃
∂λ

(k)

)
=ζ (x(k−1), yo(k−1), λ(k−1),J(k−1))

(13)

where
k denotes the time index;
x = [Δω,ΔVt];
yo = VPSS (in Fig. 2);
λ = [VmaxVmin] (in Fig. 2);
J output of the objective function defined in (11).

After training the weights of the FFNN offline for 100 s (in
simulation time), the identification performance of the function
J by the FFNN is evaluated. The result is shown in Fig. 5, where
the values of J are the corresponding responses when a large
disturbance (a 100-ms three-phase short circuit) is applied to
the generator terminal bus in Fig. 2 at t = 0.05 s. Moreover, the
final time tf in (11) is 5 s. It is obvious from this result that the

Fig. 5. Identification of the function J by the FFNN.

Fig. 6. Values of ∂J̃/∂Vmax by the FFNN at each iteration.

FFNN is able to identify the objective function J with sufficient
accuracy.

Thereafter, the gradient ∇J̃(λ) = ∂J̃/∂λ is calculated by
the back-stepping computation based on chain rule through the
FFNN [11] and is given as

∇J̃(λ) =
∂J̃
∂λ

=
∂J̃
∂t

∂t

∂pL

∂pL

∂qL

∂qL
∂pl

∂pl

∂ql

∂ql
∂λ

= {s(ql) (1 − s(ql))Wl(λ)}
ml∑
j=1

J̃ · WL (14)

where
t target value;
ml number of neurons in the hidden layer;
p output of the activation function for a neuron;
q regression vector given as the activity of a neuron;
W weight matrix;
L and l output and hidden layers, respectively;
s sigmoidal function in (12).

The variations of ∇J̃(λ) = ∂J̃/∂λ for the nonlinear parame-
ters Vmax and Vmin at each iteration are shown in Figs. 6 and
7, respectively. Then, these nonlinear parameters λ are updated
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Fig. 7. Values of ∂J̃/∂Vmin by the FFNN at each iteration.

by using (15) with ∇J̃(λ) during iteration. It is clearly shown
from Figs. 6 and 7 that the absolute values of gradients are
decreased after each iteration and converged to their optimal
local minimum in the suboptimal space formed when applying
the large disturbance (three-phase short circuit) to the plant

λk+1 = λk + α · ∇J̃(λ) (15)

where α is the step length.
At the end of each run, convergence performance is evaluated

by the user-defined criterion, which are the maximum relative
changes in parameters (SC) as given in (16) as well as the
value of J. Note that the parameter optimization problem by the
FFNN aims to minimize the value of objective function J(λ)
with a small number of iterations

SC =
∥∥∥∥λk+1 − λk

λk+1

∥∥∥∥
∞
. (16)

C. Optimization Algorithm and Simulation Program Interface

Fig. 8 shows the flow diagram to interface the proposed
optimization algorithm with the simulation program used in this
paper, which is the MATLAB software. The entire optimization
process is carried out in several successive simulation runs,
which is called as iterations, i.e., one complete simulation run is
dedicated to the candidate solution of λ for the simulation run
[12], [13].

IV. CASE STUDIES

A. Test in SMIB

During the optimization process (iteration) applied to the
SMIB system in Fig. 1, the values of the objective function
J variations are shown in Fig. 9. The FFNN is successfully
applied to the hybrid system model for the PSS output limits,
thus minimizing the values of J in this nonlinear parameter
optimization problem. The corresponding maximum relative
changes (SC) in (16) at each iteration are also shown in Fig. 10.
It may be valuable to compare the convergence speed by any

Fig. 8. Flow diagram of the proposed optimization algorithm and simulation
program interface.

Fig. 9. Values of the objective function J variations.

Fig. 10. Maximum relative changes in the optimized parameters.
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Fig. 11. Generator rotor angle response (in radians).

Fig. 12. Generator terminal voltage response (in per unit).

other improved numerical optimization such as the conjugate-
gradient or quasi-Newton methods.

The damping performance of the output limits (which are
[0.1105 −0.3365] for [VmaxVmin]) of the PSS optimized after
seven iterations is compared with that of the initial output
limits [0.1 −0.1] by applying the 100-ms three-phase fault at
the generator terminal bus in Fig. 1 at 0.05 s. The simulation
results are shown in Figs. 11 and 12. It is clearly shown
that the optimal saturation limits determined by the proposed
method effectively improve the system dynamic damping and
transient terminal voltage response. The value of Vmax has been
slightly changed from 0.1 to 0.1105, but the value of Vmin

has moved significantly from −0.1 to −0.3365. The effect of
optimal tuning for these saturation limits is rather dramatic and
quite evident for a large disturbance (such as a three-phase
short circuit) applied to a power system. The corresponding
PSS output response (VPSS) in Fig. 13 exhibits the nonsmooth
nonlinear dynamic behaviors. Note that a lowering of Vmin

is quite counterintuitive; manual tuning would likely not even
search in that direction for an improved response.

B. Test in MMPS

The IEEE benchmark four-machine two-area test system is
shown in Fig. 14. The data of this system are given in [6].
Each machine has been presented by a fourth-order nonlinear

Fig. 13. PSS output response.

Fig. 14. Four-machine two-area test system.

model [10]. All generators (G1–G4) are equipped with the
AVR/PSS system shown in Fig. 2.

The effect of the optimal limit values of the multi-PSSs on
the MMPS in Fig. 14 with respect to the damping performance
is investigated. The objective function J in (11) is redefined for
the application to the MMPS as

J(λ)=
4∑

i=1

∫ tf

t0

([
ωi(λ, t)−ωs

i

Vt,i(λ, t)−V s
t,i

]T
V
[
ωi(λ, t)−ωs

i

Vt,i(λ, t)−V s
t,i

])
dt

(17)

where the subscript i is the generator number in Fig. 14.
While minimizing the single value of function J in (17), the

proposed method is applied to determine the optimal output
limits of the local PSSs, which are affected by the interac-
tions with each other on the multimachine power network.
This application gives a good example for the global dynamic
optimization of large-scale complex systems.

A total of 21 inputs and 36 neurons are used in the input
and hidden layers of the FFNN, respectively. As the procedure
described in Section III, after training the weights of the FFNN
offline, the parameters λ (output limits of all PSSs) are updated
by (15) with the gradients ∇J̃(λ) = ∂J̃/∂λ computed through
the FFNN by (14) during the optimization process.

It is clearly shown from Fig. 15 that the values of the objec-
tive function J, which correspond to the updated parameters,
are minimized at each iteration. After ten iterations in Fig. 15,
the values of the optimized output limits are given in Table I
with those of the initial output limits.



1464 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 44, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 15. Values of the objective function J variations: test on the MMPS.

TABLE I
INITIAL VERSUS OPTIMAL LIMIT VALUES OF PSSS

Fig. 16. Relative speed oscillations (Δω1−Δω2) in AREA-1 (in radians per
second).

The damping performance by the PSSs with the optimized
output limits is evaluated by applying the 150-ms three-phase
fault at bus 5 in Fig. 14 at 0.1 s. The relative speed oscilla-
tions (Δω1−Δω2 and Δω3−Δω4) for the deviation signals in
AREA-1 and AREA-2 are given in Figs. 16 and 17, respec-
tively. In addition, the relative speed oscillation (Δω1−Δω3)
in interarea mode between AREA-1 and AREA-2 is shown in
Fig. 18. The simulation results show that the dynamic perfor-
mance to damp out the low-frequency oscillations is effectively
improved by the optimized output limits, which are nonsmooth
nonlinear parameters. In particular, the damping in AREA-2
is remarkably improved compared with that in AREA-1.
Correspondingly, the parameter variations in AREA-2 are
higher than those in AREA-1 (see Table I).

Fig. 17. Relative speed oscillations (Δω3−Δω4) in AREA-2 (in radians per
second).

Fig. 18. Relative speed oscillations (Δω1−Δω3) in interarea mode between
AREA-1 and AREA-2 (in radians per second).

V. CONCLUSION

In this paper, the output limits of the PSS in a power system
were considered as the parameters to be optimized by using the
hybrid system model with the DAIS structure. To implement
the nonlinear parameter optimization, the FFNN was applied
to the hybrid system model to compute the gradients of the
objective function J with respect to the PSS output limits. In
other words, the FFNN was used as an alternative to replace the
computation of the first-order derivatives from the trajectory
sensitivities. Therefore, the main contribution of this paper is
to apply the hybrid system that combines analytical modeling
with the soft-computing method such as an ANN to the power
system control.

Availability of the FFNN in the hybrid system modeling
makes it possible to avoid the exact modeling of the overall
plant and, thereby, to reduce the computational efforts required
in a large-scale complex hybrid system. It is still an open ques-
tion as to which gradient-based method is the most appropriate.
The steepest descent method by the gradients computed through
the FFNN may require many iterations with low convergence
speed. This situation can be avoided by the conjugate-gradient
and quasi-Newton type methods, which provide an estimate of
the second derivatives.
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