
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 2007

Design of an FPGA Logic Element for Implementing Design of an FPGA Logic Element for Implementing

Asynchronous NULL Convention Logic Circuits Asynchronous NULL Convention Logic Circuits

Scott C. Smith
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
S. C. Smith, "Design of an FPGA Logic Element for Implementing Asynchronous NULL Convention Logic
Circuits," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Institute of Electrical and
Electronics Engineers (IEEE), Jan 2007.
The definitive version is available at https://doi.org/10.1109/TVLSI.2007.898726

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229203401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F967&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F967&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TVLSI.2007.898726
mailto:scholarsmine@mst.edu

672 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

Design of an FPGA Logic Element for Implementing
Asynchronous NULL Convention Logic Circuits

Scott C. Smith, Senior Member, IEEE

Abstract—Two versions of a reconfigurable logic element are
developed for use in constructing a NULL convention logic (NCL)
field-programmable gate array (FPGA): one with extra embedded
registration capability, which requires additional area, and one
without. Both versions can be configured as any of the 27 funda-
mental NCL gates, including resettable and inverting variations,
and both can utilize embedded registration for gates with three
or fewer inputs; however, only the version with the additional
embedded registration capability can utilize embedded registra-
tion with four-input gates. These two approaches are compared
with each other and with an existing approach, showing that both
versions developed herein yield a more area efficient NCL circuit
implementation, compared to the previous work. The two FPGA
logic elements are simulated at the transistor level using the 1.8-V,
180-nm TSMC CMOS process.

Index Terms—Asynchronous logic design, delay-insensitive cir-
cuits, field-programmable gate array (FPGA), NULL convention
logic (NCL), reconfigurable logic.

I. INTRODUCTION

THOUGH synchronous circuit design presently domi-
nates the semiconductor design industry, there are major

limiting factors to this design approach, including clock dis-
tribution, increasing clock rates, decreasing feature size, and
excessive power consumption. Correct-by-construction asyn-
chronous circuits, such as NULL convention logic (NCL), have
been demonstrated to require less power, generate less noise,
produce less electromagnetic interference (EMI), and provide
for easier component reuse compared to their synchronous
counterparts, without compromising performance [1]. How-
ever, NCL circuits are not composed of the same fundamental
gates as Boolean circuits; all NCL gates are designed with
hysteresis state-holding behavior, such that once a gate’s
output is asserted, it remains asserted until all gate inputs are
deasserted [2]. Therefore, NCL circuits must be designed as
application-specific integrated circuits (ASICs), and cannot
easily be implemented on standard field-programmable gate
arrays (FPGAs) without compromising delay insensitivity [3].

NCL gates can be implemented with Boolean logic by using
an set-reset (SR) latch to achieve the hysteresis behavior [4];
however, this implementation yields potential race condi-
tions, which may cause the SR latch to temporarily enter the
metastable state or produce the incorrect output all together [3].

Manuscript received August 10, 2006.
The author is with the Department of Electrical and Computer Engineering,

University of Missouri-Rolla, Rolla, MO 65409 USA (e-mail: smithsco@umr.
edu).

Digital Object Identifier 10.1109/TVLSI.2007.898726

This becomes even more of a problem when an NCL circuit
is implemented on a standard FPGA, since a single NCL gate
may be comprised of multiple Boolean gates, such that the
single NCL gate could be distributed over many configurable
logic blocks (CLBs), yielding nonisochronic forks [5], [6], or
problematic orphans [7], and thus further compromising delay
insensitivity. To illustrate this point, a few NCL circuits were
synthesized to a Xilinx Spartan 2 FPGA using the Mentor
Graphics Leonardo Spectrum tool. For small circuits, like a
full-adder [8], the FPGA design worked correctly; however, for
larger circuits, such as a nonpipelined 4-bit 4-bit dual-rail
unsigned multiplier [9], the FPGA design malfunctioned.
Specifically, 20 out of the 256 possible operations generated
an incorrect output, due to both rails of at least one dual-rail
output signal being simultaneously asserted, which is an illegal
state. So, as expected, the race conditions caused the standard
FPGA implementation to function incorrectly for some input
combinations; hence, clocked Boolean FPGAs are unsuitable
for implementing NCL designs, thus justifying the need for a
completely asynchronous NCL FPGA.

Through extensive timing analysis and careful FPGA place-
ment, large NCL circuits could be successfully implemented on
standard FPGAs [10]; however, there would be no advantage to
this approach. A major advantage of NCL is its delay insensi-
tivity, making timing analysis unnecessary. However, this ap-
proach would require even more timing analysis than for syn-
chronous design. Furthermore, since an NCL gate consists of
many Boolean gates, this approach would require substantially
more area than an equivalent synchronous design and would be
much slower. Hence, this approach is purely academic and has
no practical application.

The size of FPGAs is now more than one million equivalent
gates, making them a viable alternative to custom design for
all but the most complex processors. FPGAs are relatively low
cost and are reconfigurable, making them perfect for proto-
typing, as well as for implementing the final design, especially
for low volume production. To compete with this cheap, re-
configurable synchronous implementation, an NCL-specific
FPGA is needed, such that NCL circuits can be efficiently
implemented without necessitating a prohibitively expensive
full custom design. This will become increasingly important
as asynchronous paradigms become more widely used in the
industry to increase circuit robustness, decrease power, and
alleviate many clock-related issues, as predicted by the Interna-
tional Technology Roadmap for Semiconductors (ITRS). The
2005 ITRS estimates that asynchronous circuits will account
for 19% of chip area within the next five years, and 30% of chip
area within the next ten years.

1063-8210/$25.00 © 2007 IEEE

SMITH: DESIGN OF AN FPGA LOGIC ELEMENT 673

This paper is partitioned into seven sections. Section II
provides a brief overview of NCL. Section III describes
the previous work on asynchronous FPGA design. Section IV
presents the design of a reconfigurable NCL logic element (LE).
Section V presents an alternative design of a reconfigurable
NCL LE that includes extra embedded registration capability.
Section VI compares the two LEs developed herein with each
other and with the previous work in [11] and Section VII
provides conclusions and directions for future work.

II. NCL OVERVIEW

NCL is a self-timed logic paradigm in which control is in-
herent in each datum. NCL follows the so-called weak condi-
tions of Seitz’s delay-insensitive signaling scheme [12]. Like
other delay-insensitive logic methods, the NCL paradigm as-
sumes that forks in wires are isochronic [5], [6]. Various as-
pects of the paradigm, including the NULL (or spacer) logic
state from which NCL derives its name, have origins in Muller’s
work on speed-independent circuits in the 1950s and 1960s [13].

A. Delay Insensitivity

NCL uses symbolic completeness of expression to achieve
delay insensitive behavior. A symbolically complete expression
depends only on the relationships of the symbols present in the
expression without reference to their time of evaluation [14].
In particular, dual-rail and quad-rail signals, or other mutually
exclusive assertion groups (MEAGs), can incorporate data and
control information into one mixed-signal path to eliminate time
reference. A dual-rail signal consists of two mutually exclu-
sive wires and which may assume any value from the set

; likewise, a quad-rail signal con-
sists of four mutually exclusive wires that represent two bits.
For NCL and other circuits to be delay insensitive, assuming
isochronic wire forks [5], [6], they must meet the input com-
pleteness and observability criteria [8].

Completeness of input requires that all the outputs of a com-
binational circuit may not transition from NULL to DATA until
all inputs have transitioned from NULL to DATA, and that all
the outputs of a combinational circuit may not transition from
DATA to NULL until all inputs have transitioned from DATA
to NULL. In circuits with multiple outputs, it is acceptable, ac-
cording to Seitz’s weak conditions [12], for some of the outputs
to transition without having a complete input set present, as long
as all outputs cannot transition before all inputs arrive. Observ-
ability requires that no orphans may propagate through a gate
[7]. An orphan is defined as a wire that transitions during the cur-
rent DATA wavefront, but is not used in the determination of the
output. Orphans are caused by wire forks and can be neglected
through the isochronic fork assumption [5], [6], as long as they
are not allowed to cross a gate boundary. This observability con-
dition, also referred to as indicatability or stability, ensures that
every gate transition is observable at the output, which means
that every gate that transitions is necessary to transition at least
one of the outputs. The observability condition can be relaxed
through orphan analysis and still achieve self-timed behavior;
however, this requires some delay analysis [7]. Furthermore,
when circuits use the bit-wise completion strategy with selective

Fig. 1. THmn threshold gate.

Fig. 2. TH34w2 threshold gate: Z = AB + AC +AD +BCD.

input incomplete components, they must also adhere to the com-
pletion completeness criterion [15], which requires that comple-
tion signals only be generated such that no two adjacent DATA
wavefronts can interact within any combinational component.

Most multirail delay insensitive systems [12], [16]–[19],
including NCL, have at least two register stages, one at both
the input and the output. Two adjacent register stages interact
through request and acknowledge lines and , respec-
tively, to prevent the current DATA wavefront from overwriting
the previous DATA wavefront by ensuring that the two are
always separated by a NULL wavefront.

B. Logic Gates

NCL differs from other delay insensitive paradigms [12],
[16]–[19], which use only one type of state holding gate, the
C-element [13]. A C-element behaves as follows: when all
inputs assume the same value, the output assumes this value;
otherwise, the output does not change. On the other hand, all
NCL gates are state holding. NCL uses threshold gates as its
basic logic elements [2]. The primary type of threshold gate,
shown in Fig. 1, is the THmn gate, where . THmn
gates have single-wire inputs, where at least of the inputs
must be asserted before the single wire output will become
asserted. In a THmn gate, each of the inputs is connected
to the rounded portion of the gate; the output emanates from
the pointed end of the gate; and the gate’s threshold value
is written inside of the gate. NCL circuits are designed using a
threshold gate network for each output rail (i.e., two threshold
gate networks would be required for a dual-rail signal , one
for , and another for).

Another type of threshold gate is referred to as a weighted
threshold gate, denoted as . Weighted
threshold gates have an integer value applied to
inputR. Here ; where is the number of inputs;

is the gate’s threshold; and , each , are
the integer weights of input1, input2, inputR, respectively.
For example, consider the TH34W2 gate shown in Fig. 2, whose

inputs are labeled , and . The weight of input
, is therefore 2. Since the gate’s threshold is 3, this

implies that in order for the output to be asserted, either inputs
, and must all be asserted, or input must be asserted

along with any other input , or .
NCL threshold gates are designed with hysteresis state

holding capability, such that all asserted inputs must be de-
asserted before the output will be deasserted. Hysteresis ensures

674 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

TABLE I
27 FUNDAMENTAL NCL GATES

a complete transition of inputs back to NULL before asserting
the output associated with the next wavefront of input data.
Therefore, a THnn gate is equivalent to an -input C-element
and a TH1n gate is equivalent to an -input OR gate. There are
27 fundamental NCL gates, constituting the set of all functions
consisting of four or fewer variables [8], as shown in Table I.
Since each rail of an NCL signal is considered a separate
variable or value, a four variable function is not the same as a
function of four literals, which would normally consist of eight
variables or values, assuming dual-rail signals.

NCL threshold gate variations include resetting THnn and in-
verting TH1n gates. Circuit diagrams designate resettable gates
by either a or an appearing inside the gate, along with the
gate’s threshold. denotes the gate as being reset to logic 1; ,
to logic 0. Both resettable and inverting gates are used in the de-
sign of delay insensitive registers [14].

III. PREVIOUS WORK

There have been a number of asynchronous FPGAs devel-
oped over the past 10 years [20]–[27], [11]. MONTAGE [20]
was developed to support both synchronous and asynchronous
circuits. PGA-STC [21] and STACC [22] both target bundled
data systems in which there are separate data and control paths
where the delay in the data path must be matched in the con-
trol path. To implement this delay matching, both architectures
include some sort of programmable delay element. MONTAGE
[20] and PGA-STC [21] both use a lookup table (LUT)-based

design, where the output is fed back as one of the inputs, to im-
plement the C-element’s state holding capability. STACC [22]
is based on fine grain FPGA architectures where the global clock
is replaced by an array of timing cells that generate local register
control signals. These systems rely heavily on the placement and
routing tools to yield a functional FPGA circuit, where all de-
lays are correctly matched.

Another type of asynchronous FPGA uses a programmable
phased logic cell [23], [24]. Phased logic converts a traditional
synchronous gate-level circuit into a delay insensitive circuit
by replacing each conventional synchronous gate with its
corresponding phased logic gate, and then augmenting the new
network with additional control signals. Since phased logic
circuitry is derived directly from its equivalent synchronous
design, and not created independently, it does not have the
same potential for optimization as does NCL. Furthermore, the
phased logic paradigm has been developed mainly for easing
the timing constraints of synchronous designs, not for obtaining
speed and power benefits [28], whereas these are main concerns
of other asynchronous paradigms.

Two other asynchronous FPGAs [25], [26] are both based on
the precharge half-buffer (PCHB) logic family to implement
quasi delay insensitive circuits. Both use data-driven decom-
position (DDD) [29] to convert a high-level circuit description
into PCHB circuits. The basic template for the individual logic
blocks of these two architectures is the same; however, the
choice of cells and clustered architectures are different. Ref-
erence [25] targets arithmetic or DSP computations, whereas
[26] targets general purpose circuits and microprocessors.
Using [25] to implement general purpose circuits or [26] to
implement arithmetic circuits may lead to inefficient resource
utilization, where large parts of clustered logic blocks are
not utilized. Another drawback to the PCHB approach is that
communication consumes significantly more energy than does
computation [26]. This is not the case with NCL. The FPGA
in [25] utilizes a very fine grained pipelined architecture con-
sisting of clustered logic blocks, which contain a 4-dual-rail
input LUT along with other asynchronous components, in an
island-style interconnect topology with connection boxes and
switch boxes, where each interconnect consists of three wires
and a dual-rail signal with single wire acknowledge. The design
in [25] is the basis for Achronix Semiconductor’s ULTRA line
of FPGAs, which yield performance in the 1.6–2.2 GHz range,
while consuming significantly less power than today’s leading
FPGAs. Achronix FPGAs are packaged with software tools to
convert synchronous designs to asynchronous logic, such that
the end user need not be familiar with asynchronous circuit
design.

In an effort to design a delay insensitive, reconfigurable logic
device, Theseus Logic developed an FPGA-based on the Atmel
AT40K family [27]. The design involved replacing the D-type
flip-flop within each logic block with a threshold configurable
NCL THm4 gate, and removing the associated clock trees from
the original design. Atmel’s routing algorithm for this chip was
then modified to convert an NCL gate-level schematic to a bit-
stream to program the FPGA. This method is advantageous in
that it reuses a proven architecture, but the design only utilizes
a fraction of the NCL threshold gates, thus increasing area and

SMITH: DESIGN OF AN FPGA LOGIC ELEMENT 675

Fig. 3. Reconfigurable NCL gate [11].

Fig. 4. Reconfigurable NCL LE without extra embedded registration.

delay for realizing most nontrivial NCL circuits. It also has
the disadvantage of being unable to use all of the LUTs in the
FPGA, thus resulting in inefficient resource utilization [27]. A
more efficient configurable logic element for an NCL FPGA
was presented in [11]. The LE, shown in Fig. 3, consists of
32 transistors, and is capable of being programmed as 8 of the
27 fundamental NCL gates (TH12, TH13, TH14, TH22, TH33,
TH44, TH23, and TH34w2), including both resetting and in-
verting variations, and can be programmed as an inverter. The
gate has seven data inputs (I1–I7), a set and reset input and

, respectively, and two outputs and its complement. The
following configuration would implement a TH23 gate (i.e.,

, and . However, this method still uti-
lizes less than 1/3 of the available 27 fundamental NCL gates,
which can lead to increased area and delay for implementing
arbitrary NCL circuits. This LE is an alternative to those devel-
oped herein for implementing reconfigurable delay insensitive
NCL circuits, and will be compared to those developed herein
in Section VI.

IV. DESIGN OF A RECONFIGURABLE NCL LOGIC ELEMENT

Fig. 4 shows a hardware realization of a reconfigurable NCL
LE, consisting of reconfigurable logic, hysteresis logic, reset

676 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

logic, and output inversion logic. There are 16 inputs used
specifically for programming the gate: Rv, Inv, and Dp(14:1);
five inputs are only used during gate operation: ,
and rst; and is used to select between programming and
operational mode. is the gate output; Rv is the value will
be reset to when rst is asserted during operational mode; and
Inv determines if the gate output is inverted or not. During
programming mode, Dp(14:1) is used to program the LUT’s
14 latches in order to configure the LE as a specific NCL gate;
addresses 15 and 0 are constant values and therefore do not
need to be programmed, as explained in the Section IV-A.
Initially, is asserted to program the gate, then is deasserted
and the gate operates as configured.

A. Reconfigurable and Hysteresis Logic

The reconfigurable logic portion consists of a 16-address
LUT, shown in Fig. 5, and a pull-up/pull-down (PUPD) func-
tion. The LUT contains 14 latches, shown in Fig. 6, and a
pass transistor multiplexer (MUX). When is asserted (nP is
deasserted), the Dp values are stored in their respective latch
to configure the LUT output to one of the 27 equations in
Table I. Thus, only 14 latches are required because address 0
is always logic 0 and address 15 is always logic 1, according
to the 27 NCL gate equations. The gate inputs , and
are connected to the MUX select signals to pass the selected
latch output to the LUT output. The MUX consists of N-type
transistors and a CMOS inverter to provide a full voltage swing
at the output. Since the MUX output is inverted, its input is
taken from the inverted latch output.

The LUT output is then connected to the N-type transistor
of the PUPD function, such that the output of this function will
be logic 0 only when is logic 1. Since all gate inputs (i.e.,

, and) are connected to a series of P-type transistors,
the PUPD function output will be logic 1 only when all gate
inputs are logic 0. The rest of the time when the LUT is out-
putting logic 0 and at least one gate input is asserted, the output
of the PUPD logic will be floating, and the reconfigurable gate’s
output will be supplied through the weak inverter loop in the
hysteresis logic. Hence, when the LUT outputs logic 1, be-
comes asserted. then remains asserted because of the hys-
teresis logic until all gate inputs become deasserted, at which
time becomes deasserted. then remains deasserted because
of the hysteresis logic until the LUT outputs another logic 1,
causing to become asserted again.

To configure this LE as a specific NCL gate, the LUT should
be programmed with logic 1 for any set of inputs corresponding
to the gate’s set condition, shown in Table I, and should be pro-
grammed with a logic 0 for the remaining input combinations.
Take for example a TH23 gate, whose equation is

. The LUT should be programmed with logic 1 for the fol-
lowing four input patterns: , and ,
which correspond to addresses 6, 10, 12, and 14. The other four
combinations (, and , corresponding
to addresses 0, 2, 4, and 8) should be programmed with a logic 0.
For gates with less than four inputs, the unused input(s) should
be set to logic 0. Hence, for the TH23 gate, would be con-
nected to logic 0.

Fig. 5. 16-bit LUT.

B. Reset Logic

The reset logic consists of a programmable latch and trans-
mission gate MUX. During the programming phase when is

SMITH: DESIGN OF AN FPGA LOGIC ELEMENT 677

Fig. 6. Programmable latch.

Fig. 7. Simulation of Fig. 4 programmed as a noninverting TH44d gate.

asserted (nP is deasserted), the latch stores the value Rv, that the
gate will be reset to when rst is asserted. rst is the MUX select
input, such that when it is logic 0, the output of the PUPD func-
tion passes through the MUX to be inverted and output on ;
and when rst is logic 1, the inverse of Rv is passed through the
MUX.

C. Output Inversion Logic

The output inversion logic also consists of a programmable
latch and transmission gate MUX. The programmable latch
stores Inv during the programming phase, which determines
if the gate is inverting or not. The input and output of the
hysteresis logic are both fed as data inputs to the MUX, so
that either the inverted or noninverted value can be output,
depending on the stored value of Inv, which is used as the MUX
select input.

D. Simulation

The reconfigurable NCL LE in Fig. 4 was simulated with
Mentor Graphics Accusim II tool using a 1.8-V, 180-nm TSMC
CMOS process. Fig. 7 shows the simulation of this LE pro-
grammed as a noninverting TH44d gate, which is equivalent to
a four-input C-element [13], resettable to logic 1. The first 5 ns
of the simulation is the programming phase, where and

are stored, while the LUT is programmed as a TH44
gate by setting Dp(14:1) to “00000000000000” (remember that
address 15 is hardwired to logic 1 and address 0 to logic 0, as ex-
plained in Section IV-A). At the end of the programming phase,

becomes logic 0, and the gate begins operation as a nonin-
verting TH44d gate. The first input is 0000, such that is logic

Fig. 8. Simulation of Fig. 4 programmed as a TH54w32 gate.

0. The inputs , and are then asserted one at a time in
5 ns intervals, until all four are logic 1, at which time becomes
asserted. Next, the inputs are deasserted one at a time in 5-ns
intervals, showing that remains asserted due to the hysteresis
logic, until all inputs are logic 0, at which time becomes logic
0. Following this, the gate is reset by asserting rst, which causes

to be asserted. When rst is deasserted, remains asserted due
to the hysteresis logic, since is logic 1; it does so until is
deasserted, at which time all inputs are logic 0, causing to re-
turn to logic 0.

The LE was also programmed as a noninverting TH54w32
gate, as shown in Fig. 8. The first 5 ns of the simulation is again
the programming phase, where and are stored,
while the LUT is programmed as a TH54w32 gate (i.e.,

) by setting Dp(14:1) to “11110000000000.” At the
end of the programming phase, becomes logic 0, and the gate
begins operation as a noninverting TH54w32 gate. The inputs

, and are asserted one at a time in 5-ns intervals, until all
three are logic 1, at which time becomes asserted. Next, the
inputs are deasserted one at a time in 5-ns intervals, showing that

remains asserted due to the hysteresis logic until all inputs are
logic 0, at which time becomes logic 0. The inputs and
are then asserted, causing to again become asserted, and are
subsequently deasserted, causing to return to logic 0.

V. ALTERNATIVE RECONFIGURABLE NCL LOGIC ELEMENT

WITH EXTRA EMBEDDED REGISTRATION CAPABILITY

An alternative to the reconfigurable NCL LE described in
Section IV is shown in Fig. 9. This design is very similar to
the previous version; however, it contains an additional latch,
and input ER for selecting when embedded registration is used,
and additional embedded registration logic within the reconfig-
urable logic’s PUPD logic, along with an additional registration
request input, . The remaining portions of the design, hys-
teresis logic, reset logic, and output inversion logic, function
the same as in the previous version, explained in Sections IV-A,
IV-B, and IV-C, respectively.

678 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

Fig. 9. Reconfigurable NCL LE with extra embedded registration.

A. Reconfigurable Logic

The reconfigurable logic portion consists of the same
16-address LUT used in the previous version and explained
in Section IV-A, and a revised PUPD function that includes
additional embedded registration logic. When embedded regis-
tration is disabled (i.e., during the programming
phase), should be connected to logic 0, and the PUPD logic
functions the same as explained in Section IV-A. However,
when embedded registration is enabled, the output of the PUPD
function will only be logic 0 when both and are logic
1, and will only be logic 1 when all gate inputs (i.e., ,
and) and are logic 0. The rest of the time the output of
the PUPD logic will be floating, and the reconfigurable gate’s
output will be supplied through the weak inverter loop in the
hysteresis logic, as explained in Section IV-A.

B. Embedded Registration

Embedded registration [30] merges delay insensitive reg-
isters into the combinational logic, when possible, which
increases circuit performance and substantially decreases the
FPGA area required to implement most designs, especially high
throughput circuits (i.e., circuits containing many registers).
Fig. 10 shows an example of embedded registration applied
to an NCL full-adder, where (a) shows the original design
consisting of a full-adder and 2-bit NCL register [8], [14],
(b) shows the design utilizing embedded registration when
implemented using the reconfigurable NCL LE without extra
embedded registration capability, and (c) shows the design
utilizing embedded registration when implemented using the

reconfigurable NCL LE with extra embedded registration
capability. Both reconfigurable gates can be used to embed the
registration with the full-adder’s carry output since it is
generated by three-input gates (i.e., two TH23 gates), such that
adding the input to these gates changes them to four-input
gates, which map to one of the 27 fundamental NCL gates in
Table I, since these 27 gates constitute all functions of four or
fewer variables. The equation for rail 1 of the registered carry
output in Fig. 10(a) is:),
which maps to a TH44w2 gate, as shown in Fig. 10(b). The
same transformation can also be applied to rail 0 of the carry
output , as shown in Fig. 10(b).

Embedded registration cannot be utilized for the sum output
when using the reconfigurable NCL LE without extra em-

bedded registration capability, because is generated by four-
input gates (i.e., two TH34w2 gates), such that adding the
input to these gates changes them to five-input gates, which are
not included in the 27 fundamental NCL gates. However, uti-
lizing the extra embedded registration capability of the recon-
figurable NCL LE shown in Fig. 9, allows for the registration to
also be embedded with the full-adder’s sum output, , as shown
in Fig. 10(c).

C. Simulation

The reconfigurable NCL LE in Fig. 9 was simulated with
Mentor Graphics Accusim II tool using a 1.8-V, 180-nm
TSMC CMOS process. This gate was programmed as a nonin-
verting TH44d gate and a noninverting TH54w32 gate, without
embedded registration, yielding the same waveforms as the

SMITH: DESIGN OF AN FPGA LOGIC ELEMENT 679

Fig. 10. Embedded registration example. (a) Original design. (b) implemena-
tion using NCL reconfigurable LE in Fig. 4. (b) Implemenation using NCL re-
configurable LE in Fig. 9.

previous gate’s simulations, as explained in Section IV-D and
shown in Figs. 7 and 8, respectively, but with slightly different
timing. Fig. 11 shows the LE programmed as a TH54w32
gate with embedded registration. The first 5 ns of the simu-
lation is the programming phase, where ,

Fig. 11. Simulation of Fig. 9 programmed as a TH54w32 gate with embedded
registration.

TABLE II
PROPAGATION DELAY COMPARISON BASED ON INPUT TRANSITION

and are stored, while the LUT is programmed as a
TH54w32 gate (i.e.,) by setting Dp(14:1) to
“11110000000000.” At the end of the programming phase,
becomes logic 0, and the gate begins operation as a noninverting
TH54w32 gate with embedded registration. Comparing Fig. 11
with Fig. 8 shows that the gate operates the same as explained
in Section IV-D; however, will not become asserted until

is also asserted, as shown at 20 ns, and Z will not become
deasserted until is also deasserted, as shown at 65 ns.

VI. RECONFIGURABLE LOGIC ELEMENT COMPARISON

Table II compares the and propagation de-
lays for the two reconfigurable LEs developed herein, based on
which input transition caused the output to transition, and shows
the average propagation delay, , during normal operation (i.e.,
excluding reset). Table III compares the average propagation
delay of the two LEs when configured as different input sized
gates, with and without embedded registration. Remember that
embedded registration can be used with the reconfigurable LE
without extra embedded registration capability, as explained in
Section V-C, but only for gates with three or fewer inputs. Com-
paring the two reconfigurable LEs developed herein shows that
the version without extra embedded registration is 6% smaller
(i.e., 159 versus 169 transistors) and 20% faster; however, since
fewer gates may be required when using the version with extra
embedded registration, the extra embedded registration version

680 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

TABLE III
PROPAGATION DELAY COMPARISON BASED ON NUMBER OF GATE INPUTS

Fig. 12. Additional reset logic for [11].

may produce a smaller, faster circuit, depending on the amount
of additional embedded registration that can be utilized.

A. Comparison to Previous Work

Comparing the LEs developed herein to the reconfigurable
NCL LE developed in [11], and described in Section III, shows
that the LE in [11] is much smaller; however, this is not a fair
comparison. In order to compare this architecture, one has to
consider reset operation and interconnect switches. First con-
sider the reset operation. The LE from [11] uses an SR inverter
for resetting capability, which acts as follows: when and
are both logic 1, the output is reset to logic 0; when and
are both logic 0, the output is reset to logic 1; when and

, the output is the complement of the input; and
and is illegal. The 32-transistor version of [11] includes
both an and input. However, direct implementation would
yield a race condition between the and inputs when reset-
ting. Hence, the LE from [11] needs to include additional logic
for proper resetting. One way to do this is shown in Fig. 12,
where reset and set values Rv and Sv, respectively, are stored
in latches, such that the SR inverter’s and inputs transi-
tion to these programmed values when rst is asserted to reset
the gate, otherwise and , and the gate acts as a reg-
ular inverter. Note that this mitigates the previously mentioned
race condition by allowing at most one of an SR inverter’s
or inputs to change during reset. This method of reset could
have been used for the reconfigurable LEs designed herein, but
it requires an additional four transistors and two resisters, so the
reset logic developed herein is preferred.

Now consider the interconnects required for the LEs. The LEs
developed herein have four data inputs , and since
they can be configured as maximum four-input gates. The cell

Fig. 13. Additional configuration logic for [11].

from [11] can also be configured as a maximum four-input gate;
however, it has seven data inputs – . This would require a
much larger general purpose interconnect switch to select the
LE inputs. However, a portion of this interconnect switch can
be moved inside of the reconfigurable LE, such that the ex-
ternal interface only consists of four data inputs (, and

), the same as the LEs designed herein. This allows for the
switch to be significantly reduced by allowing for only the min-
imal connections to implement the nine possible configurations
by taking advantage of mutually exclusive connections. Fig. 13
shows this internal switch logic, which routes the four external
gate inputs (, and) to the seven internal gate inputs
(–). Note that input is the weighted input when imple-
menting the TH34w2 gate. is always connected to input ,
so no programmable interconnect is needed. is always con-
nected to either input or , so it requires one latch to store
the configuration and one transmission gate MUX to form the
selected connection. and are always connected to either

, or , so they each require two latches and two transmis-
sion gate MUXs. Like is always connected to either of
two inputs, so it requires one latch and one transmission gate
MUX. is always either logic 0 or logic 1, so it only requires
one latch. is always either logic 0, logic 1, or input , so it
requires two latches and one transmission gate MUX.

Also consider the gate output. NCL circuits rarely require the
output in both complemented and noncomplemented form, so it
is beneficial to move the output selection into the LE as well, in
order to significantly reduce the interconnect switch size at the
LE output. This would include the addition of a latch and trans-
mission gate MUX, as shown in Fig. 4 as the output inversion
logic. Including this necessary functionality, a realistic version
of the LE designed in [11] requires 142 transistors, one reset
input, rst, four data inputs, , and , 12 configuration
inputs, Sv, Rv, Inv, and nine internal switch logic configuration
inputs (i.e., for the circuit in Fig. 13), and one input, , to select
between programming and operational mode.

Now comparing the reconfigurable LEs designed herein to
the realistic version of [11] described previously, shows that
the version with and without extra embedded registration ca-
pability has 19% and 12% more transistors, respectively; how-
ever, both are much more versatile. Both LEs designed herein
can be programmed as all 27 fundamental NCL gates, including
both resetting and inverting variations, and can be programmed

SMITH: DESIGN OF AN FPGA LOGIC ELEMENT 681

TABLE IV
RECONFIGURABLE GATE COMPARISON FOR NCL MULTIPLIERS

as an inverter. On the other hand, the reconfigurable LE de-
signed in [11] can only be programmed as 8 of the 27 funda-
mental gates (TH12, TH13, TH14, TH22, TH33, TH44, TH23,
and TH34w2), including both resetting and inverting variations,
and can be programmed as an inverter. Furthermore, the recon-
figurable LE without extra embedded registration capability can
utilize embedded registration with all seven two-input and three-
input NCL gates; and the version with extra embedded registra-
tion capability can utilize embedded registration with all 27 fun-
damental NCL gates. However, the reconfigurable LE in [11]
can only utilize embedded registration with TH22 and TH33
gates. Therefore, an arbitrary NCL design may require more
area and delay when using the reconfigurable LE developed in
[11], versus the versions developed herein, because more LEs
may be required to implement the design since the reconfig-
urable LE from [11] can only be programmed as a small subset
of the 27 fundamental NCL gates and can only utilize minimal
embedded registration.

B. Comparison of Small NCL Circuits

Consider the dual-rail NCL full-adder with output register
shown in Fig. 10. Implementing this circuit using the recon-
figurable LE from [11] requires 10 gates and 1420 transistors,
with a worse-case delay of two and three gates for the carry
and sum output, respectively, as shown in Fig. 10(a). Using
the LE designed herein without extra embedded registration re-
quires 8 gates and 1272 transistors, with a worse-case delay of
one and three gates for and , respectively, as shown in
Fig. 10(b). Implementation with the LE designed herein with
extra embedded registration requires 6 gates and 1014 transis-
tors, with a worse-case delay of one and two gates for and

, respectively, as shown in Fig. 10(c). Therefore, the registered
full-adder is best implemented using the LE designed herein
with extra embedded registration, when considering both area
and speed.

Now take for example the dual-rail input-complete NCL AND

function [8] shown in Fig. 14. Implementation using either LE
designed herein requires two gates and a worse-case delay of
one gate, with 338 and 318 transistors for the version with and
without extra embedded registration, respectively. Using the
reconfigurable LE from [11] requires 5 gates and 710 transis-
tors, with a worse-case delay of two gates, as shown in Fig. 15,
since the THand0 gate must be decomposed into a set of gates
that are implementable using the reconfigurable LE from [11]
(i.e., , and

). Therefore, the dual-rail input complete NCL AND

function is best implemented using the LE designed herein

Fig. 14. NCL AND function [8].

Fig. 15. Decomposed NCL AND function [8].

without extra embedded registration, since embedded registra-
tion was not able to be utilized.

C. Comparison of NCL Multipliers and ALUs

Table IV shows a comparison of a variety of unsigned
4-bit 4-bit NCL multiplier architectures mapped to the two
reconfigurable LEs developed herein and to the one designed
in [11], demonstrating that both LEs designed herein re-
quire substantially less area compared to the one from [11].
Furthermore, the LE developed herein with extra embedded
registration requires less area than the version without extra
embedded registration for all of the multiplier designs except
for the quad-rail nonpipelined version, since these designs con-
tain a substantial number of four-input gates where embedded
registration can only be applied using the extra embedded
registration capability.

Table V shows a comparison of a variety of eight-operation,
4-bit operand NCL ALUs mapped to the three reconfigurable
NCL LEs being compared, demonstrating again that both LEs
designed herein require substantially less area compared to
the one from [11]. However, for the ALUs, the LE developed

682 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

TABLE V
RECONFIGURABLE GATE COMPARISON FOR NCL ALUS

herein without extra embedded registration requires less area
than the version with extra embedded registration for all ALU
designs, since these designs contain few four-input gates where
embedded registration can be applied. Hence, the extra em-
bedded registration capability is underutilized.

VII. CONCLUSIONS AND FUTURE WORK

This paper details the design of two reconfigurable NCL
LEs, one with extra embedded registration capability and one
without, both of which can be programmed as any of the 27
fundamental NCL gates, shown in Table I, and support resetting
and output inversion capability. These gate designs were com-
pared with each other and an alternative reconfigurable NCL
LE described in [11] for a number of NCL circuits, showing
that both versions designed herein require substantially less
area than the one in [11]. For the multiplier circuits, using the
LE in [11] requires 56% more gates and 42% more transistors
compared to the version without extra embedded registration,
and 79% more gates and 51% more transistors compared to the
version with extra embedded registration, on average. Likewise,
on average, using the LE in [11] requires 43% more gates and
28% more transistors compared to the version without extra
embedded registration, and 45% more gates and 22% more
transistors compared to the version with extra embedded regis-
tration, for the ALUs. The comparison further shows that the
version without extra embedded registration is 6% smaller and
20% faster compared to the one with extra embedded registra-
tion; however, since fewer gates may be needed when using the
LE with extra embedded registration, the extra embedded regis-
tration version may produce a smaller, faster circuit, depending
on the amount of additional embedded registration that can
be utilized. Comparison of the multiplier circuits demonstrate
this point, showing that using the LE with extra embedded
registration results in 6% fewer transistors on average, since
these circuits contain a substantial number of four-input gates
where embedded registration can only be applied using the
extra embedded registration capability. However, the oppo-
site was true for the ALUs, where using the version with
extra embedded registration resulted in 5% more transistors
on average, since these designs contain few four-input gates
where embedded registration can be applied, such that the extra
embedded registration capability was underutilized.

Further analysis suggests that the LEs developed herein
are even more advantageous than previously explained when
compared to the reconfigurable LE in [11]. Tables IV and V
show that using the reconfigurable LE from [11] results in

substantially more gates being required than for either of the
two versions developed herein, because many of the orig-
inal circuit’s gates need to be decomposed, as explained in
Section VI-B. This is partially accounted for in the comparison
of number of transistors; however, the increased number of
interconnect switches required because of these additional
gates is not considered. Doing so would further increase the
area overhead when comparing the reconfigurable LE in [11] to
the versions herein. Furthermore, gate decomposition is likely
to increase the number of gates and interconnect switches on
the circuit’s critical path(s), as demonstrated in Section VI-B,
resulting in a slower circuit implementation. Therefore, using
the LEs developed herein should result in a faster implementa-
tion, requiring less area, compared to the reconfigurable LE in
[11], for most nontrivial NCL circuits.

Either reconfigurable LE developed herein or the one in [11]
could be used to implement delay insensitive circuits designed
using DIMS [19], Anantharaman’s [17], and Singh’s [16]
approaches, as well as NCL, since these other approaches only
require C-elements (i.e., THnn gates) and OR gates (i.e., TH1n
gates). Furthermore, these three reconfigurable LEs could also
be used to implement delay insensitive circuits using Seitz’s
[12] and David’s [18] methods, by replacing the AND gates with
C-elements. Doing so will not change the circuit functionality,
but may increase delay for these circuits. Additionally, all three
reconfigurable LEs could also be configured to implement
Boolean circuits using NOR-NOR logic (i.e., inverting TH1n
gates); although, this implementation would be very inefficient.

Additional topics that need further investigation, but are
beyond the scope of this paper, include the overall FPGA archi-
tecture, the configurable logic block (CLB) architecture, and
the FPGA interconnect strategy. Possible choices for overall
architecture include island-style or hierarchical. Alternative
numbers of LEs, connection of LEs, and additional circuitry
within a CLB need to be studied. While most busses can be
implemented using a multiplexed bus structure, constructed
from the 27 fundamental NCL gates, some designs require an
arbitrated bus structure, which would require a gate like the
MUTEX [4]. Hence, the overall FPGA design would also need
to include bus arbiter elements. Finally, interconnect grouping
needs to be researched. Interconnects can be routed as single
wires, dual-rail signals, or quad-rail signals. The advantage
to dual-rail and quad-rail interconnects is that only one latch
is required to configure a two-wire and four-wire connection,
respectively; whereas one latch is required to configure each
wire connection when using single-wire routing, as is the case
for standard synchronous FPGAs.

SMITH: DESIGN OF AN FPGA LOGIC ELEMENT 683

Compared to the high-throughput, fine-grain Achronix Semi-
conductor FPGA overviewed in Section III, an NCL FPGA
utilizing either LE developed herein would be even more fine
grained, such that the resulting NCL FPGA would likely yield
significant speed and power benefits compared to synchronous
FPGAs, as does the Achronix FPGA.

REFERENCES

[1] J. McCardle and D. Chester, “Measuring an asynchronous Processor’s
power and noise,” in Proc. Synopsys User Group Conf. (SNUG), 2001,
pp. 66–70.

[2] G. E. Sobelman and K. M. Fant, “CMOS circuit design of threshold
gates with hysteresis,” in Proc. IEEE Int. Symp. Circuits Syst. (II), 1998,
pp. 61–65.

[3] A. Balasubramanian, “An asynchronous FPGA for NULL convention
logic circuits,” Master’s thesis, Dept. Electr. Comput. Eng., Univ. Mis-
souri–Rolla, Rolla, 2005.

[4] K. M. Fant, Logically Determined Design: Clockless System Design
with NULL Convention Logic. New York: Wiley, 2005.

[5] A. J. Martin, “Programming in VLSI,” in Development in Concur-
rency and Communication. Reading, MA: Addison-Wesley, 1990,
pp. 1–64.

[6] K. Van Berkel, “Beware the isochronic fork,” Integr., VLSI J., vol. 13,
no. 2, pp. 103–128, 1992.

[7] A. Kondratyev, L. Neukom, O. Roig, A. Taubin, and K. Fant,
“Checking delay-insensitivity: 104 gates and beyond,” in Proc. 8th
Int. Symp. Asynchronous Circuits Syst., 2002, pp. 137–145.

[8] S. C. Smith, R. F. DeMara, J. S. Yuan, D. Ferguson, and D. Lamb,
“Optimization of NULL convention self-timed circuits,” Integr., VLSI
J., vol. 37, no. 3, pp. 135–165, 2004.

[9] S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguson,
“Delay-insensitive gate-level pipelining,” Integr., VLSI J., vol. 30, no.
2, pp. 103–131, 2001.

[10] E. Keller, “Building asynchronous circuits with JBits,” in Proc. 11th
Int. Conf. Field Program. Logic Appl., 2001, pp. 628–632.

[11] D. R. Lamb, “Self-timed circuits for adaptive processing systems,” in
Proc. Military Aerosp. Appl. Program. Devices Technol. Conf., 1998,
Paper No. B2.

[12] C. L. Seitz, “System timing,” in Introduction to VLSI Sys-
tems. Reading, MA: Addison-Wesley, 1980, pp. 218–262.

[13] D. E. Muller, “Asynchronous logics and application to information pro-
cessing,” in Switching Theory in Space Technology. Stanford, CA:
Stanford Univ. Press, 1963, pp. 289–297.

[14] K. M. Fant and S. A. Brandt, “NULL convention logic: A complete and
consistent logic for asynchronous digital circuit synthesis,” in Proc. Int.
Conf. Appl. Specific Syst., Arch., Process., 1996, pp. 261–273.

[15] S. C. Smith, “Completion-completeness for NULL convention digital
circuits utilizing the bit-wise completion strategy,” in Proc. Int. Conf.
VLSI, 2003, pp. 143–149.

[16] N. P. Singh, “A design methodology for self-timed systems,” Master’s
thesis, Lab. Comput. Sci., MIT, Cambridge, 1981, MIT/LCS/TR-258.

[17] T. S. Anantharaman, “A delay insensitive regular expression recog-
nizer,” IEEE VLSI Technol. Bulletin, Sep. 1986.

[18] I. David, R. Ginosar, and M. Yoeli, “An efficient implementation of
boolean functions as self-timed circuits,” IEEE Trans. Comput., vol.
41, no. 1, pp. 2–10, Jan. 1992.

[19] J. Sparso, J. Staunstrup, and M. Dantzer-Sorensen, “Design of delay
insensitive circuits using multi-ring structures,” in Proc. Eur. Design
Autom. Conf., 1992, pp. 15–20.

[20] S. Hauck, S. Burns, G. Borriello, and C. Ebeling, “An FPGA for im-
plementing asynchronous circuits,” IEEE Design Test Comput., vol. 11,
no. 3, pp. 60–69, 1994.

[21] K. Maheswaran, “Implementing self-timed circuits in field pro-
grammable gate arrays,” Master’s thesis, Electr. Comput. Eng. Dept.,
Univ. California, Davis, 1995.

[22] R. E. Payne, “Self-timed FPGA systems,” in Proc. 5th Int. Workshop
Field Program. Logic Appl., 1995, pp. 21–35.

[23] C. Traver, R. B. Reese, and M. A. Thornton, “Cell designs for self-
timed FPGAs,” in Proc. 14th Annu. IEEE Int. ASIC/SOC Conf., 2001,
pp. 175–179.

[24] M. Aydin and C. Traver, “Implementation of a programmable phased
logic cell,” in Proc. 45th Midw. Symp. Circuits Syst., 2002, pp. 21–24.

[25] J. Teifel and R. Manohar, “An asynchronous dataflow FPGA architec-
ture,” IEEE Trans. Comput., vol. 53, no. 11, pp. 1376–1392, Nov. 2004.

[26] C. G. Wong, A. J. Martin, and P. Thomas, “An architecture for asyn-
chronous FPGAs,” in Proc. IEEE Int. Conf. Field-Program. Technol.,
2003, pp. 170–177.

[27] K. Meekins, D. Ferguson, and M. Basta, “Delay insensitive NCL recon-
figurable logic,” in Proc. IEEE Aerosp. Conf., 2002, pp. 1961–1966.

[28] D. H. Linder and J. H. Harden, “Phased logic: Supporting the syn-
chronous design paradigm with delay-insensitive circuitry,” IEEE
Trans. Comput., vol. 45, no. 9, pp. 1031–1044, Sep. 1996.

[29] C. G. Wong and A. J. Martin, “High-level synthesis of asynchronous
systems by data-driven decomposition,” in Proc. Design Autom. Conf.,
2003, pp. 508–513.

[30] S. K. Bandapati and S. C. Smith, “Design and characterization of
NULL convention arithmetic logic units,” in Proc. Int. Conf. VLSI,
2003, pp. 178–184.

[31] S. K. Bandapati, S. C. Smith, and M. Choi, “Design and characteri-
zation of NULL convention self-timed multipliers,” IEEE Design Test
Comput.: Special Issue Clockless VLSI Design, vol. 30, no. 6, pp.
26–36, Nov./Dec. 2003.

[32] S. C. Smith, “Designing NULL convention combinational circuits to
fully utilize gate-level pipelining for maximum throughput,” in Proc.
Int. Conf. VLSI, 2004, pp. 407–412.

[33] S. K. Bandapati and S. C. Smith, “Design and characterization of
NULL convention arithmetic logic units,” Microelectron. Eng. J.:
Special Issue VLSI Design Test, vol. 84, no. 2, pp. 280–287, Feb. 2007.

Scott C. Smith (M’95–SM’06) received the B.S.
degrees in electrical engineering and computer engi-
neering and the M.S. degree in electrical engineering
from the University of Missouri, Columbia, in 1996
and 1998, respectively, and the Ph.D. degree in
computer engineering from the University of Central
Florida, Orlando, in 2001.

Currently, he is an Associate Professor with the
Department of Electrical and Computer Engineering,
the University of Missouri, Rolla. He has authored 10
journal publications, 23 conference papers, 3 U.S./in-

ternational patents, and 2 additional international patents, all of which can be
viewed from his website: web.umr.edu/~smithsco. His research interests include
computer architecture, asynchronous logic design, CAD tool development, em-
bedded system design, VLSI, trustable hardware, and self-reconfigurable logic.

Dr. Smith is a member of Sigma Xi, Eta Kappa Nu, Tau Beta Pi, and ASEE.

	Design of an FPGA Logic Element for Implementing Asynchronous NULL Convention Logic Circuits
	Recommended Citation

	Design of an FPGA logic element for implementing asynchronous NULL convention logic circuits IEEE Transactions on Very Large Scale Integration (VLSI) Systems

