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MIMO Beam-forming with Neural Network Channel Prediction

Trained By a Novel PSO-EA-DEPSO Algorithm

Chris Potter, Ganesh K. Venayagamoorthy, and Kurt Kosbar

Abstract— A new hybrid algorithm based on particle swarm

optimization (PSO), evolutionary algorithm (EA), and differen-

tial evolution (DE) is presented for training a recurrent neural

network (RNN) for multiple-input multiple-output (MIMO)

channel prediction. The hybrid algorithm is shown to be

superior in performance to PSO and differential evolution

PSO (DEPSO) for different channel environments. The received

signal-to-noise ratio is derived for un-coded and beam-forming

MIMO systems to see how the RNN error affects the perfor-

mance. This error is shown to deteriorate the accuracy of the

weak singular modes, making beam-forming more desirable. Bit

error rate simulations are performed to validate these results.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems have

been shown to provide significant gains in both spectral

efficiency and reliability [1]. This is based on the assumption

that the receiver and transmitter have knowledge of the

channel coefficients. In reality they must either be estimated

or predicted. A few popular ways to estimate the channel

are by using pilot symbols [2] and space time block codes

(STBC) [3]. Both methods waste time learning the channel

when meaningful data can be sent. Channel prediction does

not suffer from these aforementioned setbacks.

Unlike the use of conventional prediction techniques such

as [4], a recurrent neural network (RNN) is used for pre-

diction. Neural networks have the ability of being robust to

different wireless channels as long as they are trained prop-

erly. In [5] an extended Kalman filter (EKF) was employed

for training a RNN for time series prediction. A hybrid

particle swarm optimization evolutionary algorithm (PSO-

EA) was utilized in [6] for time series. In this work, a novel

hybrid algorithm composed of PSO, EA, and differential

evolution (DE) is proposed for MIMO channel prediction.

It is shown that this hybrid algorithm outperforms both

PSO and DEPSO. Also, beam-forming is shown to be ideal

for RNN predicted MIMO channels, since the strongest

singular mode is more accurately predicted than the weaker

ones. These results are verified with bit error rate (BER)

simulations

The rest of this paper is organized as follows. The next

section describes the MIMO received symbol model for the
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un-coded and beam-forming systems. This is followed by the

fast fading channel representation. After this the RNN used

for MIMO channel prediction is introduced . This is followed

by the proposal of a novel PSO-EA-DE hybrid training

algorithm. The received SNR for both systems are then

derived and the prediction error is analyzed. BER simulations

are then performed. This is followed by our concluding

remarks.

II. MIMO RECEIVED MODEL

In this section, the received symbols for the un-coded and

beam-forming systems are introduced. For the beam-forming

case the received symbols are expressed in two scenarios,

when the transmitter and receiver have full channel state

information (CSI) and when they have the prediction matrix.

A. Un-coded

A MIMO wireless flat fading communication system with

Nr receive antennas and Nt transmit antennas is modeled by

y = Hx + n (1)

where y is the Nr × 1 received vector, x is the Nt × 1
transmitted symbol vector with each xi belonging to constel-

lation C with symbol energy Es, and n is the white noise

vector of size Nr × 1 with ni

iid
∼ CN (0, No). The Nr ×Nt

channel matrix H = {hmn} describes the complex channel

gain between the mth receiver antenna and the nth transmit

antenna.

B. Beam-forming

Let H = UDV H be the singular value decomposition

(SVD) where U and V are unitary matrices and ui and

vi, are the left and right singular vectors corresponding to

the ith non-zero singular value σH(i). Note that σH(1) ≤
. . . ≤ σH(M), where M = rank(H). If x̃ = v1x and one

post-multiplies (1) by uH
1 the received symbol is

uH
1 y = σH(1)x + uH

1 n. (2)

Letting ñ = uH
1 n one can easily show that

E|ñ|2 = NrNo (3)

and remains white. It has been shown [7] that this technique

maximizes the received SNR for a single mode.

When the transmitter and receiver have the prediction

matrix Ĥ = ÛD̂V̂
H

, then by writing the MIMO channel

as H = Ĥ + E the received symbol is written as

û
H
1 y = (σH(1) + û

H
1 Ev̂1)x + uH

1 n. (4)
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III. CHANNEL MODEL

When the doppler spread is greater than the pulse band-

width, the MIMO channel undergoes fast fading [8]. In

this work a MIMO flat fast fading wireless environment is

employed. Each sub-channel is represented by [9]

hmn(k) = hI
mn(k) + jhQ

mn(k) (5)

where

hI
mn(k) =

√
2

M

M∑
n=1

cos(2πfdk cos(αn) + φn) (6)

is the in-phase component,

hQ
mn(k) =

√
2

M

M∑
n=1

cos(2πfdk sin(αn) + ψn) (7)

is the quadrature component, and

αn =
2πn − π + θ

4M
(8)

where φn, ψn, and θ are U [−π, π). The coefficients satisfy

the first and second order statistics of Clarke’s reference

model [9]

IV. RECURRENT NEURAL NETWORK

To accurately predict a wireless channel, it is necessary

to have past values of the channel to learn the statistics of

the fading process. It has become customary to use a linear

filter to perform the prediction. This method requires the

receiver know the statistics of the channel which greatly

depends on the random process at hand. For example, the

linear prediction filters for an autoregressive (AR) process

and an autoregressive moving average (ARMA) process are

quite different. When the wireless environment changes, the

receiver has to redetermine the statistics of the environment

and subsequently change the prediction model. When trained

properly the neural network is robust to any wireless envi-

ronment.

The neural network used for prediction is shown in Figure

1. For each run, the RNN consists of two stages. In the

first only the previous Np channel coefficients are used,

thus d1(k − 1) = d2(k − 1) = 0. For the second, the

RNN uses both the past channel coefficients and the previous

two outputs. The output of d1(k) = ĥ(k) represents the

prediction. All neurons are fully connected in the forward

direction. The non-linear activation functions are tansig(·)
which can be described by

tansig(x) =
exp(x) − exp(−x)

exp(x) + exp(−x)
. (9)

The output of the activation functions are written as

dj = tansig

( Np+2∑
i=1

ajisi

)
, j = 1, . . . , 2 (10)

where

s = [d1 (k − 1) d2(k − 1) h(k − 1) · · ·h(k − Np)]
T . (11)

•

•

•

)(1 kd

)(2 kd

1−z

1−z

)1(1 −kd

)1(2 −kd

+

+

)1( −kh

)( pNkh −

)(ˆ kh

A
Fig. 1. Neural Network used for channel prediction.

In matrix form this is represented as

d = f(As) (12)

where

A =

[
a1,1 . . . a1,(Np+2)

a2,1 . . . a2,(Np+2)

]
(13)

is a 2×(Np+2) matrix whose entries are the neural network

weights and

f =

⎡
⎢⎣

tansig(·)
...

tansig(·)

⎤
⎥⎦ (14)

is a 2 × 1 vector that evaluates the tansig of each component.

The total number of weights are Nw = (Np+2)·2 = 2Np+4.

V. TRAINING ALGORITHMS

To obtain useful channel predictions the RNN must be

trained. Before proceeding to the proposed hybrid algorithm,

PSO, EA, and DEPSO are briefly summarized.

A. PSO

PSO is a evolutionary computation technique developed

by Eberhart and Kennedy in 1995. It was inspired by swarm

intelligence where a collection of unsophisticated individuals

(particles) can solve complex problems by interacting with

one another. Some examples of this behavior are a flock of

birds or a school of fish. Although simple to implement,

PSO has been shown to be an algorithm that when used

properly can perform multi-parameter optimization [10].

Some applications of PSO include artificial life, social

psychology, engineering, and computer science. The

population of particles fly through the solution space with

certain velocities.
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While not Converged

Evaluate Fitness

PSO

Converged?

N

Y
Done!

EA-PSO DEPSO

Fig. 2. New PSO-EA-DEPSO hybrid training algorithm.

Let P be the number of particles with alphabet P =
{1, . . . , P} and D the dimension of each particle. At each

epoch the position and velocity components for the ith

particle and dth dimension are updated according to [11]

vid = wvid + c1rand1(·)(pbestid − xid)

+ c2rand2(·)(gbestd − xid) (15)

where

xid = xid + vid (16)

and w, c1, and c2 are the inertia and acceleration constants

respectively.

B. EA

EA algorithm is evolving the population through muta-

tion and selection operations. Each parent or offspring is

represented as a chromosome which is made up of genes

which represent characteristics of the individual. In terms of

optimization, a gene represents a parameter such as a neural

network weight. Given a population N of neural networks,

for every generation each parent Pi , n = 1, . . . , N has a

Nw×1 self-adaptive parameter vector σi, i = 1, . . . , N . Each

parent generates an offspring Ṕi whose Nw ×1 self-adaptive

parameter vector σ́i is updated according to

σ́i(j) = σi(j) exp(τN (0, 1)) , j = 1, . . . , Nw. (17)

The weights are updated according to

ẃi(j) = wi(j) + σ́i(j)N (0, 1) , j = 1, . . . , Nw (18)

where τ = 1/
√

2
√

Nw.

Evaluate Fitness

Winners Losers

EliminatePSO

EA

New Population

While not Converged

Fig. 3. PSO-EA algorithm.

TABLE I

PARAMETERS VALUES FOR PROPOSED HYBRID PSO-EA-DEPSO

ALGORITHM

Parameter Value Description

Vmax 2 Maximum PSO velocity
Xmax 4 Maximum PSO position

w .8 PSO Inertia Weight
c1 2 PSO Cognitive Weight
c2 2 PSO Social Weight
P 40 Number of PSO Particles
Pc 0.5 Crossover Probability for DEPSO
δN δ7 DEPSO operator
τ .3265 EA Parameter

C. DEPSO

DEPSO is a hybrid of DE and PSO which provides diver-

sity on the population while keeping the swarm searching

capabilities intact [12]. The pbest of each particle is updated

by

IF(rand(·) < Pc)OR(i == k)

THEN pbestid = gbestd + ΔN (19)

where k ∈ P is chosen randomly and

ΔN =
1

N

N∑
j=1

pbestAj − pbestBj (20)

with A,B ∈ P .

D. A Hybrid PSO-EA-DEPSO Algorithm

In this work, a new algorithm is proposed that is a hybrid

version of PSO, EA, and DEPSO. The block diagram is

displayed in Figure 2. The idea behind the algorithm is

to alternate between PSO, EA, and DEPSO to continually

provide diversity for the particles/parents. This in theory

prevents the particles/parents from reaching a premature

convergence. The PSO algorithm is implemented on odd
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iterations while PSO-EA and DEPSO alternate on even

iterations. For PSO, the velocity and position weights are all

initialized from a uniform distribution. The pseudo-code for

the PSO-EA algorithm is displayed in Figure 3. For more

details of the PSO-EA algorithm, the reader is referred to

[6]. The parameters for the proposed hybrid algorithm are

displayed in Table I.

VI. TRAINING THE RNN

The RNN in Figure 1 is trained by using the proposed

PSO-EA-DEPSO algorithm for each MIMO sub-channel.

The in-phase and quadrature components are trained sepa-

rately. For each prediction, Np = 9 and the previous 10

channel coefficients and their respective predictions are used

for the fitness function

MSE(k) =
1

10

10∑
i=1

(hmn − ĥmn)2. (21)

To show the prediction capability of the RNN trained by

the proposed hybrid PSO-EA-DEPSO algorithm, a numerical

example is provided. In the first experiment a Rayleigh flat

fast fading 2 × 2 MIMO channel with fdTs = 0.05 is

generated. Since the sub-channels are uncorrelated, to save

space and redundancy the in-phase component of h11(k) is

only considered. Looking at Figures 4 and 5, it is obvious

that the proposed algorithm is superior to PSO and DEPSO.

For the second experiment fdTs = 0.1. Once again, Figures

6 and 7 validate that the proposed algorithm is superior. To

quantify these observations, the MSE between the prediction

and actual coefficients for each algorithm is displayed in

Table II. The MSE of the hybrid algorithm for both channel

environments is significantly lower than the others.

VII. RECEIVED SNR FOR DIFFERENT MIMO SCHEMES

For a MIMO system using channel prediction, the received

SNR takes on the general form

ρ =
σ2

x

σ2
e + σ2

n

(22)

where σ2
x is the average received signal power, σ2

e is the

prediction error, and σ2
n is the average noise variance. The

received SNR for the un-coded system is defined as

ρuc �
E||Ĥx||22

E||Ex||22 + E||n||22
. (23)

Using the independence assumption with x and H along

with the identities

||bHAAHb||22 = trace(AHbbHA) (24)

E{trace(·)} = trace(E{·}) (25)

we obtain after several manipulations

ρuc =

∑M

i=1 E{σ2
Ĥ

(i)}∑N

i=1 E{σ2
E

(i)} + NrNo

Es

(26)

where σ
Ĥ

(i) and σE(i) are the ith non-zero singular values

of Ĥ and E respectively, and N = rank(E).
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Fig. 4. Comparison of PSO and DEPSO predictions with the actual in-
phase channel coefficients for fdTs = 0.05.
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Fig. 5. Comparison of new hybrid PSO-EA-DPSO with the actual in-phase
channel coefficients for fdTs = 0.05.

Recall that for the MIMO beam-forming system the re-

ceived symbol was

û
H
1 y = (σ̂2

1 + û
H
1 Ev̂1)x + ñ. (27)

Using similar techniques as before, the received SNR for the

beam-forming case can be written as

ρbf =
E{σ2

1}
E|ûH

1 UDV H v̂1 − σ̂max|2 + NrNo

Es

. (28)

When comparing (26) with (28) one can see although there

is less signal power in the beam-forming case, the prediction

error has the capability of being significantly less. This can

be seen by writing the prediction error in (23) as
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Fig. 6. Comparison of PSO, and DEPSO predictions with the actual in-
phase channel coefficients for fdTs = 0.1.
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Fig. 7. Comparison of new hybrid PSO-EA-DPSO with the actual in-phase
channel coefficients for fdTs = 0.1.

TABLE II

MEAN SQUARED ERROR COMPARISON OF PSO, DEPSO, AND

PSO-EA-DEPSO ALGORITHMS WITH RESPECT TO ACTUAL CHANNEL

COEFFICIENTS.

PSO DEPSO PSO − EA − DEPSO

fdTs = .05 1.2212 2.0811 0.0712
fdTs = .1 21.8440 1.2472 0.1183

σ2
e = E||Ex||22 = E||ÛH

EV̂ x||22
= E

{ M∑
i=1

∣∣(ûH
i UDV H v̂1 − σ̂i

)
xi

∣∣2}

= Es

M∑
i=1

E{σ2
E

(i)} (29)

where the last equality results from observing (26).

Comparing this to the beam-forming prediction error
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R
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Pred.
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Fig. 8. Received SNR comparison for un-coded and beam-forming MIMO
systems.

σ2
e = E

∣∣(ûH
1 UDV H v̂1 − σ̂max

)
x
∣∣2 (30)

it is clear that if u1, v1, and σ1 are well predicted but the

other modes are not, a smaller prediction error will result.

This is implicitly true for the channel matrices predicted by

the RNN.

To show this behavior a numerical example is given.

The received SNR using (26) and (28) is tabulated for

10000 binary phase shift keying (BPSK) symbol vectors with

Es = 1 and Nt = Nr = 2. The results are displayed

in Figure 8. As one can see the received SNR for the

beam-forming case is significantly better at higher Es/No,

suggesting that the stronger singular mode is more accurately

predicted. To justify this σ2
E

(1) and σ2
E

(2) are calculated

and graphed in Figures 9 and 10. Clearly there are samples

where σ2
E

(2) � σ2
E

(1) suggesting E{σ2
E

(2)} ≥ E{σ2
E

(1)}.

Comparing the two values we have E{σ2
E

(1)} ≈ 3 × 10−3

and E{σ2
E

(2)} ≈ 6 × 10−3, indicating that the stronger

singular value is predicted better by a factor of two.

From this observation one can see that beam-forming

provides two advantages over the un-coded system. The first

is only σ2
E

(1) affects the prediction error. The second is

when the RNN predicts the MIMO channel, E{σ2
E

(2)} >
E{σ2

E
(1)} which does not affect the beam-forming case since

only σ2
E

(1) affects the received SNR

VIII. BER COMPARISON

Before showing the difference in BER performance be-

tween the two MIMO systems, we briefly review the decod-

ing procedures.

A. Vector ML Detection

For the MIMO un-coded system the received symbols are

decoded according to

x̂ = arg min
x∈CNt

||y − Ĥx||22. (31)

This is known as the nearest neighbor decoding rule.
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B. Beam-forming

When beam-forming is performed at the transmitter and

receiver the received symbol is found by

x̂ = arg min
x∈C

|ûH
1 y − σ̂H(1)x|2. (32)

C. BER Simulations

If the received SNR is large for a given Es/No then one

expects the BER to be low. From the previous section it

was established that the prediction error had a significant

impact on the received SNR. By observing Figure 8 some

observations about the BER can be inferred. One would

expect that at low Es/No the prediction BER for the un-

coded MIMO system will be comparable to the actual BER.

As Es/No is increased, the received SNR does not increase

as fast as the error free received SNR, which should cause the

prediction BER to deteriorate. To illustrate this the BER was

calculated via Monte Carlo simulations for a 2 x 2 MIMO

flat fast fading channel using 10000 BPSK symbols for which
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Fig. 11. BER for a un-coded 2 × 2 MIMO fast fading channel.
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Fig. 12. BER for a 2 × 2 MIMO beam-forming fast fading channel.

Es = 1. Looking at Figure 11, at low Es/No the prediction

BER agrees nicely with the error free BER. But as Es/No

increases the prediction BER begins to level off, since the

effective noise floor due to prediction error is significant. This

verifies the results in the previous section describing how the

addition of σ2
E

(2) negatively affects the received SNR.

For the beam-forming case the received SNR remains

close to the ideal SNR throughout the range of Es/No. This

suggests the the BER for both the ideal and predicted channel

will be close for all Es/No. To illustrate this the BER is

calculated for a 2 × 2 MIMO beam-forming system using

the same parameters as the un-coded case. As one can see

the predicted BER differs only slightly from the error free

BER. This verifies our observation that the strong singular

mode is more accurately predicted by the RNN.

IX. CONCLUSION

A recursive neural network trained by a novel PSO-EA-

DEPSO was used to predict a MIMO channel. This training
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algorithm was shown to be superior to both PSO and DEPSO

for two different fast fading scenarios. The received SNR for

the un-coded and beam-forming MIMO systems was derived.

The beam-forming technique was shown to be superior to

the un-coded case for two reasons. The first was that only

the dominant mode plays a role in the prediction error. The

second is that the predicted channel predicts the dominant

mode better than the minor ones. These two reasons lead to

a higher received SNR and lower BER than the un-coded

case, making the beam-forming system ideal.
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