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Dual-Function Neuron-Based External
Controller for a Static Var Compensator

Ganesh Kumar Venayagamoorthy, Senior Member, IEEE, and Sandhya Rani Jetti, Student Member, IEEE

Abstract—The use of wide-area measurements for power
system stabilization has recently been given a lot of attention by
researchers and the power industry to avoid cascading failures
and blackouts, such as the one in North America in August
2003. This paper presents the design of a nonlinear external
damping controller based on wide-area measurements as inputs
to a single dual-function neuron (DFN)-based controller. This
DFN controller is specifically designed to enhance the damping
characteristics of a power system over a wide range of operating
conditions using an existing static var compensator (SVC) in-
stallation. The major advantage of the DFN controller is that it
is simple in structure with less development time and hardware
requirements for real-time implementation. The DFN controller
presented in this paper is realized on a digital signal processor and
its performance is evaluated on the 12-bus flexible ac transmission
system benchmark test power system implemented on a real-time
platform—the real-time digital simulator. Experimental results
show that the DFN controller provides better damping than a
conventional linear external controller and requires less SVC
reactive power. The damping performance of the DFN controller
is also illustrated using transient energy calculations.

Index Terms—Damping controller, dual-function neuron (DFN),
real-time digital simulator (RTDS), static var compensator (SVC),
wide-area measurements.

I. INTRODUCTION

LARGE power systems, such as the North American Power
Grid, have many interconnections and bulk power trans-

missions over long distances. Due to this, the existing transmis-
sion lines are overloaded and have become vulnerable to var-
ious faults.Theflexibleac transmissionsystem(FACTS)devices,
based on power electronics, offer an opportunity to enhance con-
trollability, stability, andpower transfer capability of ac transmis-
sion systems. A static var compensator (SVC), a shunt FACTS
device, has been widely used in power systems for voltage regu-
lation and to increase transient stability in order to increase power
transfer. Thus, this allows the transmission line to be compatible
with the prevailing load demand [1]. A suitable supplementary
external control signal to the SVC voltage control loop can pro-
vide damping and improve overall power system stability [2], [3].

A power system containing generators and FACTS devices
is a highly nonlinear system. Some conventional methods
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have been used to design supplementary damping controllers,
including the classical pole placement method [4], damping
torque analysis [5], linear quadratic Gaussian (LQG) [6], adap-
tive control [7], etc. In [8] and [9], particle swarm optimization
(PSO) is applied to tune the parameters of the SVC external
damping controller but based on some linearized mathematical
models of power systems. In [10], a neural-network-based
controller has been designed for SVC but is based on locally
measured signals.

Most of the methods used for designing SVC external
damping controllers are based on linear control techniques
where the system equations are linearized around a nominal
operating point. As the operating conditions change, its perfor-
mance degrades. Nonlinear controllers using neural networks
such as the multilayer perceptron, radial basis function, and
Elman network can provide suitable and desired control over a
wide range of operating conditions. However, they require long
development time and a large number of neurons to deal with
complex problems. Their hardware implementations require
high-speed processors and a lot of memory. To overcome these
drawbacks, a generalized neuron (GN) that requires much
smaller training data and time has been reported in [11] for a
power system stabilizer design. The GN has a simple structure
and its hardware implementation is less expensive.

The use of wide-area measurements provides better under-
standing of the dynamic behavior of the entire power system.
External controllers can be designed using wide-area signals-
based models to provide additional damping to power system
oscillations. This paper presents the design of two types of ex-
ternal SVC damping controllers using wide-area measurements.
The external controllers are specifically designed to enhance
the damping in a power system under a wide range of oper-
ating conditions. The first type of controller is a linear external
damping controller and the second type of controller is a non-
linear external damping controller based on a single dual-func-
tion neuron (DFN). The DFN controller design is based on a
system identifier called the wide-area monitor (WAM) in this
paper. The WAM is realized using two DFN neurons. The entire
design is computational efficient in terms of development time
and hardware requirements. In addition, the linear and nonlinear
external controllers are implemented on a DSP and evaluated on
a 12-bus FACTS benchmark test power system [12] which is im-
plemented on the RTDS.

This paper is organized as follows. Section II describes the
FACTS benchmark test power system with an SVC studied in
this paper. Section III describes the linear external damping con-
troller. Section IV describes the DFN structure and the design of
the nonlinear external damping controller. Section V describes
the real-time implementation platform and presents some re-

0885-8977/$25.00 © 2008 IEEE
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Fig. 1. Twelve-bus FACTS benchmark power system with an SVC external controller.

sults. Section VI presents evaluations and comparisons on the
performance of the external controllers based on transient en-
ergy calculations. Finally, conclusions and future work are given
in Section VII.

II. FACTS BENCHMARK TEST POWER SYSTEM

WITH A STATIC VAR COMPENSATOR

The 12-bus FACTS benchmark test power system shown in
Fig. 1 consists of six 230-kV buses, two 345-kV buses, and
four 22-kV buses [12]. There are three areas in this system
consisting of two hydrogenerators—G2 and G4–in areas 1
and 2, respectively, and a thermal generator G3 in area 3 as
shown in Fig. 1. The generators are modeled using the detailed
synchronous generator models that exist in the RSCAD soft-
ware with one damper winding on the q axis [13]. The exciter
models are IEEE AC1 excitation systems [13]. The parameters
of the generators and exciters are given in [12]. This power
system is specifically designed to study the applications of
FACTS technology. Load-flow and transient stability studies
on the test system revealed that it can use FACTS technology
for transmission improvements in the following ways [12].

• Install a -MVAr SVC in area 3 at bus 4 to alleviate
voltage problems at the load center. Fig. 2 illustrates the
effect of the SVC for a 5% increase in load at bus 4 at 2
s. It can be seen that without an SVC, the voltage drops
to 0.97 p.u., with a 160-MVAr fixed capacitor, but with an
SVC, it is maintained at 0.98 p.u.

• Improvement of transient stability of the system with
damping controllers on the SVC and other FACTS de-
vices.

To avoid system instability during large disturbances, the au-
thors have added governor–turbine models to the hydrogenera-

Fig. 2. Comparison of bus 4 voltage response for a 5% increase in the load at
bus 4 at t = 2 s with a fixed capacitor (160 MVAr) and an SVC (�100 MVAr).

tors in areas 1 and 2, and to the thermal generator in area 3. The
hydro–governor and IEEE Type 1 governor RSCAD models, re-
spectively, are used [13]. Parameters of the governors and the
turbines are given in [14].

III. LINEAR EXTERNAL DAMPING CONTROLLER

A conventional linear external damping controller similar to
the structure presented in [15] as shown in Fig. 3 has been de-
signed for the SVC and implemented on the RTDS in this paper.
The inputs to this controller are speed deviations of genera-
tors G3 and G4 which are based on wide-area measurements.
The controller output is which is added to the SVC in-
ternal controller reference . The SVC internal controller is
a proportional-integral (PI) controller. The objective when se-
lecting the PI parameters is to have a wide stable operating
region as much as possible around a nominal operating point.
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Fig. 3. Linear external damping controller for an SVC.

Fig. 4. Indirect adaptive control method-based DFN controller for SVC.

Fig. 5. DFN model.

Hence, a nonlinear external controller is required for optimal
performance at various operating regions to provide a change in

for the internal controller. A 200-ms three-phase short-cir-
cuit fault is applied halfway between buses 7 and 8 and the pa-
rameters of the damping controllers are tuned for this distur-
bance to obtain the best performance based on time-response
analysis (minimum overshoots and faster settling time) [16].
The parameters obtained are ; ; ;
and .

IV. NONLINEAR EXTERNAL DAMPING CONTROLLER

The design of the nonlinear damping controller is based on
the indirect adaptive control method as shown in Fig. 4 [17],
consisting of a DFN power system dynamics identifier, the
WAM, and a DFN controller. Section IV-A–D describes the
DFN structure, the particle swarm optimization algorithm used
in determining the parameters of the DFNs, WAM, the desired
response predictor (DRP), and the DFN nonlinear controller.

A. Dual-Function Neuron

A common neuron model consists of a sigmoidal threshold
function and an ordinary summation or product as aggregation
functions whereas a DFN has fuzzy compensatory operators as
aggregation operators [18]. The structure of a DFN is shown in
Fig. 5.

For a network with a single output, the size of a conventional
neural network, such as the multilayer perceptron (MLP) is

whereas the size of a DFN is where and
are the number of input and hidden neurons, respectively. This

means that the MLP has weights whereas
the DFN has weights. Comparing the number of weights
in both cases, for a single output network, the MLP has a large
number of weights compared to a DFN. Due to fewer weights
and fuzzy aggregation operators, a DFN has a shorter training
time and less hardware requirements. In addition, the DFN has
good fault-tolerant capabilities for any complex problem.

The output of the first in Fig. 5 with an activation function
is given as

(1)

where (2)

where is the weight for the input , and is the

bias applied to . The output of the part with the activation
function is given as

(3)

where (4)

where is the weight for the input , and is the bias

applied to part. The final output of the neuron is a function
of the two outputs of and with the weights and

, respectively [11], and is given as

(5)

Thus, for any application, only three types of weights ,
, and need to be determined with the DFN structure.

The PSO algorithm has been reported to be an excellent algo-
rithm for training neural networks [19] and, therefore, it is used
to determine the DFN weights in this paper.

B. DFN Training Using PSO

The PSO algorithm is a population-based search algorithm,
based on the simulation of the social behavior of birds within a
flock. A swarm consists of a set of particles, where each particle
represents a potential solution with parameters in dimensions.
The dimension corresponds to the number of weights in the
DFN. The changes to the position of a particle ( th particle) and
its operation in a swarm are influenced by the experience and
the knowledge of its neighbors. The position of the
th particle in the th dimension at instant is given as

(6)

where is the velocity of the th particle in the th dimen-
sion at instant , is the pbest—the position where the th
particle has found the highest fitness over instants, is
the gbest of the swarm—the position of the particle in the swarm
with the highest fitness over instants, and and are
uniform random numbers between 0 and 1. The following PSO



1000 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 23, NO. 2, APRIL 2008

Fig. 6. Training of WAM with PRBS applied.

Fig. 7. WAM DFN 1 structure estimating the speed deviation of generator G3.

Fig. 8. WAM DFN 2 structure estimating the speed deviation of generator G4.

parameters, commonly used in PSO applications [19], are used
in this paper.

• Maximum search space range ( ,100).
• Inertia constant 0.8.
• Acceleration constants , , 2.
• Number of PSO particles 25.

C. Wide-Area Monitor (WAM)

As a first step toward designing the nonlinear controller, a
WAM is designed using a DFN. A WAM provides a model of the
system at every time instant to the controller so that appropriate
control signals can be generated. As shown in Fig. 6, the inputs
to the WAM are time delayed values , , ,
of the speed deviations of generators and ,
and the voltage reference , all sampled at 125 Hz. The
outputs of the WAM are the estimated speed deviations of gen-
erators G3 and G4 at time instant . The WAM is realized using
two separate DFNs. Figs. 7 and 8 show the DFN 1 and DFN 2
for estimating generator G3 and G4 speed deviations, respec-
tively.

As shown in Fig. 6, constant excitation voltage references
and are applied to the generators G3 and G4, respec-

tively, at a particular steady-state operating point. The WAM
is trained by adding pseudorandom binary signals (PRBS),

, , and to generator G3, generator G4,
and at the SVC point of common coupling (PCC) (i.e., bus 4,

respectively). These signals provide deviations in the
steady-state values of , , and . The PRBS signals
applied to generator excitations are square waves of frequencies
5, 3, and 2 Hz and that applied to the SVC are square waves
of frequencies 0.5, 0.3, and 0.2 Hz. The PRBS signals are
applied to the power system by closing switches , , and

as shown in Fig. 6. WAM is trained offline using the PSO
algorithm.

In DFN 1 and DFN 2, sigmoidal functions are used with
the summation aggregation function while Gaussian func-
tions are used with the product aggregation function as
given in (7) and (8)

(7)

(8)

Thus, there is flexibility at both the aggregation and the
threshold level in a DFN and so it is better equipped to model
the nonlinearities involved in the power system than just a
single functional neuron or neural network. Each DFN has a
size of 9 2 1 and, thus, a total of 19 weights.

D. Nonlinear DFN Controller and DRP

The DFN controller is designed based on the indirect adap-
tive control method as shown in Figs. 4 and 9. Once the WAM
is able to estimate the speed deviations of the generators G3 and
G4 in the power system, the nonlinear controller can be devel-
oped. The DFN controller (Fig. 10) consists of a sigmoidal func-
tion used with the summation aggregation function and
a Gaussian function used with the product aggregation
function as given in (9) and (10). The inputs to the DFN con-
troller are speed deviations of generators G3 and G4 and ,
at time instants , , , and the output is the
external damping signal applied to the SVC, the deviation in
voltage reference at time instant . The DFN controller
has a total of 19 weights

(9)

(10)

Fig. 9 shows the schematic diagram illustrating the training
of the DFN controller. Here, the inputs to the trained WAM are
given at time instants , , , and speed deviations
of generators G3 and G4 at time instant are estimated. A
DRP is also used to estimate the speed deviations at time instant

. More details on the design of the DRP are given in [17].
The DRP equations used in the DFN controller design in Fig. 9
are given in (11) and (12)

(11)

(12)

All the poles of the DRP lie on the left-hand side of the
-plane which implies that the DRP system is stable and the

dominant poles are and .
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Fig. 9. Schematic diagram illustrating the training of the DFN nonlinear controller.

Fig. 10. DFN structure for the nonlinear controller.

The difference between the outputs of DRP and the WAM
[(13) and (14)] are used to obtain the target for the output of
the DFN controller as shown in Fig. 9. The sum-squared errors
in (15) are minimized by adapting the weights of the DFN con-
troller.

(13)

(14)

and (15)

The error signals and are backpropagated
through DFN 1 and DFN 2 of the WAM through to the input

to obtain the signals and , respectively, as shown in
Fig. 9. The mathematical representation of the signals obtained
at and is given in (16) and (17), respectively

(16)

(17)

where, the subscript “1” refers to the variables of DFN 1 and
subscript “2” refers to the variables of DFN 2.

and are weights with respect to the input

of DFN 1 and DFN 2, respectively. Other variables
are defined in Section IV-A.

The signals and are added to obtain the signal as
shown in (18). For a given set of values of speed deviations
of generators G3 and G4 at time instant , the signal is
updated times as shown in (19), each time with , in order to
minimize the errors and given in (13) and (14),
respectively. By doing so, the signal , given in (20), is the exact
target signal required to minimize the errors given by (13) and
(14) at time instant . This process is repeated for each value
of input . In this study, is chosen to be 5 because

and are considerably minimized at the end of
the fifth iteration

(18)

for (19)

(20)

where
The mean-squared error between the DFN controller output

and the target signal is minimized by updating the DFN con-
troller weights using the PSO algorithm.

V. REAL-TIME IMPLEMENTATION AND RESULTS

A. Real-Time Digital Simulator (RTDS)

Due to the complexity and expensive nature of the power
system, it is very difficult to test new control methods and al-
gorithms on the real-world power system. The RTDS is a fully
digital power system simulator capable of continuous real-time
operation. It performs electromagnetic transient power system
simulations with a typical time step of 50 s utilizing a com-
bination of custom software and hardware. The proprietary op-
erating system used by the RTDS guarantees “hard real time”
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Fig. 11. Laboratory hardware setup with RTDS.

during all simulations [20]. It is an ideal tool for the design, de-
velopment, and testing of power system protection and control
designs.

The performances of the linear and nonlinear external
damping controllers are evaluated on the 12-bus FACTS bench-
mark test power system implemented on the RTDS. The WAM
and nonlinear controller are implemented on a digital signal
processor (DSP) which is interfaced to the RTDS that runs the
power system. The nonlinear controller is trained offline (this
means that the DFN output is not added to the SVC internal
controller reference during the development) and is imple-
mented on the Innovative Integration M67 DSP card which is
equipped with analog/digital converter modules (A4D4) [21].
The DSP and RTDS interface and laboratory hardware setup
is shown in Fig. 11. More details on the laboratory setup are
given in [22].

B. Experimental Results

This section presents experimental results of the WAM and
the linear and nonlinear external controllers. The damping per-
formances of the linear and nonlinear controllers are compared.

1) WAM: After the WAM DFNS are trained, it is tested under
small and large disturbances—PRBS signals and short-circuit
faults, respectively. Fig. 12 shows a typical PRBS signal applied
to the excitation system of generator G3. The PRBS signals pro-
vide deviations in the reference voltages of excitations
of generators G3, G4, and reference voltage at the SVC PCC.
This disturbance is chosen to be small because, in a real power
system, applying large magnitude perturbations to the network
might not be desirable or practical. This shows that a DFN can
be trained on a real power system with small perturbations ap-
plied. Fig. 13 shows the corresponding speed deviation of gen-
erator G4.

Now a large disturbance is carried out and tested to see
whether the WAM can predict the speed deviations. Fig. 14
shows speed deviation of generator G3 and output of WAM for
a permanent transmission-line outage between buses 4 and 5 in
Fig. 1. It can be seen that WAM predicts the speed deviations
of generators G3 and G4 accurately for different disturbances.

2) Linear External Damping Controller: To illustrate the
effect of an external damping controller, a 200-ms three-phase

Fig. 12. PRBS applied to the excitation system of generator G3 �V ref .

Fig. 13. Actual and WAM estimation of speed deviation of generator G4 for
the PRBS in Fig. 12 applied.

Fig. 14. Actual and WAM estimation of speed deviation of generator G3 during
a transmission-line outage between buses 4 and 5 in Fig. 1.

short circuit is applied at bus 7. Figs. 15 and 16 show the
speed deviations of generators G3 and G4, respectively, with
and without a linear external damping controller to the SVC
(Fig. 1). It can be clearly seen that the damping is improved
with the linear external controller.
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Fig. 15. Speed deviation of generator G3 with and without a linear controller
during a 200-ms three-phase short-circuit fault applied at bus 7.

Fig. 16. Speed deviation of generator G4 with and without a linear controller
during a 200-ms three-phase short-circuit fault applied at bus 7.

3) Comparison of Linear and Nonlinear Controllers: Sev-
eral tests are carried out to evaluate the performance of linear
and nonlinear external damping controllers for power system
oscillations damping. Four of these tests are described below.

Test 1: This test is carried out to evaluate and compare the
performances of two controllers. Results are given for a system
without an external controller. The system is subjected to a
200-ms three-phase short circuit applied at bus 3. Figs. 17 and
18 show the speed deviations of generator G3 and G4, respec-
tively, for this fault. It can be seen that the nonlinear controller
damps out the speed oscillations faster than the linear controller.

Test 2: This test is carried out to show that the nonlinear
controller provides better damping than the linear controller. A
200-ms three-phase short circuit is applied now at bus 5. Figs. 19
and 20 show the speed deviations of generators G3 and G4 for
this fault. It can be seen that the nonlinear controller damps the
speed oscillations faster than the linear controller.

Test 3: A permanent transmission-line outage is carried out
between buses 4 and 5. Figs. 21 and 22 show the speed devia-
tions of generators G3 and G4. It can be seen that the nonlinear
controller damps the speed oscillations faster than the linear
controller. Fig. 22 shows that the nonlinear controller damps the
speed oscillations of generator G4 in about 7 s, injecting less
transient energy into the system whereas the linear controllers
do not damp the oscillations completely until after 10 s.

Fig. 17. Speed deviation of generator G3 for a 200-ms three-phase short-circuit
fault applied at bus 3.

Fig. 18. Speed deviation of generator G4 for a 200-ms three-phase short-circuit
fault applied at bus 3.

Fig. 19. Speed deviation of generator G3 for a 200-ms three-phase short-circuit
fault applied at bus 5.

Test 4: Fig. 23 shows the speed deviations of generator G4
for a permanent transmission-line outage between buses 2 and
5.

It can be seen that the linear controller oscillates until the end
of 10 s whereas the nonlinear controller damps the oscillations at
about 8 s. It can be seen from Figs. 24 and 25 that the SVC, when
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Fig. 20. Speed deviation of generator G4 for a 200-ms three-phase short-circuit
fault applied at bus 5.

Fig. 21. Speed deviation of generator G3 for a permanent transmission-line
outage between buses 4 and 5.

Fig. 22. Speed deviation of generator G4 for a permanent transmission-line
outage between buses 4 and 5.

externally controlled by the nonlinear controller, injects less re-
active power and provides better performance. This means that
with nonlinear intelligent control, the capacity/sizing of an SVC
that is required is smaller which translates to reduced cost and
installation space. It can be seen in Fig. 25 that due to the trans-
mission-line outage, there is a change in operating conditions

Fig. 23. Speed deviation of generator G4 for a transmission-line outage be-
tween buses 2 and 5.

Fig. 24. Reactive power injected by linear and nonlinear controllers for Test 4.

Fig. 25. Control signals injected by linear and nonlinear controllers for Test 4.

and the linear controller response has become slower which is
not desirable, whereas the nonlinear controller responds quickly
and injects the control signals in such a way that it changes the
reference voltage to damp out the system oscillations. The linear
and nonlinear external controller output signals are limited to

p.u. in all of these tests.

VI. DISCUSSIONS

The performance of the linear and nonlinear controllers is
evaluated in this section in terms of the transient energies. When
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TABLE I
NORMALIZED PERFORMANCE INDICES OF THE LINEAR AND NONLINEAR

CONTROLLER FOR SPEED DEVIATIONS OF GENERATOR G3

a disturbance occurs in a power system, the transient energy in-
jected into the system can cause it to go unstable if the con-
trollers do not provide sufficient damping. Therefore, a robust
damping controller is required to minimize the transient energy
injected into the system for various disturbances.

For the tests carried out in Section V, the transient energies of
generators G3 and G4 within the first 3 s after the disturbances
are calculated [ s, given in (22)] for: 1) without
an external controller, 2) with a linear controller, and 3) with a
nonlinear controller

(22)

where is the generator G3 or G4; is the inertia constant of
generator ; and is the speed deviation of generator G.

The performance of the linear and the nonlinear controllers is
compared by defining a performance index (P.I) given in (23)

(23)

Tables I and II show the performance comparisons of the linear
and nonlinear controllers in terms of the transient energies of
generators G3 and G4, respectively. The P.Is are normalized
by dividing the P.Is by that P.I obtained without an external
controller.

In Table I, it can be seen that the overall performance of the
nonlinear controller in terms of transient energy of generator
G3 is 2.81 times better than the system without an external con-
troller whereas the overall performance of the linear controller
is 1.86 times better than the system without an external con-
troller. Similarly, it can be seen from Table II that the overall
performance of nonlinear controller in terms of transient energy
of generator G4 is 4.56 times better than the system without an
external controller whereas the linear controller is 2.63 times
better than the system without an external controller. Thus, the
SVC external controllers have greater damping on the system.

VII. CONCLUSION

The design and real-time implementation of a single
DFN-based nonlinear external damping controller for an SVC
has been presented. A DFN-based WAM has been developed
to identify the power system dynamics. The inputs to the WAM
and external controllers are based on wide-area measurements.
The performance of a DFN-based nonlinear controller has
been compared with a conventional linear external damping

TABLE II
NORMALIZED PERFORMANCE INDICES OF THE LINEAR AND NONLINEAR

CONTROLLER FOR SPEED DEVIATIONS OF GENERATOR G4

controller and shown to be better. This is as a result of the
WAM, which provides accurate system dynamics information
from moment to moment and, thus, better control is realized.

Experimental results are presented to show that WAM identi-
fies the system dynamics correctly and the nonlinear DFN con-
troller provides better damping to the system oscillations. Var-
ious other results show that the nonlinear controller provides
better damping with less reactive power injection. The nonlinear
controller has a higher performance index which implies that it
injects less transient energy during a disturbance which ensures
that the system remains stable for various disturbances.

The number of weights with DFN is almost an order less
for implementation than with standard neural-network struc-
tures, such as the MLPs. Therefore, the major advantage of
the DFN-based control architecture is that it requires shorter
training time and can still exhibit robust performance. Hence,
combining benefits of DFN and wide-area measurements not
only helps to design a good controller but also makes it easier
to implement it in real time. Future work involves developing
the PSO to be computationally efficient for online adaptation of
the parameters of the DFNs in the WAM and in the nonlinear
controller.
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