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On the Ergodic Capacity of
MIMO Triply Selective Rayleigh Fading Channels

Chengshan Xiao, Senior Member, IEEE, and Yahong Rosa Zheng, Senior Member, IEEE

Abstract—The ergodic capacity is investigated for triply selec-
tive MIMO Rayleigh fading channels. A mathematical formula is
derived for the ergodic capacity in the case when the channel state
information is known to the receiver but unknown to the trans-
mitter. A closed-form formula is derived that quantifies the effect
of the frequency-selective fading on the ergodic capacity into
an intersymbol interference (ISI) degradation factor. Different
from the existing conclusion that the frequency-selective fading
channel has the same ergodic capacity as the frequency flat fading
channel, we show that the discrete-time inter-tap correlated
frequency-selective fading channel has smaller ergodic capacity
than the frequency flat fading channel. Only in the special case
when the fading does not have ISI inter-tap correlations will the
ergodic capacity be the same as that of the frequency flat channel.
Theoretical derivation and computer simulation demonstrate that
the inter-tap correlations can have more significant impact on the
ergodic capacity than the spatial correlations.

Index Terms—Ergodic capacity, frequency selective fading,
MIMO channel, Rayleigh fading, triply selective fading.

I. INTRODUCTION

MULTIPLE Input Multiple Output (MIMO) wireless
communication has received significant attention due

to its enormous channel capacity potential in rich scattering
environment [1],[2]. The ergodic capacity results have been
well established for MIMO Rayleigh fading channels which
are spatially correlated (including spatially uncorrelated), time
quasi-static, and frequency nonselective, see [3]-[14] and the
references therein. These capacity results are based on the as-
sumption that the MIMO channels have neither Doppler spread
nor delay spread, which is not the case in many moderate
and high mobility, and high date rate mobile communication
applications.

The capacity studies for MIMO frequency selective
Rayleigh fading channels have also received some attention
[15]-[18]. Specifically, in [16], it was reported that OFDM-
based MIMO frequency selective (delay spread) channels
will in general provide advantages over frequency flat fading
channels not only in terms of outage capacity but also in terms
of ergodic capacity. However, in [18], it was reported that
frequency selectivity does not affect the ergodic capacity of

Manuscript received December 18, 2006; revised June 14, 2007; accepted
July 31, 2007. The associate editor coordinating the review of this paper and
approving it for publication is Y. J. Zhang. This work was supported in part
by the National Science Foundation under Grant CCF-0514770, the Office
of Naval Research under Grant N00014-07-1-0219 and the University of
Missouri System Research Board. Part of this paper was previously presented
at the 2004 IEEE Global Telecommunications Conference (Globecom’04),
Dallas, TX.

The authors are with the Department of Electrical and Computer Engineer-
ing, Missouri University of Science and Technology, Rolla, MO 65409, USA
(e-mail: {xiaoc, zhengyr}@mst.edu).

Digital Object Identifier 10.1109/TWC.2008.061090.

wide-band MIMO channels, which is agreeable with the SISO
ergodic capacity results in [19]. Both [18] and [19] are based
on the assumption that the discrete-time sampled channel
impulse response has no inter-tap correlation. Recently, it was
independently reported by Xiao et al [20] and Paulraj et al
[10] that the sampled fading channel taps are in general inter-
tap correlated due to the convolution of the transmit pulse-
shaping filer, the air-link physical fading channel, and the
receive matched filter.

In this paper, we consider the ergodic capacity of a MIMO
system that undergoes inter-tap correlated (including inter-
tap uncorrelated as a special case) frequency selective, time-
varying and spatially correlated fading, which is referred to
as triply selective fading [20]. Due to the time variation, we
assume that the channel state information is unknown to the
transmitter but perfectly known to the receiver. Therefore, the
equal power allocation scheme is used at the transmitter. New
results for the ergodic capacity are derived for MIMO triply
selective Rayleigh fading channels. We find that the inter-
tap correlations of frequency selective fading channels can
have significant impact on the ergodic capacity. This impact
is quantified into an ISI degradation factor in a closed-form
formula. In a general frequency selective fading channel, the
ergodic capacity is reduced by the ISI degradation factor. In
the special case when the ISI has no inter-tap correlations,
the ISI degradation factor is one, and the ergodic capacity is
the same as that of the frequency flat channel. The theoretical
results are verified via extensive simulations using improved
Jakes’ Rayleigh fading simulator [20], [21].

II. CHANNEL MODEL AND PRELIMINARIES

Consider a wideband MIMO wireless channel shown in
Fig. 1. Assume that the transmit pulse shaping filter pT (τ)
and the receive matched filter p

R
(τ) are normalized with unit

energy. Assume also that each physical fading subchannel
gm,n(t, τ) is wide-sense stationary uncorrelated scattering
(WSSUS) [22] Rayleigh fading with normalized unit average
power. When the maximum Doppler is much smaller than
the signal bandwidth, the continuous-time MIMO channel
depicted in Fig. 1 can be accurately converted to the following
discrete-time MIMO fading channel model with proper delay
[20],[23]

y(k)=
L−1∑
l=0

H(l, k) · x(k − l) + v(k), k = 0, 1, · · · ,∞ (1)

where the input x(k) = [x1(k), x2(k), · · · , x
N

(k)]t, the noise
v(k) = [v1(k), v2(k), · · · , vM (k)]t, and the output y(k) =
[y1(k), y2(k), · · · , y

M
(k)]t, with the superscript (·)t being the

1536-1276/08$25.00 c© 2008 IEEE
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Fig. 1. The baseband block diagram of a MIMO wireless channel, which consists of the transmit filter pT (τ), the physical fading impulse response gm,n(t, τ),
and the receive filter pR(τ) for the (m, n)th-subchannel. The composite MIMO channel impulse response is hm,n(t, τ) = pR(τ) ⊗ gm,n(t, τ) ⊗ pT (τ).
It can be accurately converted to a discrete-time channel model represented by an L-tap FIR hm,n(l, k), l = 0, 1, · · · , L − 1.

transpose; L is the channel length which is depending on the
transmit filter, delay spread power profiles and receive filter;
and the matrix H(l, k) is the lTs-delayed channel matrix at
time instant k, defined by

H(l, k)=

⎡
⎢⎢⎢⎣

h1,1(l, k) h1,2(l, k) · · · h1,N (l, k)
h2,1(l, k) h2,2(l, k) · · · h2,N (l, k)

...
. . .

. . .
...

hM,1(l, k) hM,2(l, k) · · · hM,N(l, k)

⎤
⎥⎥⎥⎦ (2)

where hm,n(l, k) is the (m, n)th subchannel’s lth tap coeffi-
cient with time-varying index k.

If we adopt the commonly used assumption that the spatial
correlation matrices of the transmit and receive antennas are
in Kronecker product form [3], and keep in mind that the
physical fading subchannel gm,n(t, τ) has been assumed as
WSSUS Rayleigh fading, then the composite discrete-time
fading channel coefficients hm,n(l, k) are zero-mean complex-
valued Gaussian random variables. The correlation function
between the channel coefficients hm,n(l, k) and hp,q(l, k) is
given by [20],[23]

E [
hm,n(l1, k1) · h∗

p,q(l2, k2)
]

= Ψ
RX

(m, p) · Ψ
TX

(n, q)
·Ψ

ISI
(l1, l2) ·ΨDP R

(k1, k2) (3)

where the superscript ∗ denotes the conjugate, E [·] denotes the
expectation. The matrices Ψ

RX
, Ψ

TX
, Ψ

ISI
and Ψ

DP R
are the

receive correlation coefficient matrix, the transmit correlation
coefficient matrix, the intersymbol interference (ISI) inter-tap
correlation coefficient matrix, and the temporal correlation
coefficient matrix, respectively.

We give three specific remarks on the elements of these four
matrices. First, Ψ

RX
(m, p) is the receive correlation coeffi-

cient between receive antennas m and p related to angle spread
at the receiver with 0 ≤ |ΨRX (m, p)| ≤ ΨRX (m, m) = 1,
and Ψ

TX
(n, q) is the transmit correlation coefficient between

transmit antennas n and q related to angle spread at the
transmitter with 0 ≤ |ΨTX (n, q)| ≤ ΨTX (n, n) = 1. Second,
the coefficient Ψ

ISI
(l1, l2) is related to the channel fading

power delay profile, the transmit filter, and the receive filter.

Its calculation is given by (17) of [20]. Even if the physical
channel gm,n(t, τ) is WSSUS channel which means no inter-
path correlation, the discrete-time sampled channel hm,n(l, k)
will generally have inter-tap correlations [20], [10] because of
the convolution between pT (t), gm,n(t, τ) and pT (t). Our third
remark goes to Ψ

DP R
. Different fading model will have dif-

ferent Ψ
DP R

. For the commonly used Clarke’s 2-D isotropic
scattering model-based Rayleigh fading, Ψ

DP R
(k1, k2) =

J0(2πFd(k1 − k2)Ts), with J0(·) being the zero-order Bessel
function of the first kind, Fd the maximum Doppler frequency,
and Ts the symbol period. The first three matrices satisfy
tr (Ψ

RX
) = M , tr (Ψ

TX
) = N , and tr (Ψ

ISI
) = 1 [20] due

to normalizations.
This discrete-time MIMO channel model (3) is a gen-

eralized model describing triply selective MIMO channels.
It contains many existing channel models as special cases.
For example, 1), if L = 1 and Fd = 0, then the channel
model becomes the spatially correlated, time quasi-static, and
frequency flat model [4]. 2) If L = 1, Fd = 0, Ψ

TX
= I

N
,

and ΨRX = IM , then the model becomes the spatially
uncorrelated, time quasi-static, and frequency flat model [1].
3) If M = 1 and N = 1, then our model becomes the doubly
selective fading model for SISO systems [24]. 4) If L = 1
and Ψ

DPR
is an identity matrix, then this model becomes a

symbol-wise temporally independent fading model [1].
When the channel has intersymbol interference (frequency-

selective), the channel capacity has to be analyzed based on a
block of K output symbols {y(k+1),y(k+2), · · · ,y(k+K)}
at the receiver. The MIMO channel with ISI is then represented
by

Y
K

= HX
K+L−1 + V

K
(4)

where YK = [yt(k+1),yt(k+2), · · · ,yt(k+K)]t, the input
vector XK+L−1 is circularly symmetric complex Gaussian
(with padded zeros to clear out the ISI memory), and the
noise vector VK is the additive white complex Gaussian
random vector whose entries are independent and identically
distributed (i.i.d.) and circularly symmetric, and
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H=

⎡
⎢⎢⎢⎢⎢⎣

H(L−1, k+1) H(L−2, k+1) · · · H(0, k+1) 0 0

0 H(L−1, k+2)
. . . H(1, k+2)

. . . 0

0
. . .

. . .
. . .

. . . 0
0 0 0 H(L−1, k+K) · · · H(0, k+K)

⎤
⎥⎥⎥⎥⎥⎦ .

When the channel matrix H is perfectly known to the
receiver but unknown to the transmitter, the equal power
allocation scheme is employed. Then the instantaneous mutual
information (per input symbol) is defined as

I
K

(k)=
1

K+L−1

[
log2det

(
I

KM
+

γ

N
HH†)]

, b/s/Hz (5)

where γ = P
σ2 is the normalized SNR with σ2 being the

receive noise power at each receive antenna and P being
the average total transmission power over the N antennas per
symbol interval, and the superscript (·)† denotes the conjugate
transpose. For a large K � L, the factor 1/(K+L−1) in (5)
can be approximated by 1/K . The ergodic capacity Cav

MIMO
is

given by

Cav

MIMO
= lim

K→∞
1
K

{
EH

[
log2 det

(
I

KM
+

γ

N
HH†)]}

. (6)

Remark 1: Strictly speaking (6) will be only an achievable
information rate if the transmitter knows that channel distri-
bution information. However, if the transmitter does not know
the channel state or channel distribution information, then (6)
is indeed the ergodic capacity. For convenient discussion, we
use the latter term in this paper.

Remark 2: It is well known that for the special MIMO
channel with time quasi-static and frequency flat fading, which
corresponds to the block length K = 1 and the number of
ISI taps L = 1 in the channel model (4), the channel matrix
H can be simplified and decomposed [3], [4] directly into
H = H(0, k+1) = Ψ1/2

RX
HW Ψ1/2

TX
, where HW is a random

matrix with M×N i.i.d. complex Gaussian random variables.
Unfortunately, a similar form of decomposition does not exist
for the triply selective MIMO fading channel with a general
channel matrix H (K �=1 and L �=1). Therefore, the Wishart
(random) matrix theory [25], [26] can not be directly employed
to study the triply selective fading channel capacity (6).

III. NEW RESULTS FOR ERGODIC CAPACITY

In this section, we first present an explicit formula for the
ergodic capacity of a SISO doubly selective (i.e., time-varying
and frequency-selective) Rayleigh fading channel. Then we
extend the SISO channel capacity result to SIMO, MISO and
MIMO doubly selective Rayleigh fading channels. Finally,
we present the ergodic capacity results for SIMO, MISO and
MIMO triply selective Rayleigh fading channels.

A. Doubly Selective Rayleigh Fading Channels

Proposition 1: For a SISO doubly selective Rayleigh fading
channel, whose coefficients are assumed to be known at the
receiver but unknown to the transmitter, then the ergodic
capacity of this channel is given by

Cav

SISO
=

∫ ∞

0

{
1
2π

∫ 2π

0

log2 [1+γ ·f(ω)·λ]dω

}
·e−λ ·dλ (7)

where f(ω) is given by

f(ω) = 1+2
L−1∑
i=1

ai cos(iω), ai =
L−1−i∑

l=0

Ψ
ISI

(l, l+i). (8)

Proof: See Appendix A.
Remark 3: The significance of Proposition 1 is that the

effect of the frequency selectivity (or the ISI fading) on the
ergodic capacity is quantified into a frequency dependent
function f(ω) whose mean over the frequency range [0, 2π) is
1. For the special case that the fading channel has no inter-tap
correlations, Ψ

ISI
is a diagonal matrix, and f(ω) ≡ 1, then the

double-integral formula (7) becomes a single-integral formula
and the frequency-selective Rayleigh fading channel has the
same ergodic capacity as the frequency flat Rayleigh fading
channel. This special case is in agreement with the existing
results [19, p.366] and [18, p.2515]. However, for the general
case that the fading channel has inter-tap correlations, f(ω)

is a frequency-dependent function with
1
2π

∫ 2π

0

f(ω)dω = 1.

According to Jensen’s inequality [27], the ergodic capacity
of the inter-tap-correlated frequency-selective Rayleigh fading
channel is smaller than that of the frequency flat Rayleigh
fading channel.

Proposition 2: The ergodic capacity given by (7) can be
accurately approximated by

Cav

SISO

.=
∫ ∞

0

log2 (1 + γ · γ
ISI

· λ) · e−λ · dλ (9)

where γ
ISI

is the ISI degradation factor due to the channel ISI
inter-tap correlations, determined by

γISI = (2
Cγ − 1)/γ (10)

with

Cγ =
1
2π

∫ 2π

0

log2 [1 + γ · f(ω)] dω. (11)

Proof: See Appendix A.
Remark 4: It should be pointed out that we employed a

great number of examples to do the numerical integrations for
(7) and (9), we got exactly the same results, however, due to
lack of two-dimensional mean-value theorem of double inte-
grals, we make a conservative statement by using “accurately
approximated” in Proposition 2.

Remark 5: Proposition 2 simplifies the computation of
SISO doubly selective fading channel capacity from a double-
integral to a single-integral, which is a commonly used expres-
sion for fading channel capacity. In the general case where
the ISI taps have inter-tap correlations, γ

ISI
is always smaller

than one, i.e., γ
ISI

< 1, this can be proved from (8)-(10) by
utilizing Jensen’s inequality. In the special case where the ISI
taps have no inter-tap correlations, γ

ISI
= 1, then our result

becomes the same as that of [19]. It is also noted that if the
inter-tap correlation increases, then γISI usually decreases.

We are now in a position to extend our SISO results to
SIMO, MISO and MIMO channels with doubly selective
Rayleigh fading.

Proposition 3: For doubly selective SIMO and MISO
Rayleigh fading channels, if the individual subchannels are
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spatially uncorrelated, i.e., Ψ
TX

and ΨRX are identity matri-
ces, then the ergodic capacities are given by

Cav

SIMO
=

1
(M−1)!

∫ ∞

0

{
1
2π

∫ 2π

0

log2 [1+γ · f(ω) · λ]dω

}
·λM−1

e−λdλ (12)

Cav

MISO
=

1
(N−1)!

∫ ∞

0

{
1
2π

∫ 2π

0

log2

[
1+

γ

N
· f(ω) · λ

]
dω

}
·λN−1

e−λdλ (13)

and these capacity results can be accurately approximated by

Cav

SIMO

.=
1

(M−1)!

∫ ∞

0

log2 (1+γ ·γ
ISI

·λ)λ
M−1

e−λdλ (14)

Cav

MISO

.=
1

(N−1)!

∫ ∞

0

log2

(
1+

γ

N
·γ

ISI
·λ

)
λ

N−1
e−λdλ (15)

where M is the number of receive antennas of the SIMO
system, N is the number of transmit antennas of the MISO
system, and γ

ISI
is defined in the same way as that in

Proposition 2.
Proposition 4: For a doubly selective MIMO Rayleigh fad-

ing channel, if the channel is spatially uncorrelated, meaning
that Ψ

TX
= I

N
and Ψ

RX
= I

M
, then the ergodic capacity can

be accurately approximated by

Cav

MIMO

.=
∫ ∞

0

log2

(
1 +

γ

N
· γ

ISI
· λ

)

·
m−1∑
i=0

i!
(i+n−m)!

[
Ln−m

i (λ)
]2

λn−me−λdλ (16)

where m = min{M, N}, n = max{M, N}, Lj
i (·) is the

associated Laguerre polynomial [1] of order i, and γISI is
the ISI degradation factor due to the channel ISI inter-tap
correlations.

Remark 6: Propositions 3 and 4 show that the capacity
results of the SISO doubly selective Rayleigh fading channel
can be extended to SIMO, MISO and MIMO doubly selective
fading channels. The proofs of these two propositions are
similar to those of Propositions 1 and 2. Details are omitted
for brevity. It should be noted that the difference between (16)
and Telatar’s result [1] lies in the ISI degradation factor γ

ISI
.

Remark 7: The ergodic capacity formula given by (16)
can be approximated with high accuracy when m is large and
M ≥ N , as follows

Cav

MIMO
≈ Capprx

MIMO
=

N

2π

∫ b

a

log2 (1+γ · γISI · λ)

·
√

(λ − a)(b − λ)
λ

dλ (17)

where a = (
√

M/N − 1)2 and b = (
√

M/N + 1)2.
This implies that if the number of antennas increases with

a fixed ratio N
M , then the ergodic capacity increases linearly

with N (or M ).

B. Triply Selective Rayleigh Fading Channels

We are now in a position to present the ergodic capacity
results for MIMO triply selective Rayleigh fading channels.

Theorem 1: For the triply selective fading MIMO chan-
nel characterized by equations (1)-(3), the ergodic capacity
defined by (6) is equivalent to the following expression

Cav

MIMO
=

1
2π

∫ 2π

0

E
H

W

{
log2 det

[
I

M
+

γ

N
· f(ω)

·Ψ
RX

H
W

Ψ
TX

H†
W

]}
dω, b/s/Hz (18)

where H
W

is an (M ×N) matrix whose elements are nor-
malized i.i.d. complex Gaussian random variables, and f(ω)
is the channel power spectrum function determined solely by
Ψ

ISI
as follows

f(ω) = 1 + 2
L−1∑
i=1

ai cos(iω), ai =
L−1−i∑

l=0

Ψ
ISI

(l, l + i).

Proof: See Appendix B.
As a straightforward extension of Propositions 2–4, one can

obtain the following result.
Proposition 5: The triply selective fading MIMO channel

ergodic capacity given by (18) can be accurately approximated
by

Cav

MIMO

.=E
H

W

{
log2det

[
I

M
+

γ

N
·γ

ISI
·Ψ

RX
H

W
Ψ

TX
H†

W

]}
(19)

where γISI is defined by the same way as that of Proposition
2.

Remark 8: The advantage of (18) over the capacity def-
inition (6) is that the infinite sized channel matrix H in (6)
is reduced into finite and small sized (i.e., M × N ) random
matrix HW in (18). Furthermore, the L × L ISI inter-tap
correlation matrix Ψ

ISI
is also converted to a scalar function

f(ω) under the condition that the multiple subchannels share
the same ISI fading characteristics [20]. This condition is met
if the base station antenna separations are much smaller than
the distance between the base station and the mobile station,
which is usually the case in practice. This salient feature of
(18) is obtained through the decomposition property (3). It
makes the capacity analysis of triply selective fading channels
mathematically manageable. Proposition 5 makes one step
forward to simplify the computation of the underline ergodic
capacity.

Remark 9: It is noted that for spatially semicorrelated
cases, i.e., ΨT X = IN or ΨRX = IM , the capacity formula
(19) can be derived to have deterministic expression by
utilizing the techniques proposed in [7] and [9] for frequency
flat fading channels. For the case that both ΨT X and ΨRX

are non-identity matrices, very tight upper bound and lower
bound can be derived for (19) by employing the procedure
presented in [14] for frequency flat fading channels, details
are omitted for brevity.

Remark 10: The ergodic capacity formula given by (19)
can be significantly simplified for SIMO and MISO systems
as shown below.

Proposition 6: For SIMO triply selective Rayleigh fading
channels, the individual subchannels are spatially correlated,
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i.e., Ψ
RX

is not an identity matrix. Since N = 1 and Ψ
TX

= 1,
the ergodic capacity (19) can be simplified to be

Cav

SIMO

.=
∫ ∞

0

log2 (1+γ · γ
ISI

· λ) · p
λ
(λ) · dλ (20)

where p
λ
(λ) =

M∑
k=1

βk

σk
exp

(
− λ

σk

)
with

βk =
M∏

i=1,i�=k

σk

σk − σi
and σi being the ith eigenvalue

of Ψ
RX

.
Proposition 7: For MISO triply selective Rayleigh fading

channels, the individual subchannels are also spatially corre-
lated, i.e., Ψ

TX
is not an identity matrix. Since M = 1 and

ΨRX = 1, the ergodic capacity (19) can be simplified to be

Cav

MISO

.=
∫ ∞

0

log2

(
1+

γ

N
· γ

ISI
· λ

)
· p

λ
(λ) · dλ (21)

where p
λ
(λ) =

N∑
k=1

βk

σk
exp

(
− λ

σk

)
with

βk =
N∏

i=1,i�=k

σk

σk − σi
and σi being the ith eigenvalue

of Ψ
T X

.
The proof of Propositions 6 and 7 are omitted for brevity.

IV. NUMERICAL RESULTS

To verify the theoretical ergodic capacity results presented
in Section III, we have conducted extensive simulations which
employs the discrete-time time-varying frequency-selective
Rayleigh fading MIMO channel model described in Section
II with different channel conditions such as Doppler spread
Fd, channel length L, block length K , and antenna numbers
M and N . To keep the paper within the length limit, we only
present three representative examples here.

Our first example is on the ergodic capacity of three SISO
Rayleigh fading channels, which is presented in Fig. 2. The
fading channels are 1) frequency flat Rayleigh fading channel,
2) frequency-selective Rayleigh fading channels with four
uncorrelated taps, and 3) frequency-selective Rayleigh fading
channels with Hilly Terrain (HT) profile as defined in [28],
whose discrete-time delay line taps are inter-tap correlated,
and the matrix Ψ

ISI
can be calculated by the algorithm in [20].

As a reference, the AWGN channel capacity is also shown in
Fig. 2. It is clear that the inter-tap-uncorrelated frequency-
selective fading channel has the same ergodic capacity as
that of the frequency flat fading channel, and the inter-tap
correlated HT frequency-selective fading channel has smaller
ergodic capacity than that of the frequency flat fading channel.

As the second example, Fig. 3 depicts the capacity of a 4×1
(SIMO) system and an 1×4 (MISO) system over four different
Rayleigh fading channels: 1) spatially-uncorrelated frequency
flat Rayleigh fading channel; 2) spatially-correlated frequency
flat Rayleigh fading channel with the spatial correlation matrix
being Ψ

RX
(i, j) = 0.9

|i−j|
for SIMO system or Ψ

TX
(i, j) =

0.9
|i−j|

for MISO system; 3) spatially-uncorrelated HT fad-
ing channel; 4) spatially-correlated HT fading channel with
the spatial correlation matrix being Ψ

RX
(i, j) = 0.9

|i−j|
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Fig. 2. Ergodic capacity of SISO Rayleigh fading channels.

or Ψ
TX

(i, j) = 0.9
|i−j|

. As can be seen from this figure,
both spatial correlations and inter-tap correlations reduce the
ergodic capacity. Moreover, the inter-tap correlations can
have larger impact on the ergodic capacity than the spatial
correlations.
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Fig. 3. Ergodic capacity of 4×1 (SIMO) and 1×4 (MISO) Rayleigh fading
channels.

As the third example, Fig. 4 plots the ergodic capacity for
2×2 and 4×4 systems over three fading channel conditions:
1) spatially-uncorrelated frequency flat fading; 2) spatially-
uncorrelated frequency-selective fading with Ψ

ISI
(i, j) =

0.95
|i−j|

4 ; 3) triply selective fading with Ψ
T X

(i, j) = 0.7
|i−j|

,

Ψ
RX

(i, j) = 0.7
|i−j|

and Ψ
ISI

(i, j) = 0.95
|i−j|

4 . Again, all
the simulation results are in excellent agreement with the
theoretical results obtained from Theorem 1 and Propositions
4 and 5. It is also indicated that the spatial correlation and the
ISI inter-tap correlation reduce the ergodic capacity for equal
power allocation at the transmitter.

It is worthwhile to note that in our simulations, we em-
ployed the improved Jakes simulator [21] to incorporate
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different time variations by choosing different mobile speeds
such as 3 km/h, 30 km/h and 120 km/h, we obtained the same
capacity results.

V. CONCLUSION

The ergodic capacity has been investigated for triply
selective (spatially-correlated, time-varying and frequency-
selective) MIMO Rayleigh fading channels. A closed-form
formula has been derived that quantifies the effect of the ISI
fading on the ergodic capacity into an ISI degradation factor
γ

ISI
. In the special case when the ISI fading does not have

inter-tap correlations, γ
ISI

= 1, and the ergodic capacity is
the same as that of the frequency flat channel. In the more
general cases of frequency selective MIMO channels, γ

ISI
< 1,

and the inter-tap correlations of the ISI fading will reduce the
ergodic capacity. A set of simplified results has been derived
for SIMO and MISO systems. The new formulae have been
mathematically proved and experimentally verified via Monte-
Carlo simulations.

APPENDIX A: PROOF OF PROPOSITIONS 1 AND 2

We prove Proposition 1 by considering the slowly time-
varying scenario, in which the channel matrix H becomes a
Toeplitz matrix as follows

H =

⎡
⎢⎢⎢⎣

h
L−1 h

L−2 · · · h0 0 0 0
0 h

L−1 · · · · · · h0 0 0

0 0
. . . · · · · · · . . . 0

0 0 0 h
L−1 · · · · · · h0

⎤
⎥⎥⎥⎦ . (22)

According to the property of finite-order (band-limited)
Toeplitz matrix shown in [29], the ergodic capacity defined
by (6) can be derived to be

Cav

SISO
= E

{
1
2π

∫ 2π

0

log2

[
1 + γ · |h(ω, k)|2

]
dω

}
(23)

where

h(ω, k) =
L−1∑
l=0

hl(k) · exp
(√−1 · l · ω)

. (24)

For Rayleigh fading channels, the channel coefficients hl(k)
are zero mean circularly symmetric complex Gaussian random
variables for all l and k. For a given value ω, the function
h(ω, k) is also a zero mean circularly symmetric complex
Gaussian random variable. Thus |h(ω, k)|2 is exponentially
distributed at the given value ω. Moreover, the variance of
h(ω, k) is given by

f(ω) = E
[
h(ω, k) · h∗

(ω, k)
]

=
L−1∑
l1=0

L−1∑
l2=0

E
[
hl1(k)·h∗

l2(k)
]
·exp

[√−1 · (l1−l2) · ω
]

=
L−1∑
l1=0

L−1∑
l2=0

ΨISI (l1, l2) · exp
[√−1 · (l1 − l2) · ω

]

=
L−1∑
l=0

Ψ
ISI

(l, l) + 2
L−1∑
k=1

a
k
cos (k · ω)

= 1 + 2
L−1∑
k=1

a
k
cos (k · ω) (25)

where a
k

=
∑L−1−k

l=0 Ψ
ISI

(l, l + k). Therefore, the PDF of
|h(ω, k)|2 is equivalent to the PDF of (λ · f(ω)) with λ being
a unit variance exponentially distributed random variable, and
the ergodic capacity is given by

Cav

SISO
=

∫ ∞

0

{
1
2π

∫ 2π

0

log2 [1+γ ·f(ω)·λ]dω

}
·e−λ ·dλ. (26)

This completes the proof for Proposition 1.
We are now in a position to prove Proposition 2.
Based on the double integration (26), utilizing the mean-

value theorem of integrals [30], one can obtain

Cav

SISO
=

∫ ∞

0

log2 [1 + γ · f(ξ) · λ] · e−λ · dλ. (27)

where ξ ∈ [0, 2π).
It is noted here that the mean-value theorem has been com-

monly used for single integration. For our double integration
case, the parameter ξ does depend on the distributions of λ
and ω. However, since f(ω) is a periodic function in the range
[0, 2π) and λ has unit mean value, the parameter ξ has a value
within [0, 2π).

To approximate f(ξ), we fix λ at its mean value which is
1, then calculate the following integral at a given SNR γ as
follows

Cγ =
1
2π

∫ 2π

0

log2 [1 + γ · f(ω)]dω. (28)

Based on Cγ = log2 [1 + γ · f(ξ)], we can find f(ξ) and define
it as the ISI degradation factor

f(ξ) =
2

Cγ − 1
γ

= γ
ISI

. (29)

This completes the proof for Proposition 2.
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APPENDIX B: PROOF OF THEOREM 1

The principle of proving this theorem is similar to that
of Proposition 1. Some details are outlined here. Since the
time variation does not affect the ergodic capacity for ergodic
fading channels, we prove the theorem by considering the
slowly time-varying scenario. The channel matrix H becomes
a block Toeplitz matrix with the form as follows

H=

⎡
⎢⎢⎢⎢⎢⎣

H(L−1,k) H(L−2,k) · · · H(0, k) 0 0 0

0 H(L−1,k)
. . . H(1, k) H(0, k)

. . . 0

0
. . .

. . .
. . .

. . .
. . . 0

0 0 0 H(L−1,k) H(L−2,k) · · · H(0, k)

⎤
⎥⎥⎥⎥⎥⎦ .

Based on the property of the block Toeplitz matrix [29], we
can reduce the large dimension (KM ×KM ) random matrix
to a much smaller dimension (M × M ) one as

Cav

MIMO
= lim

K→∞
1
K

{
EH

[
log2 det

(
IKM +

γ

N
HH†

)]}
= E

{
1
2π

∫ 2π

0

log2det
[
I

M
+

γ

N
·H(ω)·H†(ω)

]
dω

}
(30)

where

H(ω) =
L−1∑
l=0

H(l, k) · exp
(√−1 · l · ω)

. (31)

Let Hmn(ω) be the (m, n)th element of H(ω), utilizing
the de-coupling property (3), we have the cross-correlation
between Hmn(ω) and Hpq(ω) as follows

E [
Hmn(ω)·H∗

pq(ω)
]

= E
[

L−1∑
l1=0

hmn(l1, k) · e(
√−1l1ω)

·
L−1∑
l2=0

h∗
pq(l2, k) · e(−√−1l2ω)

]

=
L−1∑
l1=0

L−1∑
l2=0

E [
hmn(l1, k)·h∗

pq(l2, k)
] · e[

√−1(l1−l2)ω]

=
L−1∑
l1=0

L−1∑
l2=0

Ψ
RX

(m, p)Ψ
TX

(n, q)Ψ
ISI

(l1, l2)e[
√−1(l1−l2)ω]

= Ψ
RX

(m, p) ·Ψ
TX

(n, q) · f(ω) (32)

where f(ω) = 1 + 2
∑L−1

k=1 a
k
cos (k · ω) with a

k
=∑L−1−k

l=0 Ψ
ISI

(l, l + k).
For MIMO Rayleigh fading channels, all the channel coeffi-

cients hmn(l, k) are zero mean circularly symmetric complex
Gaussian random variables. For a given value ω, the functions
Hij(ω) are also zero mean circularly symmetric complex
Gaussian random variables for all i and j. Moreover, based on
(32) with some algebraic and statistics manipulations, we can
prove that the statistical properties of H(ω) are identical to

those of the product matrix
√

f(ω)·Ψ 1
2
RX H

W
Ψ

h
2

TX , where H
W

is an M × N matrix with all elements being i.i.d. zero mean
circularly symmetric complex Gaussian random variables.
Therefore, the expression (30) of the ergodic capacity Cav

MIMO

becomes

Cav

MIMO
=

1
2π

∫ 2π

0

E
{
log2 det

[
IM +

γ

N
·
√

f(ω)

· Ψ 1
2
RX

H
W

Ψ
h
2

TX
·
√

f(ω)·Ψ 1
2
TX

Hh
W

Ψ
h
2
RX

]}
dω

=
1
2π

∫ 2π

0

E
{
log2det

[
IM+

γ

N
f(ω)ΨRXHWΨTXHh

W

]}
dω.

This completes the proof.

REFERENCES

[1] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecom., vol. 10, pp. 585-595, Nov. 1999. Also in AT&T Bell Lab. Tech.
Memo, June 1995.

[2] G. J. Foschini and M. J. Gans, “On limits of wireless communications in
a fading environment when using multiple antennas,” Wireless Personal
Commun., vol. 6, pp. 311-335, 1998.

[3] D. S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation
and its effect on the capacity of multielement antenna systems,” IEEE
Trans. Commun., vol. 48, pp. 502-513, Mar. 2000.

[4] C. N. Chuah, D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, “Capacity
scaling in MIMO wireless systems under correlated fading,” IEEE Trans.
Inform. Theory, vol. 48, pp. 637-650, Mar. 2002.

[5] M. Kang and M. Alouini, “Largest eigenvalue of complex wishart
matrices and performance analysis of MIMO MRC systems,” IEEE J.
Select. Areas Commun., vol. 21, pp. 418-426, Apr. 2003.

[6] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits
of MIMO channels,” IEEE J. Select. Areas Commun., vol. 21, pp. 684-
702, June 2003.

[7] M. Chiani, M. Z. Win, and A. Zanella, “On the capacity of spatially cor-
related MIMO Rayleigh-fading channels,” IEEE Trans. Inform. Theory,
vol. 49, pp. 2363-2371, Oct. 2003.

[8] H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels:
spatial fading correlations, double scattering, and keyhole,” IEEE Trans.
Inform. Theory, vol. 49, pp. 2636-2647, Oct. 2003.

[9] P. J. Smith, S. Roy, and M. Shafi, “Capacity of MIMO systems with
semicorrelated flat fading,” IEEE Trans. Inform. Theory, vol. 49, pp.
2781-2788, Oct. 2003.

[10] A. J. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time
Wireless Communications. Cambridge University Press, 2003.

[11] Special issue on MIMO systems and applications, IEEE J. Select. Areas
Commun., vol. 21, Apr. and June 2003.

[12] Special issue on space-time transmission, reception, coding and signal
processing, IEEE Trans. Inform. Theory, vol. 49, no. 10, Oct. 2003.

[13] Special issue on MIMO wireless communications, IEEE Trans. Signal
Processing, vol. 51, no. 11, Nov. 2003.

[14] Q. T. Zhang, X. W. Cui, and X. M. Li, “Very tight capacity bounds
for MIMO-correlated Rayleigh-fading channels,” IEEE Trans. Wireless
Commun., vol. 4, pp. 681-688, Mar. 2005.

[15] A. Lozano and C. Papadias, “Layered space-time receivers for
frequency-selective wireless channels,” IEEE Trans. Commun., vol. 50,
pp. 65-73, Jan. 2002.

[16] H. Bolcskei, D. Gesbert, and A. J. Paulraj, “On the capacity of OFDM-
based spatial multiplexing systems,” IEEE Trans. Commun., vol. 50, pp.
225-234, Feb. 2002.

[17] Z. Zhang and T. M. Duman, “Achievable information rates of multi-
antenna systems over frequency-selective fading channels with con-
strained inputs,” IEEE Commun. Lett., vol. 7, pp. 260-262, June 2003.

[18] K. Liu, V. Raghavan, and A. M. Sayeed, “Capacity scaling and spectral
efficiency in wide-band correlated MIMO channels,” IEEE Trans. Inform.
Theory, vol. 49, pp. 2504-2526, Oct. 2003.

[19] L. H. Ozarow, S. Shamai, and A. D. Wyner, “Information theoretic
considerations for cellular mobile radio,” IEEE Trans. Veh. Technol., vol.
43, pp. 359-378, May 1994.

[20] C. Xiao, J. Wu, S.-Y. Leong, Y. R. Zheng, and K. B. Letaief, “A discrete-
time model for triply selective MIMO Rayleigh fading channels,” IEEE
Trans. Wireless Commun., vol. 3, pp. 1678-1688, Sept. 2004.

[21] C. Xiao, Y. R. Zheng, and N. C. Beaulieu, “Novel sum-of-sinusoids
simulation models for Rayleigh and Rician fading channels,” IEEE Trans.
Wireless Commun., vol. 5, pp. 3667-3679, Dec. 2006.

[22] P. A. Bello, “Characterization of randomly time-variant linear channels,”
IEEE Trans. Commun. Sys., vol. 11, pp. 360-393, Dec. 1963.

[23] C. Sgraja and C. Xiao, “On discrete-time modeling of time-varying
WSSUS fading channels,” in Proc. 2006 IEEE ICC’06, vol. 12, pp. 5486-
5490, Istanbul, Turkey, June 2006



XIAO and ZHENG: ON THE ERGODIC CAPACITY OF MIMO TRIPLY SELECTIVE RAYLEIGH FADING CHANNELS 2279

[24] X. Ma and G. B. Giannakis, “Maximum-diversity transmissions over
doubly-selective wireless channels,” IEEE Trans. Inform. Theory, vol.
49, no. 7, pp. 1832-1840, July 2003.

[25] A. Edelman, “Eigenvalues and condition numbers of random matrices,”
Ph.D. thesis, M.I.T. Press, Cambridge, MA, USA, May 1989.

[26] V. L. Girko, Theory of Random Determinants. Kluwer, 1990.
[27] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley,

1991.
[28] ETSI. GSM 05.05, “Radio transmission and reception,” ETSI EN 300

910 V8.5.1, Nov. 2000.
[29] R. M. Gray, “On the asymptotic eigenvalue distribution of Toeplitz

matrices,” IEEE Trans. Inform. Theory, vol.IT-18, pp. 725-730, Nov.
1972.

[30] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products, 6th Ed. Edited by A. Jeffrey, Academic Press, 2000.

Chengshan Xiao (M’99-SM’02) received the B.S.
degree from the University of Electronic Science
and Technology of China, Chengdu, China, in 1987,
the M.S. degree from Tsinghua University, Beijing,
China, in 1989, and the Ph.D. degree from the
University of Sydney, Sydney, Australia, in 1997,
all in electrical engineering.

From 1989 to 1993, he was on the Research Staff
and then became a Lecturer with the Department
of Electronic Engineering at Tsinghua University,
Beijing, China. From 1997 to 1999, he was a Se-

nior Member of Scientific Staff at Nortel Networks, Ottawa, ON, Canada.
From 2000 to 2007, he was an Assistant Professor and then became an
Associate Professor at the University of Missouri-Columbia, MO. He is now
an Associate Professor with the Department of Electrical and Computer
Engineering at Missouri University of Science and Technology (formerly
University of Missouri-Rolla), Rolla, MO. His research interests include
wireless communications and signal processing. He has published extensively
in these areas. He holds three U.S. patents. His algorithms have been
implemented into Nortel’s base station radios with successful technical field
trials and network integration.

Dr. Xiao is the founding Area Editor for Transmission Technology of
the IEEE Transactions on Wireless Communications. Previously, he was
an Associate Editor for the IEEE Transactions on Vehicular Technology,
the IEEE Transactions on Circuits and Systems-I, and the International
Journal of Multidimensional Systems and Signal Processing. He served as
a Technical Program Co-Chair for the 2007 IEEE Wireless Communications
and Networking Conference, and Co-Chair for the 2008 IEEE ICC Wireless
Communications Symposium. He is the founding Chair of the IEEE Com-
munications Society Technical Committee on Wireless Communications and
a member of the IEEE Communications Society Technical Activity Council.

Yahong Rosa Zheng (S’99-M’03-SM’07) received
the B.S. degree from the University of Electronic
Science and Technology of China, Chengdu, China,
in 1987, the M.S. degree from Tsinghua University,
Beijing, China, in 1989, both in electrical engi-
neering. She received the Ph.D. degree from the
Department of Systems and Computer Engineering,
Carleton University, Ottawa, ON, Canada, in 2002.

From 1989 to 1997, she held Engineer positions
in several companies. From 2003 to 2005, she was a
Natural Science and Engineering Research Council

of Canada (NSERC) Postdoctoral Fellow at the University of Missouri,
Columbia, MO. Currently, she is an Assistant Professor with the Department
of Electrical and Computer Engineering at Missouri University of Science
and Technology (formerly University of Missouri-Rolla), Rolla, MO. Her
research interests include array signal processing, wireless communications,
and wireless sensor networks.

Dr. Zheng is currently an Editor for the IEEE Transactions on Wireless
Communications. She has served as a Technical Program Committee member
for the 2004 IEEE International Sensors Conference, the 2005, 2006 and 2007
IEEE Global Telecommunications Conference, and the 2006, 2007 and 2008
IEEE International Conference on Communications.


	On the Ergodic Capacity of MIMO Triply Selective Rayleigh Fading Channels
	Recommended Citation

	TW-Dec-06-1090.dvi

