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emote Detection of Acoustic Boundaries 
Using Radiation Imaging 

Richard E. DuBroff, Senior Member, IEEE, 

Abstract-In this paper, we present an acoustic imaging op- 
erator. This operator is based upon combining the material 
boundary conditions at an acoustic boundary and the radiation 
boundary conditions associated with one way wave propagation. 
Numerical examples, using the second-order imaging operator, 
are presented in order to demonstrate the applicability of this 
method to the detection of two-dimensional boundaries. 

I. INTRODUCTION 

HE USE OF remote measurements to delineate bound- 
aries between acoustically dissimilar materials has ap- 

plications in many diverse fields. Various approaches have 
been developed in recent years to produce useful images in 
areas such as nondestructive evaluation (NDE) and medical 
diagnostics [ 11-[4]. 

Of particular interest in this study are applications where 
a significant change is associated with some attribute (such 
as acoustic impedance) of the system. The present approach 
consists of constructing a parameter dependent radiation imag- 
ing operator (RIO) to remotely detect the boundary between 
two acoustic media. One of the two media (medium 1) is 
presumed to be at least partially accessible in the sense that 
acoustic sources can be appropriately located and that acoustic 
measurements can be made at some points in medium 1. The 
other medium is considered to be inaccessible. The acoustic 
measurements are assumed to consist of recording the values 
of the total acoustic response (the incident plus scattered 
acoustic pressure) on some datum surface when the boundary 
between the two media is insonified by a known acoustic 
source. 

In implementing this approach, the first step is to extrapolate 
the acoustic pressure measurements (pl (r; t )  evaluated when 
r is on the datum surface) to yield an estimate of the acoustic 
pressure throughout medium 1 and to yield an extrapolation 
of this function into medium 2. The extrapolated pressure will 
be denoted by p,(r, t ) .  The problem of wavefield extrapola- 
tion (also sometimes referred to as wavefield reconstruction 
or, in a seismic context, migration) has received extensive 
attention and there are many well-established methods for 
accomplishing this task. Some of these methods are based 
on the Kirchhoff integral [5]-[7]. Other successful methods 
of extrapolation have been based on a frequency domain 
representation of the acoustic wave equation 181, [SI. The type 
of extrapolation used here is based on the finite difference time 
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Medium 1 7  

Fig. 1. A small portion of the boundary between two acoustic materials 

domain implementation of the acoustic wave equation and is 
based on earlier work by Claerbout [lo], 1111 and McMechan 
u21. 

Because the methods of wavefield extrapolation are well 
documented, the next section begins by describing the con- 
struction of a second-order radiation imaging operator (RIO) 
starting from the conditions satisfied by the pressure at the 
boundaq between the two media. The RIO is based on com- 
bining material boundary conditions with radiation boundary 
conditions (RBC’s). The RBC’s proposed by Engquist and 
Majda [13], [14], as well as those proposed by Bayliss and 
Turkel [15], have been implemented in various forms and 
applied to a wide range of problems in wave propagation 
[16]-[18]. The present approach to developing the RIO is 
based upon the RBC’s proposed by Engquist and Majda [13], 
[14]. The second-order RIO is then applied to the extrapolated 
pressure. The output of the operator, when suitably processed, 
is shown to yield an image of the boundary between the two 
materials. 

The results cited in this account were all based upon the nu- 
merical simulation of acoustic measurements. The procedures 
used to obtain the simulated measurements are described in 
Section III and the results of applying the RIO are found in 
Section IV. 

11. A SECONDORDER RADIATION IMAGING OPERATOR 

Fig. 1 shows a small portion of a boundary between two 
acoustic media with point q denoting one point on the bound- 
ary. 

0885-3010/95$04.00 0 1995 IEEE 
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Using p1 (r , t )  and pa (r, t )  to represent the acoustic pressure 
in these media, the material boundary conditions (MBC’ s) 
impose continuity of the pressure and its normal derivative 
at each point q 

P1(G)lq = p2(r,t)lq (1) 

and 

provided the mass densities of the two media are equal. 
Letting s represent a continuously varying parameter (e.g., 

arc length) along the curve describing the boundary and 
differentiating (1) along the boundary 

(3) 
dk  dk  

-Pl(r,t)lq dsk = -p2(r , t ) Iq  

for derivatives of order I C .  When k = 1, (3) is equivalent to 
requiring continuity of the tangential derivative of pressure at 
point q. Thus, the MBC’s in the case of equal mass densities 
(PI = p2) imply continuity of all first-order spatial derivatives 
[20]. In addition, both MBC’s may be differentiated with 
respect to time to show that 

(4) 
--Pl(r,t)Iq dm = g P 2 ( r , t 4  

dndtm P 1 W ) l  = andt” p . ( r , t ) /  

atm 
4 

and 
am+l  p + l  

( 5 )  

for m-th order partial differentiation with respect to time. 
Although the assumption of equal mass densities may seem 
unduly restrictive, it will be shown, in subsequent numerical 
examples, that the RIO can tolerate some degree of uncer- 
tainty in the values of its parameters. These numerical results 
suggest that the RIO presented here may be able to tolerate 
small density contrasts. Large density contrasts would require 
modifying (2) and would also require a somewhat modified 
approach in the numerical procedure for obtaining simulated 
data (described in Section 111). 

In developing second-order RIO’s, it is sufficient for the 
pressures, pl (r, t )  and p2(r, t )  to be differentiable to the sec- 
ond order. Higher order RIO’s (which will not be considered 
here) impose correspondingly more stringent differentiability 
requirements of these pressures. 

To the extent that p2(r , t ) l q  represents a wave radiating 
away from the boundary, p 2 ( r , t ) l q  can be regarded as a 
solution of the one way wave equation 

4 4 

and by approximating the pseudodifferential operator L+ with 
a two-term Taylor series expansion [18] 

(7) (c2a:t +a,“, - (1/2)c3:,}P2(r,t)lq = 0 

can be regarded as a second-order RBC satisfied by the 
pressure in medium 2 at each point on the boundary. It should 

again be emphasized that the two media are presumed to be 
homogeneous. A more general approach would be required if 
the media were inhomogeneous [ 191. 

All of the terms in this equation involve second-order 
differentiation. Furthermore, the derivatives appearing in the 
first two terms are continuous at the boundary. Consequently, 
the second-order RBC may be partially rewritten in terms of 
p1(r,t) as 

{c2& + at2}Pl(r,t11q - (1/2)c;a:,P2(r,t)lq = 0. (8) 

The differentiation of pl(r,t) is more convenient (from a 
numerical point of view) if the differentiation is performed 
with respect to the global variables z, y, and t. Thus, the first 
two terms in (8) can be replaced with 

{sa:, + &}Pl(r,t)Iq = 

{e2 [n& + nyait] + %}Pl(r,t)lq (9) 

where n, and ny are the LC and y components of the unit 
vector n at point q (see Fig. 1). 

To write the third term in (8) in terms of pl( r , t )Jq,  the 
second-order tangential derivative may first be expressed in 
terms of the global variables as 

@22(r ,  tilq =[.,a, - n,ay12P2(r, t)l, 

=(.;a& - 2n,nya:, + n2a,2,}P2(r,t)lq. (10) 

The continuity of the second-order arc length derivative ((3) 
with k = 2) may also be expressed in terms of global variables 
to show that 

{dlaz + g/”dy + (z 1 2  ) a,, 2 + 2z1y1d2, + ( 1 ~ ’ ) ~ a ~ ~ ) p 2 ( r , t ) I ~ =  

{zllaz + Yl”8Y + (. 1 a,, + 22 Y a,, + (Y 1 aYy>Pl(r,t)lq 1 2  2 1 1 2  1 2  2 

(11) 

with primes indicating arc length derivatives of z and y 
along the boundary. Since the first-order spatial derivatives of 
p l  (r, t )  and p2(r, t )  are equal at each point q on the boundary, 
this equation may be reduced to 

1 2  2 1 1 2  1 2  2 { (. 1 a,, + 2% Y %y + (1J 1 &Jy1172(r, i l lq = 
1 2  2 1 1 2  1 2  2 

{(z 1 a,, + 22 Y a,, + (Y 1 ayy)Pdr,t)lq. (12) 

The arc length derivatives of the z and y coordinates 
along the boundary may, in turn, be written in terms of the 
components of the boundary normal vector n by noting 

in which case ( 12) becomes 

{+& - 2nzny32y + n ~ ~ & ) p z ( r , t ) l q  = 

{n$a& - 2n,n,d& + d a i Y } m ( r , t ) l q .  (13) 

Comparing the left side of the present equation with the right 
side of (10) allows the second-order tangential derivative of 
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50 0 X (Normalized Distance) 
1 -  

Fig. 2. Simulation geometry for a flat boundary. 

p2( r ,  t )  at each point on the boundary to be computed from a 
knowledge of the second-order partial derivatives of p l  (r. t )  
in accordance with 

i31y,p2(r,t)Iq = {nid;, - 2n,n,d& + n:d,2,}pl(r;t)Iq. 

(14) 

Finally, substituting (14) and (9) into (8) gives 

- ( 1 / 2 ) e i [ n i d &  - 2n,n,d&, + n3&]}p1( r , t ) Iq  = 0. 
(1.5) 

The specific combination of parameters (n,, ny, and c2) and 
partial differential operators, appearing within the braces on 
the left side of this equation, provides an example of a second- 
order radiation imaging operator (RIO). This linear operator 
will be denoted symbolically by Lrio ( nz ny c2). Once the 
parameters of the operator have been selected, the operator 

can be applied to pl (r, t )  to produce an output in the form 
of a function of time and position. Equation (15) states that 
when this operator is applied to p1 (r, t )  and is subsequently 
evaluated at a point on the boundary (point q ) ,  the output is 
zero. In practice, the right side of (15) will not be exactly zero 
at a point on the boundary due to the approximations inherent 
in the RBC’s. 

111. NUMERICAL PROCEDURE 
To demonstrate the application of this RIO, three different 

geometric boundaries between the upper and lower half spaces 
shown in Fig. 2 were considered. 

In the first case, the boundary between the two half spaces 
consisted of a flat horizontal surface (as shown in Fig. 2). In 
the second case, the boundary consisted of a notched horizontal 
surface (Fig. 3(a)), while in the third case part of the boundary 
consisted of a horizontal segment combined with an inclined 
segment as shown in Fig. 3(b). 

The first step in each of the three cases consisted of using the 
finite difference time domain approach to simulate the process 
of acquiring a sampled set of data on the surface labeled 
“datum” in Fig. 2. Velocities e1 and e2 where chosen to be 

1000 and 1500 m/s ,  respectively, while the mass densities p1 
and p2 were chosen to be equal. Computational mesh points 
occurring on the boundary between the two half spaces were 
assigned a velocity equal to the average of e1 and c2, as 
suggested in a paper by Zhang and Mei [21]. 

The spatial and temporal sampling intervals used in the 
finite difference simulations were 6, = 6, = 50 m and 
St = 0.0167 s. The normalized coordinates and normalized 
time, as indicated with capital letters, refer to distances in 
meters divided by 6, and time in seconds divided by &. For the 
velocities used in these simulations, the spatial and temporal 
sampling intervals were consistent with the Courant stability 
criteria [22]. 

In all cases, the datum consisted of a horizontal surface 
located at a normalized depth of Y = 20 and the source 
signature consisted of a Gaussian pulse [21] 

Using the 40-dB bandwidth points of the source’s power 
spectrum to establish a nominal upper limit on the frequency 
of the source, the computational domain shown in Fig. 2 is 
roughly eight wavelengths long on each edge. The major 
portion of the source’s power spectrum falls into a region over 
which the spatial sampling interval comprises one-tenth or less 
of the wavelength in order to reduce the effects of numerical 
dispersion [22]. 

With the exception of the results to be presented in Fig. 6, 
the normalized source coordinates were X ,  = 25 and Y, = 15. 
The discretized version of the acoustic wave equation i s  

‘ { p ( X  + 1, Y,  T - 1) - 4p(X ,  Y, T - I) 
+p(X - 1, Y, T - 1) + p ( X ,  Y + 1, T - 1) 
+ p ( X ,  Y - 1, T - 1)) (17) 

where f ( X , Y )  is one when X = X ,  and Y = Y, and 
zero everywhere else. Discretized second-order RBC’s [ 161, 
[23] were used to terminate the computational domain on the 
surfaces defined by X = 0, X = 50, Y = 0,  and Y = 50. 
For example, the second-order RBC applied at X = 0 in 
discretized form is 

p(O,Y,T) = -p(l,Y,T - 2) 

- 2.Op(O, Y ,  T - 1) + p ( 0 ,  Y - 1, T - 1)) 

- 2 . O p ( l , Y , T - I ) + p ( l , Y  -1 ,T-  1)). 

(18) 
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Y 

(b) 

Fig. 3.  Additional boundaries between the two half spaces shown in Fig. 2. 
(a) Notched boundary. (b) Asymmetric boundary. 

In each case, the simulation was run twice with 401 time 
samples (0 5 T 5 400) per run. The first run of the simulation 
was used to obtain the incident wave contribution to the 
sampled values of p ( X , Y , T )  on the datum (Y = 20). In 
this first run, the value of c2 was set equal to the value of 
c1 (1000 d s ) .  In the second run, the value of c2 was set 
equal to 1500 m/s. The sampled values of p ( X ,  U, T)I,=,, 
in the second run then contained contributions from both 
the incident and scattered waves. By comparing the sampled 
values from these two runs it was possible to separate the 
individual contributions of the incident and scattered waves. 
The sampled values of the incident and scattered waves on 
the datum were used in the second step of the process, namely 
wavefield extrapolation. 

The purpose of the wavefield extrapolation is to calculate 
the total wavefield, pe(rlt),  at all points below the datum, 
assuming that the wavefield propagates with a velocity of 
c1. Ideally, the extrapolated wavefield should agree with the 
simulated wavefield at all times and at all points between the 
datum and the boundary. Below the boundary, the extrapolated 
wavefield should be regarded as a mathematical extension of 
the wavefield existing above the boundary [20]. The incident 
wave contribution to p ( X ,  Y, T )  I y = 2 0  was extrapolated using 
the FD-TD approach in forward time while the scattered 
portion of p ( X ,  Y, T)IYZ2,, was extrapolated using the FD- 
TD approach in backward time [12]. The initial conditions 
(prior to T = 0) for the forward time FD-TD extrapolation 
consisted of assuming that the pressure was identically zero. 
The final conditions (after T = 401) for the backward time 
FD-TD extrapolation consisted of assuming that the pressure 
was also identically zero, even though the pressure obtained 
in the simulation had not yet reached this terminal value at 
T = 401 samples. 

IV. NUMERICAL RESULTS 
In all three cases, the assumed values for the final conditions 

would be expected to introduce some error in the extrapola- 

4.0 I 

-1.0 
0 0.833 1.667 2.5 3.333 4.167 5.0 

Time (s) 

(a) 

l’O i 
/c\ 0.9 1 

0.7: 

0.6 
2.0 2.17 2.33 2.5 2.67 2.83 

Time (s) 

(b) 

Fig. 4. A comparison of the simulated and extrapolated records of pressure 
at ( X ,  Y )  = (25, 25): (a) for the entire record length, and (b) for a selected 
portion of the record length containing the reflected pulse. 

tion process. In the simplest case (the horizontal reflector), 
this error is indicated by the small discrepancy between the 
simulated and extrapolated waves shown in Fig. 4. 

The time functions shown in this figure were obtained at the 
single spatial point X = 25,Y = 25. Fig. 4(a) indicates the 
magnitude of the discrepancy over the entire record length, 
while Fig. 4(b) shows the discrepancy over a time interval 
corresponding to the arrival of the reflected pulse. A point by 
point comparison of the terminal pressure values with the peak 
pressure values suggests that the absolute value of the terminal 
pressure is less than 5% of the absolute value of the peak 
pressure at each spatial sample point considered. Allowing a 
longer record length (T > 401) results in an even smaller 
error. Letting T = 1000, for example, was found to reduce 
the absolute value of this ratio (terminal to peak pressure) to 
less than 2%. 

Nevertheless, the RIO given in (15) was applied to the 
extrapolated wavefield (pe(r, t ) )  using the parameters c2 = 
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Fig. 5 .  Image surface for a flat boundary: (a) 3-D view, and (b) contour view. 

1500 m/s, n, = 0, and nY = 1. The average absolute value of 
the output of this operator, denoted here by 

was calculated at each point in the image subdomain 
([X, ,X2] x [Yl,Yz] = [11,39] x [21,49]) to produce an 
image of the boundary, and the results are presented in the 
form of a 3-D image surface (Fig. 5(a)) and a gray scale plot 
(Fig. 5(b)). The location of the boundary is indicated by a 
minimum in the value of ( I 

The image subdomain used in all of the examples is a subset 
of the computational domain. The size of this subdomain is 
dictated by storage limitations in the plotting software used. 

Fig. 6 shows one vertical slice (along X = 25) through 
an image surface for several different normalized source to 

(r , t )  I), . 

- D=31 
c. D=33 

5 m . o  r 

4ooo.O 

C -2 3000.0 
8 
B 

2 2000.0 
0 M 

I 

1ooO.0 

0.0 a 45 
25 30 35 40 

Y - Axis 

An example of the effect of changing the source to boundary Fig. 6.  
separation distance. 

boundary separations in the range of D = 25 to D = 35 
where D is the shortest distance between the source and the 
boundary, i.e., 

D = 40 - Y,. 

The source to boundary distance was changed by moving 
the source within the computational domain of Fig. 2, while 
keeping the datum and boundary locations fixed. In all cases, 
the minimum occurs at the same point Y = 40, but the 
minimum is generally lower as the source to boundary distance 
increases. This result can be interpreted in terms of the 
increased accuracy of the second-order RBC (and hence of 
the second-order RIO) in the far field. However, as the 
source to boundary distance increases by moving the source 
upward (away from the boundary), the RBC at Y = 0 (used 
in simulating the sampled wavefield on the datum) is less 
accurate. Thus, the increased accuracy of the RIO in this 
simulation is partially offset by the decreasing accuracy of 
the wavefield on the datum. 

With the source to boundary distance maintained at D = 25, 
the next figure (Fig. 7) shows the effect of using incorrect 
values for the parameter e2 in the second-order RIO. Again, 
this figure consists of a vertical slice ( X  = 25) through the 
image surface for a range of different choices for CZ. Generally, 
when cg is close to the correct value, the minimum occurs near 
Y = 40; but, as cg departs significantly from the correct value, 
the minimum at Y = 40 disappears. 

Fig. 8 shows, in a similar manner, the dependence of the 
image upon misalignment of the boundary normal direction. 
The correct values of parameters n, and nY are 0 and 1. 
For misaligned boundary normal directions, n, and nY can 
be written as 

n, = sin(6') 
ny = cos(0) 

where 6' is defined in Fig. 1. The effect of this misalignment 
is shown for several values of 6' between 0 and 45". Given 
the symmetry of Fig. 2 about X = 25, the effect of angular 
misalignment for a negative value of 6' would be expected to 
be identical to the effect for the corresponding positive angle. 
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An example of the effect of an incorrect selection for parameter c2. Fig. 7. 
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3000.0 
G .s 
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Fig. 8. 
direction. 

An example of the effect of misalignment in the boundary normal 

Figs. 9 and 10 show the 3-D and gray scale representations 
of the image surfaces for the notched and asymmetric bound- 
aries. In these cases, the RIO used n, = 0, ny = 1, and 
c2 = 1500 throughout the image subdomain. 

V. CONCLUSIONS 

The combination of material boundary conditions (MBC’s) 
with a second-order radiation boundary condition (RBC) has 
been shown to provide the basis for constructing a radiation 
imaging operator (RIO). Several numerical examples have 
been considered to show how the RIO can be used to detect 
the geometric configuration of an acoustic boundary. 

In theory, it should be possible to develop higher order 
RBC’s although an extension of this type would be expected to 
yield operators containing a larger number of parameters. Also, 
all of the examples considered to this point have consisted of 
boundaries between two acoustic half spaces. Thus, the effect 
of multiple reflections in the second material has not, as yet, 
been addressed. 

The MBC’s, as expressed by (1) and (2) ,  would seem to 
limit the applicability of this proposed method to acoustic 

l5u/”’ 

x 
15 20 25 30 35 

(b) 

Fig. 9. 
view. 

Image surface for a notched boundary: (a) 3-D view, and (b) contour 

materials having equal mass densities. In practice, this condi- 
tion is unlikely to be satisfied. Nonetheless, for small density 
contrasts, the ability of this method to tolerate small errors 
in velocity suggests that the method might also be able to 
tolerate small errors caused by assuming equal mass densities. 
For larger density contrasts (where the discontinuity in the 
pressure gradient cannot be ignored) andlor materials capable 
of supporting shear waves, the MBC’s used here would be 
inapplicable. By choosing a different set of MBC’s it may 
be possible to extend this method to include materials having 
different densities and/or materials capable of supporting shear 
waves. In any case, the resulting RIO’S would likely be 
more complicated and would also be expected to depend on 
additional parameters. 

While the performance of the RIO considered here certainly 
depends upon the accuracy of the parameters (n,, ny, and 
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25 
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4 0  

45 
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(h) 

X 

Fig. 10. 
contour view. 

Image surface for an asymmetric boundary: (a) 3-D view, and @) 

cz), the numerical examples considered suggest that the RIO 
can, in many cases, tolerate some degree of uncertainty in the 
parameter values. 
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