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Optimal Wide Area Controller and
State Predictor for a Power System

Salman Mohagheghi, Student Member, IEEE, Ganesh K. Venayagamoorthy, Senior Member, IEEE, and
Ronald G. Harley, Fellow, IEEE

Abstract—An optimal wide area controller is designed in this
paper for a 12-bus power system together with a Static Compen-
sator (STATCOM). The controller provides auxiliary reference sig-
nals for the automatic voltage regulators (AVR) of the generators
as well as the line voltage controller of the STATCOM in such a way
that it improves the damping of the rotor speed deviations of the
synchronous machines. Adaptive critic designs theory is used to im-
plement the controller and enable it to provide nonlinear optimal
control over the infinite horizon time of the problem and at dif-
ferent operating conditions of the power system. Simulation results
are provided to indicate that the proposed wide area controller im-
proves the damping of the rotor speed deviations of the generators
during large scale disturbances. Moreover, a robust radial basis
function network based identifier is presented in this paper to pre-
dict the states of a multimachine power system in real-time. This
wide area state predictor (WASP) compensates for transport lags
associated with the present communication technology for wide
area monitoring of the electric power grid. The WASP is also ro-
bust to partial loss of information caused by larger than expected
transport lags or even failed sensors throughout the network.

Index Terms—Adaptive critic designs, missing sensor restora-
tion algorithm, multimachine power system, neural networks,
radial basis functions, state estimation, transport lag, wide area
control.

I. INTRODUCTION

THE electric power grid in general consists of components
such as synchronous generators, transmission lines, trans-

formers, loads, active/reactive compensators, switches and re-
lays. The compensators are shunt or series elements such as ca-
pacitors and inductors or power electronic converter based flex-
ible ac transmission system (FACTS) devices.

Typically, the voltages at the terminals of the synchronous
generators are controlled by automatic voltage regulators (AVR)
in order to maintain a proper voltage profile throughout the net-
work. Until now, designs of the internal controllers of a gen-
erator (voltage regulator and governor) have traditionally con-
sidered only the single generator and ignored other controlled
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devices in the power network. Extra stabilizing capabilities are
sometimes provided for certain generators by utilizing power
system stabilizers (PSS), which are mostly designed to increase
the damping of the local low frequency oscillation mode of the
generator [1]. Similarly, designers of FACTS device controllers
consider only the FACTS device and ignore neighboring gener-
ator controllers for example [2].

In such a decentralized control structure, each internal/local
controller acts as an agent to maximize a local performance
index without any information about the overall system objec-
tives. Based on their own information, these agents make control
decisions in order to comply with the desired behavior of the
decentralized system [3]. Therefore, all these internal control
schemes, whether for the synchronous generator or the FACTS
device, focus on controlling each component from an internal
point of view. However, with a number of these controlled de-
vices close to one another in a power network, the issue of in-
teraction between them arises, that at times can lead to adverse
effects causing inappropriate control effort by different agents.
This happens since each agent attempts to be a good local con-
troller, but has no information about the overall control objective
of the entire system.

An alternative solution to the above issues can be a multilevel
control technique, also referred to as a multi-agent hierarchical
control structure, a supervisory level control or wide area con-
trol (WAC). The objective here is to define a set of sub-prob-
lems that can be considered independent at a certain level (sub-
system level). Different from both centralized and decentral-
ized control, a multi-agent control structure employs a number
of semi-autonomous agents that collaborate with each other to
achieve a given task [4]. Such a regime requires communication
and coordination not among all the agents, but only among those
closely related agents with common interests [5]. Although the
agents communicate with one another, each agent performs pri-
marily based on its own interest; therefore care should be taken
that no agent’s actions should violate its own limits.

It is normally assumed that the WAC coordinates the actions
of the various agents throughout the network by using the
supervisory control and data acquisition (SCADA) system,
phasor measurement units (PMU) or other wide area dynamic
information systems [6]. The WAC would receive data from the
power system and, based on the defined objective functions,
would send appropriate control signals to the agents in the
power network, in order to optimize the overall system perfor-
mance. However, even with the best communication channels
there can be transport lags in sending/receiving the data across
the network that are nonnegligible. The more entities using a
communication channel, the slower the flow of information will

0885-8950/$25.00 © 2007 IEEE



694 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 2, MAY 2007

be. Any wide area control scheme has to be able to compensate
for these transport lags.

This paper proposes neural network based structures for wide
area control and state prediction of a 12-bus power system to-
gether with a STATCOM. The proposed controller provides si-
multaneous auxiliary control signals for the synchronous gen-
erators and the STATCOM in the power system and thereby
improves the damping of the system during large scale distur-
bances. The advantages of the proposed WAC and the wide area
state predictor (WASP) are as follows.

• WAC is designed based on a model-free approach, in which
no mathematical model of the power system and no prior
information on its parameters is necessary.

• WAC is able to provide optimal control over the infinite
horizon of the problem in the presence of noise and uncer-
tainties.

• Proposed WASP is able to compensate for static and dy-
namic transport lag associated with the communication
channels across the power system.

• More importantly, using the available healthy data, the pro-
posed WASP is able to restore missing information due to
failed sensors or longer than usual delays. This helps keep
the hierarchical controller in the control loop even when
the required information is temporarily not available.

A survey of the previous work done on the supervisory level
control in power systems is presented in Section II. The structure
of the multimachine power system with the STATCOM appears
in Section III. Section IV provides an overview of the suggested
structure for the wide area state predictor. The structure and
training scheme of the neural network based WAC is presented
in Section V of the paper. Typical simulation results appear in
Section VI in order to illustrate the effectiveness of the proposed
WASP and WAC. Section VII summarizes some technical issues
on implementing the WAC. Finally, the conclusions are given in
Section VIII.

II. PREVIOUS WORK ON WIDE AREA CONTROL

IN POWER SYSTEMS

Several ideas have been proposed in the literature for control-
ling a power system from a supervisory level. Arafeh [7] pub-
lished one of the first papers on the concepts of the hierarchical
control theory in power systems. He designed a heuristics based
hierarchical controller to enable the real-time control of a large
scale power distribution system in terms of security (equipment
protection) and operation (continuity of service). Rubaai and
Villaseca [8] proposed an optimal hierarchical controller for im-
proving the transient stability of a multimachine power system.
The control technique involved a number of independent local
controllers that communicate with a central coordinating con-
troller. A similar approach was used by Okou et al. [9] to de-
sign a two level hierarchical controller using remote signals in
order to improve power system stability under severe contingen-
cies. Also, Posser et al. [10] applied the methodology of dis-
crete-event systems (DES) and supervisory control to the trans-
mission line restoration problem, in order to increase the steady
state security level of a power network during restoration. Re-
cently, Taylor et al. [11] proposed a wide area control system for
discontinuous control of a power system in the form of sending

signals for tripping the synchronous generators and/or switching
reactive power sources.

In addition, much of the work in the past few years has fo-
cused on designing a global PSS. Aboul-Ela et al. [12] designed
a PSS that uses global signals in addition to the local control sig-
nals and can be used for damping inter-area oscillations as well
as the ones caused by the local modes. Chow et al. [13] also
incorporated a second input to the PSS from one of the neigh-
boring generators, as an auxiliary control signal for the PSS con-
troller. Kamwa et al. [14] applied a similar technique by incor-
porating additional remote signals to a selected number of PSSs
in the Hydro-Quebec’s transmission system. Also, Ni et al. [4]
designed a robust fuzzy logic based supervisory level PSS by
using wide area measurements.

It has also been shown that with the introduction of auxiliary
signals, FACTS devices can contribute to the dynamic and/or
transient stability of the power system [2]. This issue has been
investigated by some researchers in an attempt to design super-
visory level controllers for different FACTS devices [5], [12],
[13]. Also, Chaudhuri et al. [15] have designed an based
optimal supervisory level controller for a Static Var Compen-
sator (SVC) in order to improve the damping of inter-area os-
cillations. The controller proposed in [15] showed a robust per-
formance considering signal transmission delay of up to 0.75 s.

The complexity of a large power network often makes it very
difficult for an analytically based control technique to perform
a supervisory level control of the system. This is partly due to
the fact that classical control schemes depend on a mathemat-
ical model of the plant to be controlled, and this model is often
derived based on linearizing the power system at a specific oper-
ating condition. Moreover, as the control scheme moves from an
external controller to a wide area scheme coordinating several
local controllers, the complexity of the multi-input multi-output
system is exponentially increased. This makes the design of the
classical controller more tedious and at some instances imprac-
tical. Artificial intelligent techniques on the other hand, have
the capability of dealing with such a nonlinear, nonstationary
system in the presence of noise and uncertainties. Neural net-
works, for example, have been used to design an optimal wide
area stabilizer for providing extra damping for the generator
rotor speeds [16]. Also, Kim and Lee [17] presented an artifi-
cial neural network based coordination control scheme for an
under load tap changing (ULTC) transformer and a STATCOM
in order to minimize both the amount of tap changes of the trans-
former and STATCOM output while maintaining an acceptable
voltage magnitude at the substation bus. Taylor et al.. [18] de-
signed a fuzzy based wide area stability and control system,
which provided rapid implementation of generator tripping and
reactive power compensation switching for transient stability
and voltage support of a power system.

III. 12-BUS TEST POWER SYSTEM

WITH A STATIC COMPENSATOR

In order to illustrate the neural network based wide area
controller, the 12-bus test system in Fig. 1 is used. It contains
three generators and has been proposed to evaluate the effects
of FACTS devices in the transmission level [19]. Preliminary
simulation results in [20] showed that installing a STATCOM
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Fig. 1. Schematic diagram of the 12-bus test power system with a STATCOM.

at bus 4 can drastically improve the voltage profile of the whole
network. The main control objective of the STATCOM in this
study is to control the voltage at the point of common coupling
(PCC) during both small and large scale disturbances.

The WAC receives the system states/measurements from
across this power system, analyzes the data and sends the
appropriate auxiliary signals to the voltage references of the
three generators’ AVRs and to the
STATCOM line voltage controller . The control objective
of the WAC in this study is to improve the dynamic stability
of the power system and increase the damping of the rotor
speed deviations of the three generators during large scale
disturbances. Since the global measurements throughout the
network will reach the WAC with a transport lag, a WASP is
used to compensate for the delay. The structure of the WASP
is explained in the next section.

IV. WIDE AREA STATE PREDICTOR (WASP)

A. Conventional State Estimation: Challenges and Limitations

The WAC is highly dependent on the accuracy and timing of
the data received, which emphasizes the need for a reliable wide
area state predictor capable of estimating the states of the system
in real-time. Any system/technique designed for such a purpose
should address the following issues.

• There is a transport lag associated with the communication
channels used in power networks. The average communi-
cation delay could be as long as seconds for the internet
or as short as tens of milliseconds in a fiber optic link [21].
The retrieval of real-time information from the received de-
layed values should be possible.

• The transport lag is not necessarily static. In the worst
case, it can be a missing sensor or a failed communication
channel. The methodology should be robust to the partial
loss of information and should be able to restore the re-
quired data using the available information.

• Any changes to the power network configuration can
largely deteriorate the effectiveness of the state estimator.
Care should be taken that the estimator adaptively adjusts
itself to the ever changing nature of the power network.

Fig. 2. Schematic diagram of the wide area state predictor.

Numerical analysis methods are traditionally employed in
order to solve the state estimation problem in power systems.
However, as the dimension of the power system increases, the
complexity level of the solution rises. This can specifically be a
problem when a large number of redundant measurements are
used in a power network. Moreover, the estimator functions/
equations need to be adaptively adjusted as the power system
operating conditions and configurations change. Clearly, incor-
porating the updates into the mathematical formulation of the
state estimation problem can be a tedious process. Dependence
on the model of the process is the major disadvantage of this
technique, which can weaken its robustness and practicality in
real world problems. In addition, the analytical state estimation
method converges slowly, can become trapped in local minima
or produce ill-conditioned and unreliable solutions [22]. Ideally,
state estimation should run at the scanning rate; however, due to
computational limitations most practical estimators run every
few minutes or whenever a major change occurs [23].

B. Radial Basis Function Network Based WASP

Fig. 2 illustrates the schematic diagram of the proposed
WASP. It consists of two major components: the radial basis
function network (RBFN) and the missing sensor restoration
(MSR) algorithm. The former uses the time delayed values for
predicting the states of the power system in real-time, while the
latter ensures that the RBFN has access to the best estimates
of its input vector in case of loss of information and/or failed
sensors.

1) WASP Structure and Development: The core of the
proposed WASP consists of two radial basis function net-
works (RBFN) that together predict the power system states
in real-time. The values of the plant state vector and the
measurement vector at time steps , ,

and are used in order to predict the
plant states at time step (Fig. 2).

With considered to be 100 ms, a sampling time step of 20
ms is selected for the RBF WASP. In other words the problem is
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formulated as a multiple step ahead prediction using neural net-
works. Fig. 1 shows the schematic diagram for training the pro-
posed WASP. The two RBF networks receive the same inputs
but at different moments in time. The first network is trained
using supervised learning to track the plant states at time step

, given the plant states and measurements at time steps
, and .

At each time step the updated output weight matrix and the
RBF unit centers of the first network are transferred to the
second network, which receives the same type of data at time
steps , and , and predicts the plant
states at time step . The predicted output of the second neural
network in Fig. 1 is also improved by adding the previous time
step error to it. This is similar to the correct path of
a typical Kalman filter [24]. This improves the accuracy of the
neuroidentifier prediction.

At first, small and large scale disturbances are applied to the
power system in a way that they excite all the modes of the
power system. In a real power system, where applying faults
to the system is not feasible, this large amount of data can be
gathered by sampling the system inputs and outputs over a long
period of time. Using the large amount of data samples of the
problem space, the RBFN centers are first derived using an of-
fline batch-mode clustering technique [25]. The centers are kept
fixed during the operation of the WASP in order to ensure the
stability of the RBFN. The plasticity of the RBFN is achieved
by continuously updating the output weight matrix using the
backpropagation algorithm. This helps the RBFN to respond to
minor changes and deviations in the power network.

However, the RBFN should also be robust to the changes in
the power system configuration and operating conditions. This
is achieved by applying a quasi-online training algorithm for up-
dating the centers: In a window of 50 samples (1 s), the distances
of the RBFN centers with the newly arrived data are compared
for each center. If, for any of the centers this difference is larger
than a user defined tolerance level , then the center is marked as
a potential center for updating. At the end of the time window,
the five centers that show the worst performance, i.e., largest
overall distance with the new data, are updated. The centers are
then fixed until the end of the next evaluation. The number of
centers to be updated depends on the problem and the perfor-
mance of the neural network.

2) Missing Sensor Restoration: The missing sensor restora-
tion algorithm in Fig. 2 consists of a neural network based au-
toencoder (Fig. 3) that is trained to learn the relationship among
the sensor outputs throughout the power system. Essentially,
it is a multilayer perceptron (MLP) neural network that has
fewer neurons in the hidden layer than in the input layer, and
is trained offline to learn an identity mapping between its in-
puts and outputs [26]. The data runs through a bottleneck that
reduces the degrees of freedom among the sensor data. Super-
vised learning is applied for training the autoencoder. Conver-
gence of the weights of the autoencoder means that the input
set can be reconstructed from the reduced data set. All the plant
states and the measurements along with their two times
delayed values are fed into the autoencoder.

In general, the autoencoder learns to perform a projec-
tion operation onto a subspace spanned by the training data.

Fig. 3. Missing sensor restoration structure.

Narayanan et al. [26] proposed an approach based on projection
onto convex sets (POCS) for restoring the missing data. In this
technique, the outputs of the autoencoder corresponding to
the lost data are iteratively fed back to the autoencoder inputs
until the solution converges. In Fig. 3 the output of the
autoencoder associated with the missing sensors is fed back
to its input. The portion of the output corresponding to the
healthy sensor readings is ignored.

This process is iterated back and forth until a certain stopping
criterion is reached. There should be a maximum number of it-
erations defined for the process to ensure that a final estimate of
the outputs of the missing sensors is made available as inputs
to the WASP on time. Moreover, the error between the correct
sensor readings and their estimates (the output of the autoen-
coder) should be closely watched, i.e., the signal in Fig. 3.
An increase in this error indicates that the iteration process has
diverged and the final results should not be used for the neu-
roidentifier.

More details on the structure and training of the WASP can
be found in [27].

V. WIDE AREA CONTROLLER

Fig. 4 shows the schematic diagram of the WAC. It is based
on the adaptive critic designs (ACDs) theory that enables the
controller to deal with nonlinear nonstationary systems in the
presence of noise and uncertainties [28]. This technique has
been successfully applied by the authors for designing optimal
internal controllers for a STATCOM in a multimachine power
system [29], [32]. The controller consists of a Critic neural net-
work, which is trained to estimate the cost-to-go function in
the Bellman’s equation [28]. Once its weights have converged,
the Critic network is used to train a second network, an Action
neural network that provides the auxiliary reference signals
for the three generators’ AVRs and the STATCOM voltage ref-
erence. The vector in Fig. 4 denotes the vector of steady
state voltage set-points for the AVRs of the three generators and
the STATCOM line voltage control loop.

An ACD based wide area neurocontroller can serve as a hier-
archical controller for the power system. While the primary level
of control still comprises of the local controllers of the compo-
nents in the power network, the Action network performs as a
secondary level controller which closes the loop and provides
set-point control of the local controllers. The optimization re-
sponsibilities of the third level control are accomplished by the
Critic network that tries to optimize the system performance by
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Fig. 4. Schematic diagram of the WAC.

providing the appropriate training signals for the Action net-
work.

A. Utility Function

The vector of the states of the power system is considered
to be comprised of the speed deviations of the three generators
(Gen 2, Gen 3 and Gen 4 in Fig. 1) in (1)

(1)

A utility function decomposition approach is adopted that
helps speed up the training process of the Critic network [31].
Three separate utility function components , and are
defined for the WAC

(2)

where each function corresponds to the speed deviations of
one of the synchronous generators, i.e.,

(3)

The utility function decomposition applied here is due to the
fact that the rotors of the three generators have different me-
chanical swings and therefore, the WAC should try to improve
the performance of all three at the same time. If all three rotor
speeds are considered in one single utility function, then they
might at times cancel out each other’s effect, which can result
in, for example, a low value for the utility function during a large
fault. The cost-to-go function estimated by the Critic network is

(4)

which can be further simplified as

(5)

For the effects of the discount factor the reader is referred
to [28], [31].

Fig. 5. Schematic diagram of the WAC Critic network.

B. Critic Network Structure

Three sub-Critic networks are used in this paper, one for each
of the three utility functions , and respectively, where
each one learns one part of the cost-to-go function. Fig. 5 shows
the schematic diagram of the Critic network. It consists of three
separate MLP neural networks with 10 neurons heuristically
chosen in the hidden layer with hyperbolic tangent as the acti-
vation function. Since an action dependent ACD controller de-
sign is adopted in this study [28], the controller outputs need
to be incorporated into the input vectors of the three sub-Critic
networks as well. The ACD neurocontroller in Fig. 4 generates
four auxiliary reference signals for the power system

(6)
For an action dependent Critic network, it is possible to feed

all four control outputs in to each sub-Critic. However,
not all the control outputs affect all the state variables in (2).
In fact, some of the control outputs have negligible effect on
certain state variables. For instance, synchronous generators 2
and 3 are far from one another and therefore, the effect of the
auxiliary control signal applied to the AVR of each one on the
rotor speed deviations of the other one can be ignored. Simpli-
fying the structures of the sub-Critics by removing the unnec-
essary control outputs can help speed up the training process of
each sub-Critic network. According to the discussion above, the
structure of the Critic network is illustrated in Fig. 5.

The three sub-Critics can be trained independently one-by-
one, or simultaneously. The details of training the Critic neural
networks are provided in the authors’ previous work in [29],
[30].

C. Action Network

As mentioned in Section I, one of the main objectives of
having a wide area control scheme in the power network is to be
able to respond to a system disturbance with the least amount of
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Fig. 6. Schematic diagram of the WAC Action network.

control effort possible. This means that the WAC needs to en-
sure that undesired interactions between the controllers are re-
duced. A MLP neural network cannot be an effective choice,
due to the fact that in such a network every output error has a
direct impact on all the weights of the input weight matrix. This
means that in an MLP neural network the outputs interact with
one another and the error in each one affects the others (see [27]
for details). A WAC Action network designed using MLP net-
works will therefore create unwanted interactions between the
controllers, whereas the idea behind the WAC is to generate an
auxiliary reference signal for each local controller based on the
effect of only that controller on the cost-to-go function.

This issue can be solved by using a functional link (FNL)
neural network. These neural network structures were originally
proposed by Pao et al. [32]. Using orthogonal mathematical
functions , a FNL expands the -dimensional input space
to the -dimensional hyperspace, where . These
orthogonal functions, which can range from polynomials to
trigonometric functions, form the bases for the FNL neural
network.

Fig. 6 illustrates the schematic diagram of the FNL Action
neural network, where and are the output weight matrix
and the output activation function respectively. In this structure,
the hidden layer is replaced by the Function Expansion block;
therefore, the input weight links are removed as well. This pre-
vents the output error of the node to affect the signal gener-
ated by any of the other output layer neurons and therefore, there
is no interaction between the different control signals. Instead,
the WAC control signals try to independently control their cor-
responding local controller based on their individual effect on
the overall cost-to-go function defined for the power system.

A Chebyshev based FNL neural network is used in this paper
for , where the first four Chebyshev functions are consid-
ered to be the activation (basis) functions

(7)

The Action network receives the values of the power system
states at time steps , and , along with the
Action network outputs at , and in turn generates the
control signal at time . The activation functions in (7) are
applied to all the entries of the Action network input vector.
Therefore, with the inputs to the Action network considered as
in Fig. 6, and the basis functions defined in (7), the FNL expands
the 13-dimensional input space to a dimensional

hyperspace. The output of the Action network will be added
to the AVRs of the three generators and the STATCOM line
voltage reference (Fig. 1). The outputs of the Action network are
clamped in a way that the terminal voltages of the generators or
the voltage at bus 4 in Fig. 1, where the STATCOM is connected
to the power system, never go beyond the acceptable range of

.
1) Action Network Pre-Training Stage: Often it is neces-

sary to pre-train the Action network before connecting it to the
plant. In the case of supervisory level control, where the neural
network is dealing with deviation signals, the Action network
control loop can be closed and its output applied to the plant
with a randomly initialized set of synaptic weights. The initial
weights can be limited to a very small value so that they do not
have much impact on the power system in the first stages of the
training. As time goes by, the magnitudes of the Action network
weights are increased and its outputs start impacting the power
system. However, it is also possible to pre-train the Action net-
work, using supervised learning, in order for the weights to con-
verge to values that can help stabilize the power system right
from the start. These values are the target signals that are de-
fined by the user and are used in the supervised learning process.
The weights after the pre-training stage are used as the starting
point of the final training stage where the performance of the
neurocontroller is improved towards an optimal nonlinear con-
troller. If the target signals for the pre-training stage are chosen
correctly, the above procedure will expedite the overall learning
process of the Action network.

A pre-training stage is executed for the WAC in this paper,
during which three power system stabilizers are installed on the
three generators. The neurocontroller is trained to learn the dy-
namics of the three PSSs. The first three outputs of the WAC are
related to the three generators and the fourth output corresponds
to the STATCOM line voltage controller. The latter is forced to
follow the output provided by a linear combination of speed de-
viations of generators 3 and 4 [27]. Therefore, the target signal
for the Action network pre-training stage is defined as

(8)

Clearly, the above target vector is far from optimal; however,
it provides a starting point solution for the Action network final
training stage. Using a supervised learning scheme, the Action
network weights are now trained for 500 s in order to follow the
target vector defined in (8). The Action network is not control-
ling the plant at this stage; therefore, its outputs are not applied
to the AVRs or the STATCOM.

2) Action Network Final Training Stage: With the Critic net-
work and the Action network weights already converged during
the pre-training stages, the ACD neurocontroller is now ready
to control the power system. Therefore, the supervisory control
loop can be closed by applying the Action network outputs to
the voltage references of the AVRs of the three generators and
the STATCOM. At this stage, the Critic network is providing the
appropriate training signal for the Action network (Fig. 4).

The power system is now exposed to large scale faults and
disturbances, such as three phase short circuits along different
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Fig. 7. Actual and estimated speed deviations of generator 3 during case study
1.

transmission lines and buses. The deviations of the generator
rotor speeds create a nonzero utility function and therefore, a
positive cost-to-go function estimated by the Critic net-
work. Both the Action and Critic networks undergo training in
order to learn the dynamics of the power system during the large
natural faults. An annealing learning rate scheme is used for
both the Action and Critic. During this process, training starts
with a learning rate of about 0.1 for the Critic and 0.01 for
the Action, which gradually decreases to a value of 0.005 for
the Critic and 0.001 for the Action network. This ensures that
during the initial training stages the neural networks adapt them-
selves to the plant dynamics quickly, but as the learning process
continues, they do not have a drastic reaction to any sudden
changes in the plant dynamics. In this way the networks do not
forget the previously learned information. During the simula-
tions, the same discount factor and learning rate parameter are
assumed for all the three sub-Critic networks. However, in gen-
eral this is not necessary and the three neural networks can un-
dergo training with different parameters. The training process
continues at various operating conditions, with different faults
and disturbances, until a good accuracy and acceptable perfor-
mance is achieved by the ACD neurocontroller.

VI. SIMULATION RESULTS

A. Wide Area State Predictor

1) Case Study 1: Static Transport Lag: In the first test, one
of the transmission lines connecting buses 3 and 4 in Fig. 1 is
disconnected, thereby changing the configuration of the power
system. Fig. 7 shows the speed deviations of generator 3 esti-
mated by the WASP. The value at is the delayed in-
formation available and transmitted to the WASP. However, the
simulation results clearly indicate that the WASP compensates
very well for the 100 ms transport lag.

2) Case Study 2: Missing : In the second test, a 100 ms
three phase short circuit occurs after 3 s at the middle of one of
the transmission lines connecting buses 3 and 4 during which the
sensor that reads the generator 3 speed fails. The missing sensor
restoration part in Fig. 2 is therefore activated and using the

Fig. 8. Actual and estimated speed deviations of generator 3 during case study
2.

Fig. 9. Actual and estimated speed deviations of generator 4 during case
study 3.

available healthy data restores the missing information, which
is now fed to the neuroidentifiers in order to predict the values
of the missing speed deviations in real-time (Fig. 8).

3) Case Study 3: Missing Speed Signal : A test similar to
case study 2 is carried out now with the sensor of the rotor speed
of generator 4 failed during a three phase short circuit applied
at the middle of the transmission line connecting buses 2 and 5.
Fig. 9 illustrates the response of the WASP that is able to restore
the missing speed sensor information using the autoencoder to
a reasonable degree of accuracy.

B. Wide Area Controller

Several tests are now carried out in order to compare the effec-
tiveness of the proposed WAC with locally tuned PSSs as well
as an uncompensated power system with no PSSs. The parame-
ters and the structure of the power system stabilizers is given in
Appendix B.

1) Case Study 4: A Three Phase Short Circuit at Bus 5: In
the first of these tests, a three phase short circuit occurs at bus 5.
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Fig. 10. Rotor speed deviations of generator 2 during case study 4.

Fig. 11. Rotor speed deviations of generator 4 during case study 5.

The fault is cleared after 100 ms and therefore, it does not per-
manently change the power system topology. Fig. 10 illustrates
some typical results and shows that the WAC is only slightly
more effective than the local PSS in damping out the speed os-
cillations.

2) Case Study 5: A Three Phase Short Circuit at the Middle
of the Transmission Line 3–4: In the next test, a 100 ms three
phase short circuit is applied at the middle of one of the parallel
transmission lines connecting buses 3 and 4. The line is discon-
nected after the fault is cleared. Fig. 11 compares the perfor-
mances of the WAC and the local PSSs with an uncompensated
system and shows that the WAC is more effective than the case
of the power system compensated with local PSSs.

3) Case Study 6: Transmission Line 4–6 Disconnected: The
next test investigates the effect of a major change to the topology
of the power system by switching off a transmission line which
connects buses 4 and 6. This changes the operating condition
of the power system and therefore reduces the efficiency of the
locally tuned stabilizers that are normally tuned to provide ef-
fective damping in a certain frequency range. Figs. 12–13 con-
tain some typical results. Fig. 13 shows that for generator 4 the

Fig. 12. Rotor speed deviations of generator 3 during case study 6.

Fig. 13. Rotor speed deviations of generator 4 during case study 6.

local PSS is still performing effectively; however, the WAC is
considerably more effective for rotor speed deviations in gener-
ator 3 (Fig. 12). This can be due to the fact that the dynamics
of generator 3 are affected more by the topology change in the
power system.

Fig. 14 illustrates the signal applied to the terminal voltage
reference of generator 3 during the disturbance; the signal ex-
erted by the WAC is of the same magnitude but it is generated
in an intelligent way that helps the controller damp out the os-
cillations faster.

4) Case Study 7: Three Phase Short Circuit at the Middle of
the Transmission Line 2–5: The transmission line 4–6 of the
previous case study is reconnected to the power system. A three
phase short circuit now occurs at the middle of the line con-
necting buses 2 and 5. The fault is cleared after 100 ms, but the
line remains disconnected. Figs. 15 and 16 show the rotor speed
deviations of generators 3 and 4. Since the operating conditions
and the topology of the power system change as a result of the
fault, the performances of the local PSSs are slightly degraded.
However, the WAC manages to restore the system to the steady
state conditions in less time.
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Fig. 14. Signal applied to the voltage reference of generator 3 during case study
6.

Fig. 15. Rotor speed deviations of generator 3 during case study 7.

Fig. 16. Rotor speed deviations of generator 4 during case study 7.

5) Case Study 8: Load Disconnected: In the next test, the op-
erating condition of the power system is changed by changing

Fig. 17. Rotor speed deviations of generator 3 during case study 7.

Fig. 18. Rotor speed deviations of generator 4 during case study 7.

the active power reference of generators 3 and 4. After the power
system reaches the new steady state point, the shunt load in bus
4 is disconnected and the results are shown in Figs. 17–18. The
local PSS for generator 2 still manages to damp out the oscil-
lations almost as fast as the WAC; however, the performances
of the local stabilizers on generators 3 and 4 are noticeably de-
graded. Also, Fig. 19 depicts the control signal applied to the
terminal voltage reference of generator 4.

6) Stability Analysis: In order to compare the efficiency of
the proposed WAC and the local power system stabilizers in pro-
viding overall stability for the power system, three phase short
circuits are separately applied to the terminals of the three gen-
erators and the critical clearing time is compared for the cases
where the power system is being controlled by three local PSSs
as well as the case where the proposed WAC is controlling the
power system. The results indicate that the two control schemes
provide the same critical clearing time during large scale short
circuits applied to the power system. Fig. 20 shows some typical
results which correspond to a 340 ms three phase short circuit at
the terminals of generator 3 in Fig. 1. Both controllers follow the
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Fig. 19. Signal applied to the terminal voltage reference of generator 4.

Fig. 20. Generator 4 rotor speed during a 340 ms three phase short circuit at
the terminals of the generator.

same trajectory of speed, due to the fact that the control signals
are being limited by the hard limiters at the output of the PSSs and
the WAC. For any longer clearing time, none of the controllers are
able to restore the system to steady state conditions.

7) Performance Measurement: In this section, the damping
performance in the power system with the WAC, with the local
PSSs and with no compensation is compared. A performance
index in (9) is defined to measure the damping

(9)

where represents the sample of the rotor speed
deviations of the generator and index represents the
test. A larger value for the performance index indicates a better

TABLE I
PERFORMANCE INDEXES OF THE POWER SYSTEM COMPENSATED BY ACD

WAC, THE LOCAL PSSS AND THE UNCOMPENSATED SYSTEM

damping during the large scale disturbances applied to the
power system. During each fault/disturbance applied to the
system, 100 samples are taken at 0.1-s intervals from each
rotor speed in 10 s of simulation. The performance indexes of
different controllers are evaluated during various faults and the
final performance index is derived according to (10)

(10)

The overall performance index of each control scheme sum-
marized in Table I is defined as in (10). In the last row of the
Table I the overall performance indexes are normalized based
on the overall performance index of the uncompensated system,
to show that during large scale disturbances the proposed neural
network based WAC improves the performance of the power
system by about 150% and 30% compared to the power system
with no wide area control and the power system with individual
local PSSs on the generators, respectively.

VII. PRACTICAL CONSIDERATIONS

A. Hardware Implementation

The proposed ACD based wide area controller and the state
predictor can be efficiently implemented on a DSP board. Ve-
nayagamoorthy et al. [33], [34] have reported successful imple-
mentation of a neurocontroller for a turbogenerator. Also, Ve-
nayagamoorthy and Ray [16] have shown that an ACD based
power system stabilizer can be implemented on a DSP board.
The controller, built on a DSP board, sends the control signals
to the power system which is implemented on a Real-Time Dig-
ital Simulator (RTDS).

B. Real-Time Development of the WAC

For real-time development of the WAC, the pre-training
stages can be executed offline using the data points obtained
from the power system during its normal performance as well
as disturbances. Also, the final training stage can be conducted
online as the WAC is controlling the plant.
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Fig. 21. Generator 3 rotor speed during a 100 ms three phase short circuit at
the transmission line 4–6.

If the data set is sufficiently large, the WAC weights are fixed
after convergence and remain constant thereafter. Otherwise, a
quasi-online approach can be adopted which allows adjusting
the weights of the two neural networks during the operation
of the WAC. In this case, during a certain sampling window
whose length is predefined by the design engineer, data points
are obtained from the power system and a batch mode back-
propagation [25] is applied to adjust the weights of a neural
network identical to the Critic network. After the weights of
this shadow-Critic converge, they are downloaded to the actual
Critic network. This will ensure stability of the WAC. A similar
approach can also be adopted for the Action network.

C. Selecting the Proper Control Signal

Throughout this study the authors have considered the rotor
speed of the generators as the measured signal for the WAC and
have assumed that the signal is available at the terminals of the
generator and can be transmitted to the WAC (except for the
cases that it is being predicted by the WASP). In most cases,
this is a valid assumption. The local power system stabilizers
are often designed based on the generator speed signal as well.

However, it should be noted that other available signals such
as the active power can be used for designing the WAC as well.
This is due to the fact that as long as a reasonable relationship
exists between the measured signals and the control signals, a
Critic network with converged weights can provide the correct
training signals for the Action network. In such case, it might be
helpful to introduce more measured signals as the system states
in order to enable the Action network to learn the relationship
between the power system inputs and outputs more effectively.

VIII. CONCLUSIONS

A neural network based optimal wide area controller (WAC)
design is presented in this paper for hierarchical control of a
12-bus benchmark power system together with a STATCOM.
Based on the speed deviations on the three generators in the
power system, the WAC generates auxiliary control signals in
the form of voltage references for the voltage references of the
AVRs of the three generators and of the STATCOM, in order to

Fig. 22. Generator 4 rotor speed during a 100 ms three phase short circuit at
the transmission line 4–6.

improve the dynamic stability of the power system during large
scale disturbances.

Using adaptive critic designs theory, the WAC is able to pro-
vide nonlinear optimal control over the infinite horizon of the
problem, with no need to any mathematical model of the power
system or the STATCOM. Reinforcement learning is applied for
training the external controller, which makes it largely insensi-
tive to the size of the power system. Simulation results show that
the proposed WAC is more effective than locally tuned PSSs for
the three generators for damping the speed deviations of the gen-
erators neighboring the STATCOM.

Also, a radial basis function network (RBFN) based wide area
state predictor has been presented in this paper that estimates
the plant states based on the available measurements with de-
lays. Moreover, by using a neural network based autoencoder,
the proposed WASP is able to restore the missing data from the
available data in case of having failed sensors or longer than
expected transport lags. Several case studies have been carried
out to validate that the WASP is able to estimate the plant states
in real-time with good accuracy at various operating conditions
and system contingencies. Such a scheme can be effectively
used in any wide area or supervisory level controller in a power
system.

APPENDIX

Effect of Transport Lag Compensation: The effect of the
transport lag compensation is evaluated in this section. A 100
ms three phase short circuit is applied to the power system at
the middle of the transmission line connecting buses 4 and 6.
The line is restored after the fault is cleared. Figs. 21 and 22
illustrate the rotor speed deviations of generators 3 and 4 con-
trolled by the WAC for two cases: one with a transport lag of 100
ms and the other with the WASP to predict the real-time value.
The results clearly indicate that the existence of the WASP for
compensating the transport lag helps the dynamic performance
of the power system.

Parameters of the Local PSS: The structure of the local
power system stabilizers used in this study is illustrated in
Fig. 23. It consists of a proportional gain, lead compensators
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Fig. 23. Structure of the local power system stabilizers.

TABLE II
PARAMETERS OF THE LOCAL POWER SYSTEM STABILIZERS.

and a wash-out filter with a time constant of 10 s. The filter
is used to prevent the PSS from responding to slow dynamic
changes in the rotor speed that are normally responded to by
the governor.

Table II summarizes the parameters of the three power system
stabilizers.
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