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Abstract – Many control schemes for dc-dc converters begin with 
the assertion that inductor currents are “fast” states and 
capacitor voltages are “slow” states.  This assertion must be true 
for power factor correction (PFC) converters to allow 
independent control of current and voltage.  In the present work, 
singular perturbation theory is applied to boost converters to 
provide rigorous justification of the time scale separation.  
Krylov-Bogoliubov-Mitropolsky (KBM) averaging is used to 
include switching ripple effects.  A relationship between 
inductance, capacitance, load resistance, and loss resistances 
derives from an analysis of an approximate model.  Similar 
results hold for buck and buck-boost converters.  An 
experimental boost converter and a simulated PFC boost support 
the derived requirement. 

Keywords—singular perturbation, integral manifold, averaging, 
power factor correction. 

I. INTRODUCTION

 Frequently, controllers for dc-dc converters use two loops: 
an inner (“fast”) current loop and an outer (“slow”) voltage 
loop.  The current loop can take many forms.  In an analog 
controller, the most common approach is peak current mode, 
where the inductor current is compared to a reference to 
generate pulsewidth modulation (PWM) gate commands.  
Average current mode, hysteresis current control, and delta 
modulation are all well-known current control schemes.  In the 
digital realm, several methods have been proposed [1-10], 
most of which fundamentally assume that capacitor voltage 
remains fixed for the duration of a switching cycle. 

 The current reference in a two-loop controller is 
determined through feedback on output voltage.  If there is a 
separation in time scales between the current dynamics and 
voltage dynamics, the two loops can be designed 
independently.  For example, power factor correction (PFC) 
converters use an outer loop to regulate voltage and an inner 
loop for current waveform tracking.  The voltage loop 
determines the magnitude of the current waveform. 

 Singular perturbation theory [11] is a tool for formally 
partitioning a dynamic system into slow and fast variables.  
The two time scales differ by a factor of ε, which is small.  The 
fast variables, denoted here as z, are related to the slow 

variables, denoted as x, by an integral manifold (an algebraic 
relation) plus a small dynamic error η that is O(ε).

 The present work starts with a switch-based piecewise- 
linear model of a boost converter, which is then normalized to 
show the variable relationships and identify suitable time-scale 
separation. Krylov-Bogoliubov-Mitropolsky (KBM) averaging 
allows the switched circuit configurations to yield a nonlinear 
time-invariant model that includes a ripple correction term.  
This model fits the standard form for singular perturbation 
analysis.  An approximate model is shown to be suitable only 
if the converter parameters meet an additional constraint.  An 
experimental converter demonstrates the effect of the 
additional constraint on dynamics.  Finally, similar results are 
presented for buck and buck-boost converters. 

II. SWITCHED LINEAR AND AVERAGED MODEL

 A typical PFC boost converter is shown in Fig. 1.  In the 
following analysis, vin is treated generically as a disturbance 
input that could be dc, rectified ac, or any other shape.  In 
terms of the physical variables, the converter dynamics are 
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Here, h2 represents the switching function of the diode.  The 
model shown in (1) is for continuous conduction mode.  
Before proceeding, the variables are normalized.  The designed 
output voltage is V0, which corresponds to a nominal output 
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The normalized state variables are ˆCv  and L̂i .  The control 
input is really the duty ratio d, but the analysis is clearer using 
u.  The disturbance input is now represented as w.  Time is 
normalized to the capacitor time constant.  The switching 
period T is converted to the new time scale to become p.  The 
last two variables, δ0 and ε, simplify the equations and will be 
important for the singular perturbation analysis in section III. 

 The normalized dynamic system is 
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This is still a switched system that is piecewise-linear in time.  
Singular perturbation analysis is based on a (possibly 
nonlinear) time invariant system.  Typically, a “fast switching” 
assumption is invoked and state-space averaging is applied 
[12, 13].  More rigorously, KBM averaging can be applied [14-
16].  In the KBM technique, a time-varying system 

( ),tα= F  (4) 

is mapped to a time-invariant system 

( ) ( ) ( )2 3
1 2 3α α α= + + +y G y G y G y  (5) 

The state vectors ξ and y are related by a time-varying 

transformation involving a power series of ripple functions 

( ) ( ) ( ) ( )2
1 2, ,t t t tα α= + + +y y y  (6) 

The algorithm given in [14-16] equates terms in powers of α to 
solve for Gi and Ψi.  The Mathematica script in [16] has been 
updated and expanded, and is reported in Appendix A.  For a 
basic dc-dc converter, G1 is the conventional state-space 
average.  For this boost converter, G2 is zero. G3 gives a non-
zero correction term proportional to (p/ε)2.  The nonlinear 
time-invariant system in y is given in (7) for terms through G3.
Higher terms diminish rapidly provided p/ε is small. 

 The remainder of the analysis could proceed from (7).  If 
the converter is operating in continuous conduction mode, the 

leading coefficient 
( ) 2
11

12
u u p

ε
−

 is less than or equal to 

one, and all the terms it multiplies are small.  As a result, the 
terms that come from G3 are generally small and have little 
impact on dynamics, although they do change the steady-state 
operating point slightly.  G3 will be left out for now to make 
the symbolic analysis easier to follow, but the complete 
expression will be addressed in Section IV. 

III. SINGULAR PERTURBATION MODEL

 A singularly perturbed system can be separated into a fast 
subsystem and a slow subsystem.  The standard form of the 
dynamic system is [11] 
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An exogenous input u and a disturbance input w are included.  
All variables must be normalized and all coefficients in f and g
must be O(1).  If 1ε << , then the two subsystems can be 
analyzed separately.  The fast variables are z, and the principle 
is that their behavior can be analyzed with x assumed to be 
quasi-static.  The slow variables are x, which can be analyzed 
with z set to an algebraic relation (an integral manifold). 

 In the boost converter system (7), the slow variable is x=y1

and the fast variable is z=y2.  Leaving out G3 and higher-order 
contributions, the system can be written as 
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All variables are normalized as in (2).  All of the coefficients 
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on the right hand sides are O(1) except the coefficient of z in g
(the right-hand side of the second equation in (9)).  Define this 
coefficient to be 

( ) 0
CR

u u
R

δ δ= +  (10) 

All of the terms that make up δ(u) are related to losses, which 
should be small in a practical converter.  Therefore, further 
analysis is needed. 

 The next step is to construct an approximate model, 

0 1z ϕ εϕ η= + +  (11) 

The ϕ terms are algebraic and represent the integral manifold; 
ϕ0 is the solution when ε = 0 and ϕ1 is a first-order correction.  
The η term represents the off-manifold dynamics.  For this 
system, η is governed by 

( ) ( )
2

ˆ
d u

u
dt u
η εηε δ η

δ
= − +  (12) 

This approximate model is only valid if the η dynamics are 
stable, that is, if η decays to zero from an arbitrary initial 
condition.  Since u is bounded [ ]( )0,1u ∈  and exogenous, the 
stability requirement can be written as 

( )2 2u uε δ<  (13) 

Typically, a converter must operate over a wide range of u as 
input voltage changes.  A more general, necessary requirement 
for stability is 

2
0ε δ<  (14) 

If the converter design satisfies (14), then there are indeed two 
time scales.  If time scale separation is important for the 
application, (14) can be treated as a design objective or as an 
optimization constraint. 

 Simply put, (14) requires nonzero losses to ensure time 
scale separation.  A useful analogy is a linear system.  Without 
adequate damping, a second-order system will have complex 
conjugate eigenvalues.  With sufficient damping, the 
eigenvalues will be real and distinct.  Similarly, for a boost 
converter with adequate losses, the inductor current 
characteristic time scale (like an eigenvalue) will be much 
faster and distinct from the capacitor voltage time scale. 

 In most converters, CR R<< , so 0
LR

Rδ = .  Substituting 

this approximation in (14) and simplifying, the requirement 
becomes 

L

L
R

C
<  (15) 

for time scale separation.  This is a convenient form for 
quickly determining whether the converter design is 
appropriate for two-loop control.  The load resistance does not 

appear in (15).  The two time scales change as load resistance 
changes, but the existence of separation between them does 
not.  The requirement in (15) is the same as requiring the 
quality factor Q of the RLC circuit composed of the inductor, 
its resistance, and the idealized capacitor to be less than 1. 

IV. EXPERIMENTAL VERIFICATION

 A simple boost converter was constructed to demonstrate 
the time scale phenomena.  The main parameters are 
summarized in Table 1.  A low-power 12 V to 36 V 
application was chosen for simplicity of experimental setup.  
MOSFET resistance is lumped into RL.  The converter was 
operated open-loop through a duty cycle step from 67% to 
64%.  With the parameters in Table 1, (14) is not satisfied.  
Fig. 2 shows output voltage and inductor current dynamics 
through the duty cycle step.  Note the underdamped transient 
and coupling between current and voltage behavior. 

 Next, resistance (2 Ω) was added in series with the 
inductor.  Now, ε is unchanged, δ0 = 0.026, and (14) is 
satisfied.  Fig. 3 shows the response to the same duty ratio step 
as Fig. 2.  The response is essentially that of a pair of 
decoupled first-order systems.  Most of the current dynamics 
visible on this time scale come from the integral manifold ϕ0 + 
εϕ1.  The extra loss is not desired, of course, and degrades 
efficiency.

 Another approach for satisfying (14) is to add output 

TABLE 1. BASIC CONVERTER PARAMETERS.

L 657 µH C 77 µF
RL 584 mΩ RC 381 mΩ
MOSFET IRF3710 Diode MBR1545CT 
ε 8.5×10-4 δ0 5.9×10-3

Frequency 25 kHz p 5.2×10-3

R 100 Ω

Fig. 2.  Experimental duty cycle step (67% to 64%) with original converter.
Note second-order behavior.  Channel 1, inductor current, 500 mA/div; 

channel 2, output voltage, 10 V/div; horizontal, 10 ms/div. 
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capacitance.  In this converter, a much larger capacitance of 
2200 µF will decrease ε to 3.16×10-5.  The response to a 
smaller duty cycle step (67% to 66%) is shown in Fig. 4.  Now 
the “fast” dynamics are more obvious, but decoupling is still 
evident.  During the first 5 ms after the step, the current drops 
quickly.  For the rest of the transient, the current follows the 
integral manifold as the voltage decays to its steady-state 
value.  High efficiency is retained while time-scale separation 
is achieved. 

 While higher-order terms in the KBM average greatly 
complicate symbolic analysis, numerical analysis can easily 
include G3, and higher order terms are typically very small.  
The converter is operating in continuous conduction mode.  As 
indicated above, the leading coefficient for G3 is less than 1: 

( ) 2
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u u p

ε
−
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The complete system of (7) is now 
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for the large-capacitance case, with other parameters from 
Table 1.  The ϕ terms in the approximate model do not have a 
significant impact.  The η dynamic equation can be found 
numerically and can include G3 terms, to give 
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The first dynamic equation, corresponding to the base 
converter design, does not have a stable equilibrium.  The 
second dynamic equation includes additional capacitance and 
has a stable equilibrium near zero.  The presence of y1 and w
terms means that the off-manifold dynamics decay to a small 
non-zero value.  The overall behavior still exhibits two-time-
scale characteristics. 

V. BUCK AND BUCK-BOOST CONVERTERS

 A buck converter is much simpler than a boost converter 
for this analysis procedure.  In the KBM analysis, all terms 
above G1 vanish.  The averaged model in standard form for 
singular perturbation analysis is 
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c c
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z x
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u w x z
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ε δ
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+
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For clarity, the same variable definitions were used as in the 
boost case.  Again, the approximate model can be found, 
where the off-manifold dynamics are 

0

ˆ

C

d
dt

R
R

η εηε δη
δ

δ δ

= −

= +
 (20) 

As in the boost converter, the approximate model is only valid 
if the η dynamics are stable, or 

2ε δ<  (21) 

The input u no longer matters.  Otherwise, the time scale 
separation criteria are exactly the same as the boost converter. 

Fig. 4.  Experimental duty cycle step (67% to 66%) with added output 
capacitance (2200 µF).  Note decoupled behavior.  Channel 1, inductor current, 

500 mA/div; channel 2, output voltage, 10 V/div; horizontal, 10 ms/div. 

Fig. 3.  Experimental duty cycle step (67% to 64%) with added resistance in 
inductor (2 Ω).  Note decoupled behavior.  Channel 1, inductor current, 500 

mA/div; channel 2, output voltage, 10 V/div; horizontal, 10 ms/div. 
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 The buck-boost converter is more complicated.  As in the 
boost converter, the higher-order terms (particularly G3) in the 
KBM average are non-zero and are similarly proportional to 
(p/ε)2.  Neglecting the contribution of G3, the state-space-
averaged model in standard form for singular perturbation 
analysis is 

( ) 0

ˆ

1ˆ
C C

dx
uz x

dt
R R Rdz

u w ux u z
dt R R

ε δ

= −

+
= − − − +

 (22) 

The off-manifold dynamics in the approximate model are 
identical to a boost converter (12) and all of the same 
conditions in (13) through (15) apply. 

VI. APPLICATION TO PFC BOOST CONVERTERS

 PFC boost converters rely on time scale separation for 
stable operation.  A simulation has been constructed to 
demonstrate the effect of RL on dynamic performance.  The 
control law combines feedback and feedforward, 

( )0 010
in

C

V
u

V V v dt
=

+ −
 (23) 

Despite the lack of explicit current control, this control 
produces current that is nearly sinusoidal.  Figs. 5 and 6 show 
the line current and bus voltage start-up transients, 
respectively, for two converters with different RL.  With RL too 
small, there is no separation, and a second-order oscillation 
with overshoot is observed.  With additional damping, the 
current magnitude and average voltage show first-order 
behavior.  The estimated efficiency with separation exceeds 
93%.  A larger output capacitor would enable separation with 
less damping and higher efficiency. 

VII. SUMMARY AND CONCLUSIONS

 Time scale separation is often assumed for inductor 
current and capacitor voltage dynamics in dc-dc converters.  A 
singular perturbation analysis shows that this assertion is true 
if the converter construction satisfies a key condition.  
Essentially, the losses in the converter must be high enough to 
damp the inductor dynamics.  Models of and requirements for 
buck, boost, and buck-boost converters are similar. 

 In particular, time scale separation is critical for power 
factor correction (PFC) applications.  Otherwise, voltage 
dynamics affect current harmonics and the control problem 
becomes much more complicated.  Fortunately, a typical PFC 
application requires a large capacitor to absorb the double-
frequency power ripple.  Large capacitance results in small ε,
so most practical converters will satisfy the necessary 
conditions.
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APPENDIX A: MATHEMATICA SCRIPT

x={vCnorm,iLnorm}; 
T={0,duty*p,p}; 
nconfig=2; 
amat={{-1,h2},{-h2/ ,-( 0+h2*Rc/R)/ }};
bmat={0,(Rc+R)*w/( *R)};
n=Length[x]; 
a={(amat/.{h1 1,h2 0}),(amat/.{h1 0,h2 1})}; 
b={(bmat/.{h1 1,h2 0}),(bmat/.{h1 0,h2 1})}; 

rhs=Table[a[[i]].x+b[[i]],{i,nconfig}]; 

AVERAGE[f_]:=Cancel[(1/p) 
Sum[Integrate[f[[id0]],{t,T[[id0]],T[[id0+1]]}],{id0,nconfig}]]; 

PDER[fv_,v_]:=Table[D[fv[[id1]],v[[jd1]]],{id1,n},{jd1,n}]; 

KBMalgorithm[rhspsi_,Gold_,psiold_,Golder_,psiolder_]:=Block[{i}
,
      G=AVERAGE[rhspsi]; 
      psidi=Simplify[Table[Integrate[rhspsi[[i]]-G-
PDER[psiolder[[i]],x].Gold-
PDER[psiold[[i]],x].Golder,t],{i,nconfig}]]; 
      psibc={psidi[[1]]}; 
      Do[AppendTo[psibc,Cancel[psidi[[i]]+(psibc[[i-1]]/.t T[[i]])-
(psidi[[i]]/.t T[[i]])]],{i,2,nconfig}]; 
      psiavg=AVERAGE[psibc]; 
      psi=Table[psibc[[i]]-psiavg,{i,nconfig}];]; 

zerovec=Table[0,{i,n}]; 
zeromat=Table[zerovec,{i,nconfig}]; 

KBMalgorithm[rhs,zerovec,zeromat,zerovec,zeromat] 
G1=Simplify[G] 

1=Simplify[psi]; 
avg1 = Simplify[psiavg]; 
di1 = Simplify[psidi]; 

apsi=Table[a[[j]]. 1[[j]],{j,nconfig}]; 
KBMalgorithm[apsi,G1,zeromat,zerovec, 1] 
G2=Simplify[G] 

2=Simplify[psi]; 

apsi=Table[a[[j]]. 2[[j]],{j,nconfig}]; 
KBMalgorithm[apsi,g2, 2,g1, 1]
G3=Simplify[G] 

f = G1[[1]]+G3[[1]] 
g = *(G1[[2]]+G3[[2]]) 

intermediate = Solve[g 0,iLnorm] 
0 = (iLnorm /. intermediate)[[1]] 
1 = (1/D[g,iLnorm])*(D[ 0,vCnorm])*(f /. iLnorm 0)
rhs = (g /. iLnorm  ( 0 + * 1 + ))- *(D[ 0,vCnorm])*(f /. 

iLnorm  ( 0+ ));
infinitef = Simplify[simple rhs /. p  0] 
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