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Predictive Congestion Control Protocol for
Wireless Sensor Networks

Maciej Zawodniok, Member, IEEE, and Sarangapani Jagannathan, Senior Member, IEEE

Abstract— Available congestion control schemes, for example
transport control protocol (TCP), when applied to wireless net-
works, result in a large number of packet drops, unfair scenarios
and low throughputs with a significant amount of wasted energy
due to retransmissions. To fully utilize the hop by hop feedback
information, this paper presents a novel, decentralized, predictive
congestion control (DPCC) for wireless sensor networks (WSN).
The DPCC consists of an adaptive flow and adaptive back-off
interval selection schemes that work in concert with energy
efficient, distributed power control (DPC). The DPCC detects
the onset of congestion using queue utilization and the embedded
channel estimator algorithm in DPC that predicts the channel
quality. Then, an adaptive flow control scheme selects suitable
rate which is enforced by the newly proposed adaptive back-
off interval selection scheme. An optional adaptive scheduling
scheme updates weights associated with each packet to guarantee
the weighted fairness during congestion. Closed-loop stability of
the proposed hop-by-hop congestion control is demonstrated by
using the Lyapunov-based approach. Simulation results show
that the DPCC reduces congestion and improves performance
over Congestion Detection and Avoidance (CODA) [3] and IEEE
802.11 protocols.

Index Terms— Congestion control, wireless sensor network,
Lyapunov stability, control-Lyapunov functions.

I. INTRODUCTION

NETWORK congestion, which is quite common in wire-
less networks, occurs when offered load exceeds avail-

able capacity or the link bandwidth is reduced due to fad-
ing channels. Network congestion causes channel quality to
degrade and loss rates rise. It leads to packets drops at
the buffers, increased delays, wasted energy, and requires
retransmissions. Moreover, traffic flow will be unfair for nodes
whose data has to traverse a significant number of hops.
This considerably reduces the performance and lifetime of
the network. Additionally, wireless sensor networks (WSN)
have constraints imposed on energy, memory and bandwidth.
Therefore, energy efficient data transmission protocols are
required to mitigate congestion resulting from fading channels
and excess load. In particular, a congestion control mechanism
is needed in order to balance the load, to prevent packet drops,
and to avoid network deadlock.

Rigorous work has been done in wired networks on end-to-
end congestion control [5]. In spite of several advantages in
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end-to-end control schemes, the need to propagate the onset
of congestion between end-systems makes the approach slow.
In general, a hop-by-hop congestion control scheme reacts to
congestion faster and is normally preferred to minimize packet
losses in wireless networks. Therefore, the proposed scheme
uses a novel hop-by-hop flow control algorithm that is capable
of predicting the onset of congestion and then gradually
reducing the incoming traffic by means of a backpressure
signal.

In comparison, the CODA protocol [3] uses both a hop-
by-hop and an end-to-end congestion control scheme to react
to the congestion by simply dropping packets at the node
preceding the congestion area and employing additive increase
and multiplicative decrease (AIMD) scheme to control a
source’s generation rate. Thus, CODA partially minimizes the
effects of congestion, and as a result retransmissions still
occur. Similar to CODA, Fusion [2] uses a static threshold
value for detecting the onset of congestion even though it is
normally difficult to determine a suitable threshold value that
works in dynamic channel environments. In both CODA and
Fusion protocols, nodes use a broadcast message to inform
their neighboring nodes the onset of congestion though this
message is not guaranteed to reach the sources.

Interference-aware fair rate control (IFRC) protocol [12]
uses static queue thresholds to determine congestion level
whereas IFRC exercises congestion control by adjusting out-
going rate on each link based on AIMD scheme. Consequently,
the IFRC reduces the number of dropped packets by reducing
the throughput. By contrast, the proposed scheme varies the
rate adoptively based on the current and predicted congestion
level. The control parameters in the proposed scheme are up-
dated according to changing environment, while the IFRC [12]
and others [2][3] require that the parameters and thresholds
have to be selected before each network deployment.

Both IFRC [12] and the proposed scheme support fair band-
width allocation among the flows. However, IFRC requires
nodes to collect rate information from their neighboring nodes
thus increasing processing overhead and energy consumption.
By contrast, the proposed scheme uses the adaptive back-
off selection algorithms at MAC layer for fair allocation of
resources among the neighbor nodes without the need for
additional radio communication.

Congestion Control and Fairness (CCF) routing scheme [14]
uses packet service time at the node as an indicator of con-
gestion. However, the service time alone may be misleading
when the incoming rate is equal or lower than the outgoing
rate through the channel with high utilization. On the other
hand, the Priority-based Congestion Control Protocol (PCCP)

1536-1276/07$25.00 c© 2007 IEEE
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Fig. 1. Congestion in wireless sensor networks.

[15] rectifies this deficiency by observing the ratio between
packet service time and inter-arrival time at a given node to
asses the congestion level. However, both CCF and PCCP
ignore current queue utilization which leads to increased
queuing delays and frequent buffer overflows accompanied by
increased retransmissions.

Additionally, available protocols [2][3][4][12][13][14][15]
do not consider congestion due to fading channels in dynamic
environments. Finally, very few analytical results are presented
in the literature in terms of guaranteeing the performance of
available congestion control protocols. By contrast, the pro-
posed method can predict and mitigate the onset of congestion
by gradually reducing the traffic flow defined by using the
queue availability and channel state. Besides predicting the
onset of congestion, the proposed scheme guarantees conver-
gence to the calculated target outgoing rate by using a novel,
adaptive back-off interval selection algorithm. In CSMA/CA-
based wireless networks, a back-off selection mechanism is
used to provide simultaneous access to a common transmission
medium and to vary transmission rates. Many researchers
[7][8][9] have focused on the performance analysis of back-
off selection schemes for static environments. However, these
schemes lack the ability to adapt to a changing channel
state, congestion level, and size of the network. By contrast,
the proposed algorithm dynamically alters back-off intervals
according to current network conditions, for instance the
varying number of neighbor nodes and fading channels in
contrast with [7] where a uniform density of transmitting
nodes is assumed.

The proposed decentralized predictive congestion control
(DPCC) uses weights associated with flows to fairly allocate
resources during congestion. By adding an optional, dynamic
weight adaptation algorithm, weighted fairness can be guar-
anteed in dynamic environments. Finally, using Lyapunov-
based approach, the stability and convergence of the three
algorithms, for buffer control, back-off interval selection and
dynamic weight adaptation, is demonstrated.

II. PROPOSED METHODOLOGY

The network congestion, shown in Fig. 1, occurs when
either the incoming traffic (received and generated) exceeds
the capacity of the outgoing link or link bandwidth drops due
to channel fading caused by path loss, shadowing and Rayleigh
fading. The latter one is common to wireless networks. There-
fore the overall objective of this paper is to develop a novel

Fig. 2. DPC with rate adaptation.

way of utilizing the channel state in rate adaptation and a new
MAC protocol using the mathematical framework, capturing
channel state, back-off intervals, delay, transmitted power and
throughput in contrast with [7][8][9] where the time invariant
channel is assumed. Next, an overview of the proposed scheme
is presented. Then, the metrics are highlighted.

A. Overview of the proposed scheme

A novel scheme, shown in Fig. 2, is derived based on
the channel state, transmitter intended rate, and backlog. The
scheme can be summarized in the following steps:

1) 1)The onset of congestion is detected from buffer occu-
pancies at the nodes along with the predicted transmitter
power. The rate selection algorithm is then executed
at the receiver to determine the appropriate rate (or
available bandwidth) for the predicted channel state.

2) The available bandwidth (or rate) is allocated for the
flows according to the flow weights to ensure weighted
fairness. The weights can be selected initially and held
subsequently or updated over time.

3) The DPC and rate information is communicated between
nodes on every link.

4) At the transmitter node, a back-off interval is selected
by using the proposed scheme based on the assigned
outgoing rate.

5) The dynamic weight adaptation scheme can be used to
further enhance the throughput while ensuring fairness.
Packets at each node can be scheduled by using the
adaptive and distributed fair scheduling (ADFS) scheme
[6] via flow assigned weights that are updated based
on the network state to ensure the fair handling of the
packets.

Remark 1: The feedback information which consists of
only the rate information is piggybacked to the ACK frame
of the MAC protocol. This ensures that the feedback is
successfully received by the node in the previous hop in
contrast with CODA.

Remark 2: Though a single MAC data rate is considered,
the mathematical analysis suggests that changes in routes
and MAC data rates (bandwidth) will be accommodated by
the outgoing traffic estimation algorithm. Some insight is
presented in section IV.C using a simulation scenario.
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Fig. 3. Rate selection overview.

B. Performance metrics

Packets dropped at the intermediate nodes due to conges-
tion will cause low network throughput and decrease energy
efficiency due to retransmissions. Consequently, the total
number of packets dropped at the intermediate nodes will
be considered as a metric for the designed protocol. Energy
efficiency measured as the number of bits transmitted per joule
will be used as the second metric. The network efficiency
measured as the total throughput at the base station will be
taken as an additional metric. Weighted fairness will be used
as a metric, since congestion can cause unfair handling of
flows. Formally, the weighted fairness is defined in terms of
fair allocation of resources as∣∣∣∣Wf (t1, t2)

ϕf
− Wm(t1, t2)

ϕm

∣∣∣∣ = 0 (1)

where f and m are considered flows, ϕf is the weight of flow
f and Wf (t1, t2) is the aggregate service (in bits) received
by it in the interval [t1, t2]. Finally, Fairness Index (FI) [7],

which is defined as FI =
(∑

f Tf

ϕf

)2
/

η
∑

f

(
Tf

ϕf

)2

,

where Tf is the throughput of flow f and η is the number
of flows will be utilized as a metric.

The DPCC methodology utilizes both rate based control
and back-off interval selection schemes along with distributed
power control scheme (DPC). Embedded channel quality
estimator in DPC is utilized to assess the onset of congestion.
The proposed congestion control scheme ensures stability and
performance, analytically as summarized next.

III. ADAPTIVE CONGESTION CONTROL

The adaptive rate selection scheme when implemented at
each node acts as a back-pressure signal to minimize the
effect of congestion on a hop-by-hop basis by estimating the
outgoing traffic flow. Consequently the congestion is alleviated
by a) designing suitable back off intervals for each node based
on channel state and current traffic; and b) by controlling the
flow rates of all nodes including the source nodes to prevent
buffer overflowing. Next, we describe the rate and back-off
selection algorithms in detail. Then, the data dissemination
and fair scheduling are presented.

A. Rate selection based on buffer occupancy

The rate selection scheme takes into account the buffer
occupancy and a target outgoing rate. The target rate at the

next hop node indicates what the incoming rate should be.
The selection of the incoming rate is described next. Consider
buffer occupancy at a particular node, as shown in Fig. 3. The
change in buffer occupancy in terms of incoming and outgoing
traffic at this node is given as

qi(k + 1) = Satp [qi(k) + Tui(k) − fi(ui+1(k)) + d(k)]
(2)

where T is the measurement interval, qi(k) is the buffer
occupancy of node i at time instant k, ui(k) is a regulated
(incoming) traffic rate, d(k) is an unknown disturbance in
traffic, fi(·) represents an outgoing traffic which is dictated by
the next hop node i+1 and is disturbed by changes in channel
state, and Satp is the saturation function that represents the
finite-size queue behavior. The regulated incoming traffic rates
ui(k) have to be calculated and propagated as a feedback to
the node i−1 located on the path to the source, which is then
used to estimate the outgoing traffic for this upstream node
fi−1(·).

Select the desired buffer occupancy at node i to be qid.
Then, buffer occupancy error defined as ebi(k) = qi(k) − qid

can be expressed using (2) as ebi(k+1) = qi(k)+T ·ui(k)−
fi(ui+1(k)) + d(k) − qid. Next, the controller is introduced
and its stability analysis is presented.

In the simple case, where the objective is to show that the
scheme works, it is assumed that the outgoing traffic fi(·)
value is known. Theorem 1 shows the asymptotic stability of
the system. Consequently, the queue level, qi(·), will closely
track the ideal level, qid. Moreover, if the queue level exceeds
the ideal level at any time instance, the feedback controller
will quickly force the queue level to the target value. The
second case presented in Theorem 2 relaxes the assumption
of full knowledge about the outgoing flow fi(·). The stability
will hold even when the full knowledge of the outgoing
flow is unknown as long as the traffic flow estimation error
does not exceed the maximum value fM . On the other hand,
Theorem 3 shows that an adaptive scheme is capable of
predicting the outgoing traffic f̂i(·) with error bounded by the
maximum value fM . In consequence, the proposed controller
with adaptive scheme will ensure tracking of the ideal queue
level even in the presence of bounded estimation errors in
traffic flow.

Case 1: The outgoing traffic fi(·) is known. Now, define
the traffic rate input, ui(k) as

ui(k) = Satp

(
fi(ui+1(k)) + (κbv − 1)ebi(k)

T

)
(3)

where κbv is a gain parameter. In this case, the buffer
occupancy error at the time k + 1 becomes

ebi(k + 1) = Satp [κbvebi(k) + d(k)] (4)

The buffer occupancy error will become zero as k −→ ∞,
provided 0 < κbv < 1.

Case 2: The outgoing traffic fi(·) is unknown and has to
be estimated. In such a case, we define the traffic rate input,
ui(k) as
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ui(k) = Satp

(
f̂i(ui+1(k)) + (κbv − 1)ebi(k)

T

)
(5)

where f̂i(ui+1(k)) is an estimate of the unknown out-
going traffic fi(ui+1(k)). In this case, the buffer occu-
pancy error at the time instant k becomes ebi(k + 1) =
Satp

[
κbvebi(k) + f̃i(ui+1(k)) + d(k)

]
where f̃i(ui+1(k)) =

fi(ui+1(k)) − f̂i(ui+1(k)) represents the estimation error of
the outgoing traffic.

Theorem 1 (Ideal case): Consider the desired buffer length,
qid, to be finite, and the disturbance bound, dM , to be
equal to zero. Let the virtual-source rate for (2) be given by
(3). Then the buffer occupancy feedback system is globally
asymptotically stable provided 0 < κ2

bv max < 1.
Proof: Let us consider the following Lyapunov function

candidate J = [ebi(k)]2. Then the first difference is

ΔJ = [ebi(k + 1)]2 − [ebi(k)]2 (6)

Substituting error at time k + 1 from (4) in (8) yields

ΔJ = (κ2
bv − 1) [ebi(k)]2 ≤ −(1 − κ2

bv max) ‖ebi(k)‖2 (7)

The first difference of Lyapunov function candidate is
negative for any time instance k. Hence, the closed-loop
system is globally asymptotically stable.

Remark 3: The above theorem using Lyapunov method
shows that under the ideal case of no errors in traffic estimation
and with no disturbances, the control scheme will ensure
that the actual queue level converges to the target value
asymptotically.

Theorem 2 (General case): Consider the desired buffer
length, qid, to be finite, and the disturbance bound, dM , to be
a known constant. Let the virtual-source rate for (2) be given
by (5) with the network traffic is estimated properly such that
the approximation error f̃i(·) is bounded above by fM . Then,
the buffer occupancy feedback system is globally uniformly
bounded provided 0 < κbv < 1.

Proof: Let us consider Lyapunov function candidate J =
[ebi(k)]2. Then, the first difference is

ΔJ =
[
κbvebi(k) + f̃i(ui+1(k)) + d(k)

]2
− [ebi(k)]2 (8)

The stability condition ΔJ ≤ 0 is satisfied if and only if

‖e‖ > (fM + dM )/(1 − κbv max) (9)

When this condition is satisfied, the first difference of Lya-
punov function candidate is negative for any time instance k.
Hence, the closed-loop system is globally uniformly bounded.

Remark 4: The above theorem using Lyapunov method
shows that under the general case of where errors in traffic
estimation is upped bounded and with bounded disturbances,
the control scheme will ensure that the actual queue level
converges close to the target value.

Next the outgoing traffic function is estimated, using a
vector of traffic parametes θ, by, fi(ui+1(k)) = θifi(k +

1) + ε(k) where fi(k − 1) is the past value of the outgoing
traffic, and the approximation error ε(k) is assumed bounded
by known constant εM . Now, define traffic estimate in the
controller as f̂i(ui+1(k)) = θ̂i(k)fi(k−1), where θ̂i(k) is the
actual vector of traffic parameters, f̂i(ui+1(k)) is an estimate
of the unknown outgoing traffic fi(ui+1(k)), and fi(k− 1) is
the past value of the outgoing traffic.

Theorem 3 (Ideal case of no traffic estimation error):
Given the incoming rate selection scheme above with variable
θi estimated accurately (no estimation error), and if the back-
off interval is updated as (5), then the mean estimation error of
the variable θi along with the mean error in queue utilization
converges to zero asymptotically, if the parameter θi is updated
as

θ̂i(k + 1) = θ̂i(k) + λui(k)efi(k + 1) (10)

provided: (a) λ‖ui(k)‖2 < 1 and (b) κfv max < 1/
√

δ, where
δ = 1/

[
1 − λ‖ui(k)‖2

]
, κfv max is the maximum singular

value of κfv, λ is the adaptation gain, and efi(k) = fi(k) −
f̂i(k) is the error between the estimated value and the actual
one.

The rate selected by the above algorithm in equation (5)
does not take into account the fading channels whereas it
only detects the onset of congestion by monitoring the buffer
occupancy. Under the fading wireless channels, the transmitted
packets will not be decoded and dropped at the receiver
thereby requiring retransmissions. To mitigate congestion due
to channel fading at a given node, the rate from (5) has to be
reduced when the transmission power calculated by the DPC
scheme exceeds the maximum threshold. This is accomplished
by using an adaptive scheme for selecting virtual rates and
back-off intervals for a given node although the back-off
intervals of all neighboring nodes are normally unknown.

B. Back-off interval selection

Since multiple nodes in a wireless sensor network compete
to access the shared channel, back-off interval selection for
nodes plays a critical role in deciding which node gains
access to the channel. Thus, the proposed rate selection is
implemented by suitably modifying the back-off intervals of
the nodes around the congested node to achieve the desired
rate control. For a given node, a relationship between trans-
mission rate and back-off interval exists which depends upon
the back-off intervals of all nodes within a sensing range of
a transmitting node in the case of CSMA/CA paradigm. To
know the back-off intervals of all the neighbors is not feasible
due to a large traffic overhead resulting from communication.

Therefore, we propose using a distributed and predictive
algorithm to estimate back-off intervals, such that a target rate
is achieved. The main goal is to select back-off interval, BOi,
at the ith transmitting node such that the actual throughput
meets the desired outgoing rate fi(k). To simplify calculations,
we consider the inverse of the back-off interval, which is
denoted as V Ri = 1/BOi, where V Ri is the virtual rate at
ith node, and BOi is the corresponding back-off interval. The
fair scheduling algorithm, discussed in the next subsection,
schedules the packet transmissions according to the calculated
node’s back-off interval. The interval is counted-down when a
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node does not detect any transmission, and pauses otherwise.
Consequently, a node will gain access to the channel propor-
tional to its virtual rate and inversely proportional to the sum
of virtual rates of its neighbors. The actual rate of the ith node
is a fraction of the channel bandwidth, B(t), defined as

Ri(t) =
B(t) · V Ri(t)∑

l∈Si
V Rl(t)

=
B(t) · V Ri(t)

TV Ri(t)
(11)

where TV Ri(t) is the sum of all virtual rates for all neighbor
nodes, Si.

Since the scheme considers only a single modulation
scheme, bandwidth, B, is assumed time-invariant until the
back-off interval is selected. However, when the severe fading
occurs, the bandwidth will drop to zero. In such a case,
back-off intervals are set at a large value, lar, to prevent
unnecessary transmissions when a suitable signal to noise
ratio (SNR) cannot be achieved at a destination node due to
power constraints. Additionally, under normal circumstances,
the algorithm presented below is used to calculate the back-
off interval BOi, which is then randomized in order to
minimize probability of collision on access between nodes.
Consequently, the MAC layer back-off timer BTi value is
defined as

BTi =

{
ρ · BOi(k), for B(k) = 1
lar, for B(k) = 0

(12)

where ρ is a random variable with mean one, lar is a large
value of the back-off interval and B(k) is the variable that is
used to identify whether there is an onset of channel fading
or not.

Equation (11) represents the relationship between the back-
off intervals and the outgoing flow rate. In order to design
a controller which will track the target rate, the system
equation is differentiated and then transformed into discrete-
time domain. This allows the design of a feedback controller
for the selection of the appropriate back-off interval.

Theorems 4 and 5 present that the proposed back-off
selection scheme ensures convergence of traffic and stability
in the sense of Lyapunov [10][11] in both cases: ideal where
the throughput dynamics are known and general where the
dynamics are estimated by an adaptive scheme. In the latter
case, the estimation error is bounded by known value εN .

1) Adaptive back-off interval selection: Differentiating (11)
to get

˙Ri(t) =
B

TV R2
i (t)

[
˙V Ri(t)TV Ri(t) − V Ri(t) ˙TV Ri(t)

]
(13)

To transform the differential equation into the discrete-time
domain, Euler’s formula is used as

Ri(k + 1) − Ri(k) =
B

TV R2
i (k)

[(V Ri(k + 1) − V Ri(k))

TV Ri(t) − V Ri(t)(TV Ri(k + 1) − TV Ri(k))]
(14)

After applying (11) we can transform (14) to get

Ri(k+1) =
Ri(k)V Ri(k + 1)

V Ri(k)
+Ri(k)

(
1 − TV Ri(k + 1)

TV Ri(k)

)
(15)

Now, define αi(k) = 1−TV Ri(k + 1)/TRVi(k), βi(k) =
Ri(k)/V Ri(k), and vi(k) = V Ri(k + 1) = 1/BOi(k + 1).
The variable αi(k) describes a variation of back-off intervals
of flows at the neighboring nodes from the time instant k to
k + 1. This variation is caused due to congestion resulting
from traffic and fading channels. Since this information is not
available locally, it is considered an unknown parameter, and
thus estimated by the algorithm. The parameter βi(k) is the
ratio between actual and the used virtual rate at time instant
k, and can be easily calculated. The term vi(k) is the back
off interval that needs to be calculated for each node.

Now, (15) can be written as

Ri(k + 1) = Ri(k)αi(k) + βi(k)vi(k) (16)

Equation (16) indicates that the achieved rate at the instant,
k + 1, depends on the variations of back-off intervals in the
neighboring nodes. Now, select the back-off interval as

vi(k) =
fi(k) − Ri(k)α̂i(k) − κvei(k)

βi(k)
(17)

where α̂i(k) is estimate of αi(k), ei(k) = Ri(k) − fi(k)
is defined as throughput error, and κv is the feedback gain
parameter. In this case, the throughput error is expressed as

ei(k + 1) = κvei(k) + αi(k)Ri(k) − α̂i(k)Ri(k)
= κvei(k) + α̃i(k)Ri(k)

(18)

where α̃i(k) = αi(k) − α̂i(k) is the error in estimation.
The throughput error of the closed-loop system for a given

link is driven by the error in back-off intervals of the neighbors
which are typically unknown. If these uncertainties are prop-
erly estimated a suitable back-off interval is selected for the
node under consideration such that a suitable rate is selected
to mitigate potential congestion. If the error in uncertainties
tends to zero, equation (18) reduces to ei(k + 1) = κvei(k).
In the presence of back-off interval variations of neighboring
nodes, the congestion control scheme will ensure that the
actual throughput is close to its target value but it will not
guarantee convergence of actual back-off interval to its ideal
target for all the nodes. Unless suitable back-off intervals are
selected for all the nodes, congestion cannot be prevented.

Theorem 4 (Back-off selection algorithm under ideal
circumstances): Given the back-off selection scheme above
with variable αi(k) estimated accurately (no estimation error),
and the back-off interval updated as (17), then the mean
estimation error of the variable αi(k) along with the mean
error in throughput converges to zero asymptotically, if the
parameter αi(k) is updated as

α̂i(k + 1) = α̂i(k) + σRi(k)ei(k + 1) (19)

provided

(a) σ‖Ri(k)‖2 < 1 and (b) κvmax < 1/
√

δ (20)
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where δ = 1/
(
1 − σ‖Ri(k)‖2

)
, κvmaxis the maximum sin-

gular value of κv, and σ is the adaptation gain.
Proof: Define the Lyapunov function candidate

J = e2
i (k) +

1
σ

α̃2
i (k) (21)

whose first difference is

ΔJ = ΔJ1 + ΔJ2

= e2
i (k + 1) − e2

i (k) +
1
σ

(
α̃2

i (k + 1) − α̃2
i (k)

) (22)

Consider from (22) and substituting (18) to get

ΔJ1 = e2
i (k + 1) − e2

i (k)

= [κvei(k) + α̃i(k)Ri(k)]2 − e2
i (k)

(23)

Taking the second term of the first difference from (22) and
substituting (19) yields

ΔJ2 =
α̃2

i (k + 1) − α̃2
i (k)

σ
= −2κvei(k)α̃i(k)Ri(k)

−2 [α̃i(k)Ri(k)]2 + σR2
i (k) [κvei(k) + α̃i(k)Ri(k)]2

(24)

Combining (23) and (24) to get

ΔJ = − (1 − σR2
i (k)

)
[α̃i(k)Ri(k)]2

+ 2σR2
i (k)κvei(k) [α̃i(k)Ri(k)] − σR2

i (k)κ2
ve2

i (k)

≤− (1 − δκ2
v max

) ‖ei(k)‖2 − (1 − σ‖Ri(k)‖2
)

∥∥∥∥α̃i(k)Ri(k) − σ‖Ri(k)‖2κvei(k)
1 − σ‖Ri(k)‖2

∥∥∥∥
2

(25)

where δ is given after (20). Taking now expectations on both
sides yields

E(ΔJ) ≤− E
{(

1 − δk2
v max

) ‖ei(k)‖2

− (1 − σ‖Ri(k)‖2
)

∥∥∥∥α̃i(k)Ri(k) +
σ‖Ri(k)‖2

1 − σ‖Ri(k)‖2
κvei(k)

∥∥∥∥
2
}
(26)

Since E(J) > 0 and E(ΔJ) ≤ 0, this shows the stability
in the mean, in the sense of Lyapunov [10][11] provided the
conditions (20) and (20) hold, so E[ei(k)] and E[α̃i(k)] (and
hence E[α̂i(k)]) are bounded in the mean if E[ei(k0)] and
E[α̃i(k0)] are bounded. Sum both sides of (26) and taking
limits limk→∞E(ΔJ), the error E [‖ei(k)‖] → 0.

Consider the closed loop throughput error with estimation
error, ε(k), as

ei(k + 1) = κvei(k) + αi(k)Ri(k) + ε(k) (27)

Theorem 5 (Back-off selection algorithm in general
case): Assume the hypothesis as given in Theorem 4, and let
the uncertain parameter αi be estimated using (18) with ε(k)
the error in estimation which is considered bounded above
such that ‖ε(k)‖ ≤ εN , where εN is a known constant. Then
the mean error in throughput and the estimated parameters are
bounded provided (20) and (20) hold.

Proof: Define a Lyapunov function candidate as in (21)
whose first difference is given by (22). The first term ΔJ1 and
ΔJ2 the second term can be obtained respectively as

ΔJ1 =e2
i (k)κv + 2κvei(k)α̃i(k)Ri(k) + [α̃i(k)Ri(k)]2

+ ε2(k) + 2κvei(k)ε(k) + 2ε(k)ei(k) − e2
i (k)

(28)

ΔJ2 = − 2κvei(k)α̃i(k)Ri(k) − 2 [α̃i(k)Ri(k)]2

+ σR2
i (k) [κvei(k) + α̃i(k)Ri(k)]2

− 2
[
1 − σR2

i (k)
]
ei(k)ε(k)

+ 2σR2
i (k)κvei(k)ε(k) + σR2

i (k)ε2(k)

(29)

Following (25) and completing the squares for α̃i(k)Ri(k)
yields

ΔJ ≤ −(1 − δκ2
v max)

[
‖ei(k)‖2 − δε2

N

1 − δκ2
v max

−εN‖ei(k)‖2σκv max‖Ri(k)‖2

1 − δκ2
v max

]
− (1 − σ‖Ri(k)‖2

)
·
∥∥∥∥α̃i(k)Ri(k) − σ‖Ri(k)‖2

1 − σ‖Ri(k)‖2
(κvei(k) + ε(k))

∥∥∥∥
2

(30)
with δ is given after (20). Taking expectations on both sides
to get

E(ΔJ) ≤
− E

{
(1 − δκ2

v max)
[
‖ei(k)‖2 − δε2

N

1 − δκv max

− εN‖ei(k)‖2σκv max‖Ri(k)‖2

1 − δκ2
v max

]
− (1 − σ‖Ri(k)‖2

)
∥∥∥∥α̃i(k)Ri(k) − σ‖Ri(k)‖2

1 − σ‖Ri(k)‖2
(κvei(k) + ε(k))

∥∥∥∥
2
}

(31)
as long as (20) and (20) hold, and E [‖ei(k)‖] >
εN (σκv max +

√
σ)

1 − σκ2
v max

. This demonstrates that E(ΔJ) is neg-

ative outside a compact set U . According to a standard
Lyapunov extension [10][11], the throughput error E[ei(k)]
is bounded for all k ≥ 0. It is required to show that α̂i(k) or
equivalently α̃i(k) is bounded. The dynamics in error in the
parameters estimates are

α̃i(k + 1) =
[
1 − σR2

i (k)
]
α̃i(k) − σRi(k) [κvei(k) + ε(k)]

(32)
where the error, ei(k), is bounded and estimation error, ε(k),
is bounded. Applying the persistency of excitation condition
[1], one can show that α̃i(k) is bounded.

2) Rate propagation: This total incoming rate is then
divided among the upstream nodes proportionally to the sum
of flow weights passing through a given node j as uij(k) =

ui(k)
∑flows at jth node

n ϕn∑flows at ith node
m ϕm

, where uij(k) is the rate allocated

for a transmitting node j at receiving node i, ui(k) is the
rate selected for all incoming flows at ith node and given by
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(3), and ϕn, ϕm are pre-assigned weights of the nth and mth

flows respectively. Next, the selected rate uij(k) is commu-
nicated to the upstream node j to mitigate congestion. This
feedback continues recursively to the nodes upstream from
the congested link so that they will also reduce transmission
rates and thus prevent overflowing buffers. One can update
the pre-assigned weights to guarantee weighted fairness and
to improve throughput as discussed next.

C. Fair scheduling

Data packets at a receiver are first scheduled using the
adaptive dynamic fair scheduling (ADFS) scheme [6]. Weights
that correspond to the packets flows are used to build a
schedule for transmission. This algorithm ensures weighted
fairness defined in (1) among the flows passing a given
node. The proposed scheme offers an additional feature of
dynamic weight adaptation that further boosts the fairness and
guarantees performance analytically as presented in this paper.

This ADFS feature increases throughput while ensuring
fairness of the flows by adjusting per-packet weight during
congestion. This feature, though utilized here, can be optional
in the congestion control scheme since it introduces additional
overhead, although shown to be low [6], in the form of:
a) extra bits in each packet to carry the weight, and b)
additional calculations performed to evaluate fairness and
update the packet weight at each hop. However, this algorithm
is necessary in a dynamic environment.

Dynamic weight adaptation given in (33) is utilized in
ADFS scheme [6]. The initial weights are selected by using
the user-defined QoS criteria. Then, the packet weights are
dynamically adapted with network state defined, as a function
of delay experienced, number of packets in the queue and
the previous weight of the packet. In fact, analytical results
are included in [6] to demonstrate the throughput and end-to-
end delay bounds in contrast with the existing literature. The
weights are updated as follows.

1) Dynamic weight adaptation: To account for the chang-
ing traffic and channel conditions that affect the fairness
and end-to-end delay, the weights for the flows are updated
dynamically as

ϕ̂ij(k + 1) = ξϕ̂ij(k) + ςEij (33)

where ϕ̂ij(k) is the actual weight for the ith flow, jth packet
at time k, ξ and ς are design constants, {ξ, ς} ∈ [−1, 1],
and Eij is defined as Eij = ebi + 1/eij,delay , where ebi is
the error between the expected length of the queue and the
actual size of the queue, and eij,delay is the error between the
expected delay and the delay experienced by the packet so far.
According to Eij , when queues buildup or delay increases,
the packet weights will be increased to clear the backlog
and send the packet sooner. Note that the value of Eij is
bounded due to finite queue length and delay, as packets
experiencing delay greater than the delay error limit will be
dropped. The updated weights are utilized to schedule packets
for subsequent transmission.

2) Fairness and throughput guarantee: To prove that the
dynamic weight adaptation is fair, we need to show a bound

on

∣∣∣∣Wf (t1, t2)
ϕf

− Wm(t1, t2)
ϕm

∣∣∣∣ for a sufficiently long inter-

val [t1, t2] in which both flows, f and m, are backlogged.
Next, several theorems (not shown) can guarantee proportional
fairness, minimal throughput and finally guaranteeing overall
performance of the proposed scheme. The proofs closely
follow the ones given by authors in [6].

Remark 5: In fact, the weight update (13) ensures that the
actual weight assigned to a packet at each node converges
close to its target value.

Remark 6: ϕij is finite for each flow at a given node.
Remark 7: Notice that fairness holds regardless of the

service rate of the cluster head. This demonstrates that al-
gorithm achieves fair allocation of bandwidth and thus meets
a fundamental requirement of fair scheduling algorithm for
integrated services networks.

IV. SIMULATION RESULTS

First, the performance of the proposed scheme in case of
variations in outgoing flow rate was assessed using MATLAB.
Next, the performance of the DPCC is analyzed in Ns2
simulator using a tree topology, which is typical for a sensor
network, with clusters at leaf nodes generating traffic that is
sent to the base station at the tree’s root. This scenario allows
observing the performance improvement of the congestion
control algorithm over the DPC scheme [1] alone. Finally,
the proposed scheme is compared with CODA scheme in
the unbalanced tree topology where one source in the tree
topology is moved closer to the base station thus giving this
source advantage over others. The CODA scheme has been
implemented in Ns2 by carefully following the description in
[3]. Next the simulation results are discussed.

A. Performance in case of outgoing flow variation

The MATLAB simulations are used to evaluate performance
of the controller proposed in section III.A. The outgoing flow
rate variations can be viewed as MAC data rate changes,
thus providing indication how the proposed protocol performs
in networks that support multiple modulations rates. In this
simulation, the maximum and ideal queue size is set to 20
and 10 packets respectively, the controller parameters are
κvb = 0.1 and λ = 0.001.

Fig. 4 illustrates the actual and estimated value of the
outgoing flow, together with the queue utilization, and Fig. 5
presents the error in estimation of outgoing flow, ef , and error
of queue utilization, ebi. The errors are bounded and quickly
converge to zero since the scheme adapts to the changed
outgoing flow rate and is able to track the actual value, fout.
The errors occur when the sudden change in the outgoing
flow occurs, since the outgoing traffic estimation could not
predict such abrupt changes. However, in just a few next
iterations the algorithm converged to the ideal state since the
estimation scheme quickly detected and accommodated the
changed bandwidth.

B. Tree topologies results

The Ns2 simulations were setup to use 2Mbps channel with
path loss, shadowing and Rayleigh fading with AODV routing
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Fig. 4. Queue utilization and estimation of the outgoing flow.
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Fig. 5. Queue utilization error and outgoing traffic estimation error.

TABLE I

DELAY, THROUGHPUT AND ENERGY-EFFICIENCY

Protocol Average Fairness Index Network Energy

delay [s] (FI) efficiency efficiency

(mix weights) [kbps] [kbps/joule]

Proposed 0.8 1.00 400.99 13.05

802.11 – 0.91 77.86 3.23

Proposed 1.06 0.91 368.55 11.79

protocol at the cluster head level. The queue limit is set to 50
with the packet size taken as 512 bytes. In the tree topology,
traffic accumulates near the destination node thus causing
congestion at the intermediate nodes. All the sources generate
traffic proportional to their weights that exceeds channel
capacity so that congestion can be created. The calculations
of the rate and back-off intervals are performed periodically
for 0.5 second intervals.

The results for end-to-end delay do not include the IEEE
802.11 scheme since the protocol is quickly staled due to
congestion and only very few packets are received at the
destination. Consequently, the observed delay cannot be com-
pared with the other protocols. The DPC protocol improves the
channel utilization in presence of collisions, as described in
[1]. However, the imbalance between incoming and outgoing
flows due to congestion is not addressed by the DPC thus still
resulting in buffer overflows and a significant drop rate.

Fig. 6. Performance for unbalanced tree topology.

1) Balanced tree topology with weight variation: In the
simulations, the traffic consists of five flows, which had been
simulated with weights equal to 0.4, 0.1, 0.2, 0.2, and 0.1
respectively. Table 1 summarizes the overall performance of
the protocols. The Fairness Index (FI) in Table 1 shows the
fairness in case of varying flow weights. An ideal protocol
will have the FI equal to 1.00. Both 802.11 and DPC have
FI smaller than one indicating unfair handling of flows, while
the proposed scheme achieves fairness index equal to one in-
dicating fair allocation of resources to the flows. The proposed
DPCC protocol achieves an end-to-end fairness by recursively
applying the proposed scheme at every node, which in turn,
guarantees the hop-by-hop fairness.

2) Unbalanced tree topology results: For the unbalanced
tree topology, the flow number one is located closer to the
destination than other sources. Consequently, without adaptive
weights, the first flow is favored at the expense of the others.
Fig. 6 depicts the ’throughput/weight’(normalized weights)
ratio, and Fig. 7 presents ’weight*delay’ metric for all flows
and protocols. The DPCC protocol with weight adaptation out-
performs other schemes, since besides alleviating congestions
it also identifies that the flows 2 through 5 are hindered due
to congestion and network topology. Consequently, the DPCC
adjusts their weights at next hops to meet fairness criteria.
As a result, at the destination, all the flows achieve the same
weighted throughput and end-to-end delay.

In comparison, the CODA scheme improves the perfor-
mance of the network over the 802.11 protocol since it restricts
network traffic during the congestion by using the backpres-
sure mechanism. However, CODA is not able to achieve
throughput comparable to the proposed DPCC protocol since
CODA uses a binary bit to identify the onset of congestion and
has no precise control over the incoming flows. In contrast, the
DPCC mitigates onset of congestion by precisely controlling
queue utilization, thus completely preventing buffer overflows.
Moreover, the end-to-end delay for CODA scheme increases
since during congestion the node’s transmission is halted for
a random period of time as stated by the congestion policy
[3]. Overall, the proposed protocol improves the performance
of the network by 93-98% when compared with CODA
scheme, thus justifying increased processing requirements of
the proposed scheme.
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Fig. 7. Weighted delay with equal flow weights (const=0.2).

V. CONCLUSIONS

This paper presents a novel predictive congestion control
scheme whereby the congestion is mitigated by suitably pre-
dicting the back-off interval of all the nodes based on the
current network conditions. The network conditions include
the traffic flow through a given region and channel state.
Simulation and experimental results show that the proposed
scheme increases throughput, network efficiency and energy
conservation. With the addition of a fair scheduling algorithm,
the scheme guarantees desired quality of service (QoS) and
weighted fairness for all flows even during congestion and
fading channels. Finally, the proposed scheme provides a hop
by hop mechanism for throttling packet flow rate, which will
help in mitigating congestion. The convergence analysis is
demonstrated by using a Lyapunov-based analysis. Extensive
simulation results are included to verify the performance.
Future work will include evaluation of the proposed scheme in
a realistic wireless test-bed and comparison with other imple-
mented congestion control schemes and it will be submitted
as part of future publication.
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