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Neural Network Controller Development and
Implementation for Spark Ignition Engines

With High EGR Levels
Jonathan Blake Vance, Member, IEEE, Atmika Singh, Brian C. Kaul,

Sarangapani Jagannathan, Senior Member, IEEE, and James A. (Jim) Drallmeier

Abstract—Past research has shown substantial reductions in the
oxides of nitrogen (NO

x
) concentrations by using 10%–25% ex-

haust gas recirculation (EGR) in spark ignition (SI) engines (see
Dudek and Sain, 1989). However, under high EGR levels, the en-
gine exhibits strong cyclic dispersion in heat release which may
lead to instability and unsatisfactory performance preventing com-
mercial engines to operate with high EGR levels. A neural net-
work (NN)-based output feedback controller is developed to re-
duce cyclic variation in the heat release under high levels of EGR
even when the engine dynamics are unknown by using fuel as the
control input. A separate control loop was designed for control-
ling EGR levels. The stability analysis of the closed-loop system is
given and the boundedness of the control input is demonstrated
by relaxing separation principle, persistency of excitation condi-
tion, certainty equivalence principle, and linear in the unknown
parameter assumptions. Online training is used for the adaptive
NN and no offline training phase is needed. This online learning
feature and model-free approach is used to demonstrate the ap-
plicability of the controller on a different engine with minimal ef-
fort. Simulation results demonstrate that the cyclic dispersion is
reduced significantly using the proposed controller when imple-
mented on an engine model that has been validated experimentally.
For a single cylinder research engine fitted with a modern four-
valve head (Ricardo engine), experimental results at 15% EGR in-
dicate that cyclic dispersion was reduced 33% by the controller,
an improvement of fuel efficiency by 2%, and a 90% drop in NO

x

from stoichiometric operation without EGR was observed. More-
over, unburned hydrocarbons (uHC) drop by 6% due to NN control
as compared to the uncontrolled scenario due to the drop in cyclic
dispersion. Similar performance was observed with the controller
on a different engine.

Index Terms—Adaptive control, neural networks (NNs), non-
linear systems, observers, output feedback.

NOMENCLATURE

CFR Cooperative fuel research.
COV Coefficient of variation.
IMEP Mean effective pressure, Work/Disp. Volume.
NO Nitrogen oxide compounds.
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uHC Unburned hydrocarbons.
CE Combustion efficiency.

Unknown disturbance in air.
Unknown disturbance in fuel.
Fraction of unreacted gas and fuel remaining
from previous cycle.
Mass of water.
Mass of oxygen.
Mass of nitrogen.
Mass of carbon dioxide.
Stoichiometric air–fuel mass ratio.
Mass change fuel input.
Mass of air.
Mass of fuel.
Mass of EGR
Equivalence ratio.

, Lower 10% and upper 90% locations of the
combustion efficiency function.
Midpoint between and .

I. INTRODUCTION

ONE of the most interesting challenges facing the au-
tomotive industry today is the development of energy

generation techniques that have a low impact on the envi-
ronment. Today’s automobiles utilize sophisticated micropro-
cessor-based engine control systems to meet stringent federal
regulations governing fuel economy and the emission of carbon
monoxide (CO), oxides of nitrogen (NO ) and hydrocarbons
(HC). Global warming and its impact on the environment have
shifted the focus of the automotive industry. Current efforts are
directed at reducing the total amount of emissions and fuel con-
sumption. The engine control system can be classified into three
categories [1]: the spark advance (SA) control, the air–fuel ratio
(A/F) control, and the exhaust gas recirculation (EGR) control.
Partial recirculation of exhaust gases, a technique introduced in
the early 1970s, has continued to receive attention [2].

Operating a spark ignition engine with EGR can reduce the
NO as well as improve the fuel efficiency. For example, if
an engine can tolerate 20%–25% EGR, reduction in engine-out
NO on the order of 90%–95% can be realized. Additionally,
improved brake specific fuel consumption with EGR dilution is
a result of reduced pumping work, reduced heat transfer to the
walls due to decreased burned gas temperature, and to a lesser
extent, a reduction in dissociation at high temperatures in the

1045-9227/$25.00 © 2007 IEEE
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burned gases. EGR dilution has the advantage over lean com-
bustion of maintaining stoichiometric operation so that current
three-way catalyst technology can be used. These advantages
which come with dilute engine operation are the primary moti-
vation of this paper.

However, increased dilution of the intake charge through
EGR also reduces the combustion rate, which makes stable
combustion [2], [4]–[6] more difficult to achieve. High levels
of EGR present in a spark ignition (SI) engine lead to cyclic
dispersion in the heat release map of the SI engine. Under such
conditions, a large number of misfires develop causing prob-
lems in drivability due to cycle-to-cycle variations in output as
well as large increases in uHC. Therefore, commercial engines
do not operate with high levels of EGR due to cyclic dispersion.

Several researchers [3], [7]–[9] have studied lean combustion
engine control technology but few results have been reported for
the EGR case. Investigation of the onset of complex dynamic
behavior in an SI engine with high levels of simulated EGR
(added nitrogen) as compared to the lean equivalence ratio case
has demonstrated a bifurcation phenomenon similar to when the
engine was operating under lean conditions [2]. Therefore, it is
envisioned that by applying neural network (NN) controller sim-
ilar to that of lean operation, the cyclic dispersion resulting from
high levels of EGR dilution can be minimized, increasing the
engine’s EGR tolerance, potentially further reducing engine-out
NO and unburned HC while improving fuel efficiency.

Conventionalcontrolschemes[3]havebeenfoundincapableof
reducing the cyclic dispersion to the levels needed to implement
these concepts. Moreover, the total amount of fuel and air in a
given cylinder is normally not measurable on a per-cycle basis
which necessitates the development of output feedback control
schemes.

Several feedback controller designs in discrete time are pro-
posed for the signal-input–single-out (SISO) nonlinear systems
[10]–[12]. However, no output feedback control scheme cur-
rently exists for the proposed class of nonstrict feedback non-
linear discrete-time systems. No controller design is available
for nonstrict feedback nonlinear systems even with state feed-
back. To overcome the need for complex engine dynamics and
to make the controller practical, a heat release NN-based output
feedback controller is proposed by using the NN universal ap-
proximation property [13].

In this paper, a direct adaptive NN controller is proposed for
stable operation of the SI engine under high levels of EGR. The
SI engine dynamics are modeled as a nonlinear discrete-time
system in nonstrict feedback form [16]. The NNs are employed
to learn the unknown nonlinear dynamics since the residual gas
and combustion efficiency are unknown. A backstepping ap-
proach [14], [15] in discrete time is used to design the control
input (injected fuel) to the total fuel system. The total fuel is
then treated as the virtual control signal to the air system so that
both the air and fuel states are bounded tightly to their respec-
tive targets. A separate control loop is designed for maintaining
EGR levels. Consequently, the cyclic dispersion is reduced and
the engine is stable even when an exact knowledge of engine dy-
namics is not known to the controller making the NN controller
model-free.

This stability permits higher levels of diluents to be considered
for a specific engine, further enhancing NO reduction and fuel
efficiency than would be realized on an uncontrolled engine. The
stability analysis of the closed-loop control system is given and
theboundednessof theclosed-loopsignals is shownsinceastable
open-loop system can still become unstable with a controller.
The NN weights are tuned online, with no offline learning
phase required. Moreover, separation principle, persistency of
excitation condition, certainty equivalence, and linear in the
unknown parameters assumptions are relaxed. Performance
of the NN controller is evaluated on different engines and
results show satisfactory performance of the controller.

II. ENGINE AS A NONLINEAR DISCRETE-TIME SYSTEM

A. Nonstrict Nonlinear System Description

Consider the following nonstrict feedback nonlinear system
described by the following:

(1)

(2)

where , , are states, is the
system input, and and are unknown but
bounded disturbances. Bounds on these disturbances are given
by and where and are
unknown positive scalars.

Equations (1) and (2) represent a discrete-time nonlinear
system in nonstrict feedback form [16], since and
are functions of both and , unlike in the case of
strict feedback nonlinear system, where and are a
function of only [10]–[12]. Control of nonstrict feedback
nonlinear systems is introduced in [16] since no known results
are available in the literature. Controller results from strict
feedback nonlinear systems cannot be directly extended to
nonstrict feedback nonlinear systems due to noncausal controller
design issues. Next, the engine dynamics are presented in the
nonstrict feedback form and, subsequently, the NN controller
development is introduced. The dynamic NN architecture acts
as a one-step predictor overcoming the noncausal design. The
SI engine dynamic model is discussed next.

B. Engine Dynamics

Daw et al. [4] and Daw et al. [5] developed a mathematical
representation of the SI engine to investigate nonlinear cycle
dynamics under lean conditions and high EGR levels [2]. The
residual air and fuel passed from one cycle to the next make
the model deterministic. Actual variations in parameters due to
complex processes such as temperature and pressure effects, tur-
bulence, fuel vaporization, etc., are not directly calculated, but
modeled as stochastic effects through random noise on parame-
ters such as injected A/F ratio and residual fraction. The model
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for the EGR case is shown as follows:

CE

(3)

CE

(4)

EGR (5)

CE (6)

EGR
EGR

(7)

CE
CE

(8)

CE (9)

CE (10)

CE (11)

CE (12)

Equations for , , and are the total mass of
air, fuel, and inert gases, respectively. The heat release at the

th time instant is assumed to be proportional to the mass of
fuel burned, which is given by . The term CE is de-
fined as the combustion efficiency, which is bounded above as

CE CE CE where CE is the max-
imum combustion efficiency denoted here as a constant. The
term is the residual gas fraction, which is bounded as

whereas is the stoichiometric A/F
ratio, which is given by 15.13 for iso-octane. The term
is the small change in fuel per cycle and is the equivalence
ratio. Additionally, , and are equivalence ratio system
parameters for the lower 10%, upper 90%, and midpoint loca-
tions of the combustion efficiency function. The terms ,

, , and are the mass of water, oxygen, ni-
trogen, and carbon dioxide, respectively.

It should be noted that the residual oxygen combines propor-
tionally with the residual nitrogen to form residual air. The frac-
tion of total nitrogen left over after this is the residual inert ni-
trogen. The terms , , , , and are constant
parameters which are determined from stoichiometry and fuel
properties such as the hydrogen/carbon ratio and the molecular
weight. The terms and are unknown, bounded dis-
turbances. It can be seen that the SI engine with EGR levels
has highly nonlinear dynamics with CE and being un-
known and not measurable.

Remark 1: In (3)–(6), states and are not avail-
able for feedback control since they are not measured whereas
the output is available for measurement. Then, the control
objective is to operate the engine with high EGR levels with

as the feedback parameter and without knowing precisely
the engine dynamics. It is important to note that the output is a
nonlinear function of the states unlike in many papers [10], [11]
where the output is considered as a linear function of system
states.

Remark 2: For lean engine operation, the inert gas (5) is not
required and, therefore, fewer parameters are in (3) and (4).

C. Engine Dynamics Using Nominal Values

Substituting (4) into both (3) and (4), we get

(13)

(14)

In real engine operation, the fresh air , fresh fuel, ,
and residual gas fraction can all be viewed as nominal
values plus some small and bounded disturbances. The inert
gases include the residual exhaust gases in the cylinder and the
EGR fraction. Equation (5) will not be considered for controller
development as a separate control loop from the literature de-
signed to control EGR levels makes the inert gases evolve into
a stable value. One can observe that (5) is a stable system and
standard control results [17] can be applied. Therefore, it is suf-
ficient to use (3) and (4) in order to minimize cyclic dispersion
and (5) is not included in the proposed controller design.

Consider

(15)

(16)

(17)

where , , and are the known nominal fresh air,
fuel, and residual gas fraction values. , , and

are unknown yet bounded disturbances on those values
whose bounds are given by

(18)

(19)

(20)

Substituting these values into the system model, we can get the
state equations in the following form:

CE

(21)

CE

(22)

It is important to note that the closed-loop stability analysis
has to be performed with the proposed NN controller even
though many of the engine terms are considered bounded above
since a stable open-loop system can still become unstable with
a controller unless the NN weight update laws are properly
selected. Moreover, a Lyapunov-based stability analysis is
needed in order to show the relaxation of the separation prin-
ciple for the observer and certainty equivalence principle for
the controller. Next, the NN observer design is introduced.
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III. NN-BASED OBSERVER DESIGN

First, a semirecurrent NN is used to predict the value of the
heat release for the next burn cycle, which will be used subse-
quently by the observer to predict the states of the system. The
inert gases can be calculated directly if the air and fuel values
are known, so they are not estimated. The heat release for the
next burn cycle is given by

CE (23)

A. Observer Structure

From (23), the heat release for the next cycle can be
approximated by using a one layer neural network as

(24)

where the input to the NN is taken as
, the matrix and

represent the output and hidden layer weights,
represents the hidden layer activation function,

denotes the number of the nodes in the hidden layer, and
is the functional approximation error. It has

been demonstrated that if the hidden layer weight is chosen
initially at random and held constant, and the number of hidden
layer nodes is sufficiently large, then the approximation error

can be made arbitrarily small over the compact set
since the activation functions form a basis according to [13].

For simplicity, we define

(25)

(26)

Given (24)–(26) is rewritten as

(27)

Since states and are not measurable, is not
available either. Using the estimated values , , and

instead of , , and , the proposed heat re-
lease observer can be given as

(28)

where is the predicted heat release, is
the actual output layer weights, the input to the NN is taken
as , is the
observer gain, is the heat release estimation error, which
is defined as

(29)

and represents for the purpose of sim-
plicity.

Using the heat release estimation error, the proposed observer
is given in the following form:

(30)

(31)

where and are observer gains. The term
has been pulled out from (30) as there are no nominal

values available for the inert gases. The error introduced by this
will be taken up as part of the air estimation error. Equations
(26), (28), and (29) represent the dynamics of the observer to
estimate the states of and .

B. Observer Error Dynamics

Define the state estimation errors as

(32)

Combining (21)–(26), we obtain the estimation error dynamics
as

(33)

(34)

(35)

where

(36)

and

(37)

and for the purpose of simplicity, is
written as . Next, the NN controller design is pre-
sented and the NN weight updates for both NN observer and
controller are discussed.

IV. ADAPTIVE NN OUTPUT FEEDBACK CONTROLLER DESIGN

The control objective of maintaining the heat release constant
is achieved by holding the fuel and combustion efficiency within
a close bound, i.e., the heat release is driven to a target heat re-
lease . Given and the engine dynamics (3)–(5), we could
obtain the nominal values for the total mass of air and fuel in the
cylinder and , respectively. By driving the states
and to approach their respective nominal values and

, will approach . By developing a controller to main-
tain the EGR at a constant level separately, we can see that the
inert gases evolve into a stable value since (5) can be viewed as a
feedback linearizable nonlinear discrete-time system with
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being less than one and the weights of the gases kept constant
with minor variations. The controller for the EGR system (5)
is developed separately and not presented here. With the esti-
mated states and , the controller design follows the
backstepping technique [14], [15]. The details are given in the
following sections.

A. Adaptive NN Output Feedback Controller Design

The controller design is now given.
Step 1) Virtual controller design.

Define the error between actual and desired air as

(38)

which can be rewritten as

CE

(39)

For simplicity, let us denote

(40)

CE (41)

Then, the system error equation can be expressed as

(42)

By viewing as a virtual control input, a desired
feedback control signal can be designed as

(43)

The term can be approximated by the first action
NN as

(44)

where the inputs in the state
, , and

denote the constant ideal output and hidden
layer weights, is the number of nodes in the
hidden layer, the hidden layer activation function

is simplified as , and
is the approximation error. Since both and

are unavailable, the estimated state is
selected as the NN input.
Consequently, the virtual control input is taken as

(45)

where is the actual weight matrix for
the first control NN. Define the weight estimation
error by

(46)

Define the error between and as

(47)

Equation (35) can be expressed using (47) for
as

(48)

or, equivalently

(49)

Similar to (35), (49) can be further expressed as

(50)

where

(51)

(52)

Step 2) Design of the control input .
We rewrite the error from (47) as

CE

(53)

For simplicity, let us denote

CE (54)

Equation (53) can be written as

(55)

where is the future value of . Here,
is not available in the current time step.

However, from (43) and (45), it can be clear that
is a smooth nonlinear function of the state

and virtual control input . Another NN
can be used to approximate the value of
and to generate a suitable control input by using this
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Fig. 1. Neurocontroller structure.

value since a second control NN with semirecurrent
architecture can be viewed as a first-order predictor.
Other methods via filtering approach [18] do exist
in the literature in order to obtain this future value
which can subsequently be used by a second control
NN.
Select the desired control input by using the second
NN in the controller design as

(56)

where and denote the
constant ideal output and hidden layer weights,
is the hidden layer nodes number, the hidden layer
activation function is simplified as

, is the approximation error,
and is the NN input, which is given
by (55). Considering the fact that both and

cannot be measured, is substituted with
where

(57)

and

(58)

Now, define

(59)

and

(60)

The actual control input is now selected as

(61)

where is the actual output layer weights
and is the controller gain selected to sta-
bilize the system. Similar to the derivation of (39),
combining (55) and (56) with (61) yields

(62)
where

(63)

(64)

and

(65)

Equations (50) and (62) represent the closed-loop
error dynamics. It is required to show that the es-
timation error (29) and (32), the system errors (50)
and (62), and the NN weight matrices , ,
and are bounded. Fig. 1 shows the block di-
agram of the final structure of the designed neuro-
controller.

B. Weight Updates for Guaranteed Performance

Assumption 1 (Bounded Ideal Weights): Let , , and
be the unknown output layer target weights for the observer and
two action NNs and assume that they are bounded above so that

(66)
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where , , and represent the
bounds on the unknown target weights when the Frobenius norm
is used.

Fact 1: The activation functions are bounded above by known
positive values so that

(67)

where , , are the upper bounds.
Assumption 2 (Bounded NN Approximation Error): The NN

approximation errors , , and are
bounded over the compact set by , , and , respec-
tively.

Theorem 1: Consider the system given in (3)–(5) and let the
Assumptions 1 and 2 hold. Let the unknown disturbances be
bounded by and , respectively.
Let the observer NN weight tuning be given by

(68)
with the virtual control NN weight tuning being provided by

(69)
and the control NN weight tuning be provided by

(70)
where , , and , and , , and

are design parameters. Let the system observer be given
by (28)–(30) and virtual and actual control inputs be defined
as (45) and (61), respectively. The estimation errors (33)–(35),
the tracking errors (50) and (62), and the NN weight estimates

, , and are uniformly ultimately bounded
(UUB) with the bounds specifically given by (A.17)–(A.20)
provided the design parameters are selected as follows:

1)

(71)

2)

(72)

3)

(73)

4)

(74)

Proof: See the Appendix.
Remark 3: For general nonlinear discrete-time systems, the

design parameters can be selected using a priori values. Given
specific values of , , and , the design parameters can
be derived as , to 7. For instance, given ,

, and , we can select , ,

, , , , and to
satisfy (71)–(74).

Remark 4: A well-defined controller is developed in this
paper since a single NN is utilized to approximate two nonlinear
functions, thereby avoiding division by zero.

Remark 5: It is important to note that in this theorem there
is no persistency of excitation condition (PE) condition for the
NN observer and NN controller in contrast with standard work
in the discrete-time adaptive control [19] since the first differ-
ence of the Lyapunov function in the Appendix does not require
the PE condition on input signals to prove the boundedness of
the weights. Even though the input to the hidden-layer weight
matrix is not updated and only the hidden-to-the-output-layer
weight matrix alone is tuned, the NN method relaxes the linear
in the unknown parameter assumption. Additionally, certainty
equivalence principle is not used in the proof.

Remark 6: Generally, the separation principle used for linear
systems does not hold for nonlinear systems, and hence, it is re-
laxed in this paper for the controller design since the Lyapunov
function is a quadratic function of system errors and weight es-
timation errors of the observer and controller NNs.

Remark 7: It is important to notice that the NN outputs are
not fed as delayed inputs to the network whereas the outputs
of each layer are fed as delayed inputs to the same layer. The
NN weight tuning proposed in (68)–(70) render a semirecur-
rent architecture due to the proposed weight tuning law even
though feedforward NNs are utilized in the observer and con-
troller. This semirecurrent NN architecture renders a dynamic
NN which is capable of predicting the state one step-ahead over-
coming the noncausal controller design.

V. SIMULATION RESULTS

In an initial phase to test the effectiveness of the control
scheme, the Daw model was used to simulate the engine
dynamics under high levels of diluent. The model input param-
eters were calibrated by comparing return maps of heat release
to return maps from the single cylinder engines discussed in
Section VI. This approach, used in prior lean combustion work
[9], provided a basis for choosing the nominal input mass of
fuel and air as well as the residual gas fraction and stochastic
variation. The controller was then applied to the simulation
model to investigate the reduction in cyclic variability.

The simulation parameters selected were as follows: An
equivalence ratio of one was maintained with stochastic vari-
ation of 1%, for iso-octane, residual gas fraction

, mass of nominal new air , mass of nominal
new fuel , the standard deviation of mass of new fuel
is 0.007, cylinder volume in moles , molecular weight
of fuel , molecular weight of air , ,

, maximum combustion efficiency , and the
gains of backstepping controller are selected at 0.1 and
placed diagonally to satisfy (72)–(74). The EGR was assumed
to be an inert mixture with a molecular weight of 30.4. The
residuals are assumed to be a mixture of fuel, air, and inert
gases. The composition of the residuals is determined based
on the stoichiometry of the prior cycle to establish the fraction
of the inert from both EGR and combustion. The NNs were
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Fig. 2. Heat release return map without control (24% EGR).

Fig. 3. Heat release return map with control (24% EGR).

designed to have 15 neurons each in the hidden layer with
learning rates of 0.01 each so that (71) is satisfied. Here, the
heat release value is normalized.

The activation functions used were the hyperbolic tangent
sigmoid functions. Simulations ran for 1000 cycles of engine
operation at each EGR value ranging from 19% to 24%. The at-
tached plots show the results obtained from the simulation runs
at EGR levels of 24%. The dispersion of heat release in the re-
turn map of Fig. 3 is less than that seen in Fig. 2, according to
the lower COV which has reduced from 0.0741 to 0.0159.

The COV metric—hereafter referred to as COV—is used to
quantify cyclic dispersion due to heat release. It is calculated
as the standard deviation of a set of heat release data divided
by the mean heat release for that set. A larger COV indicates
that heat release values were more dispersed on the return map.
With regard to COV, a goal for this controller implementation is
to observe a reduction in COV when the control loop is closed
on the engine.

The COV in integrated cycle work is often used to estab-
lish variability in engine output. With the integrated cycle work
obtained from the cyclic cylinder pressure–volume results, the
COV is obtained by dividing the standard deviation in cycle
work by the mean over all of the cycles observed. It was ob-
served that with the NN applied, the engine model exhibits min-
imal dispersion with high EGR levels even with perturbation on
the residual gas fraction being unknown. The reduction in dis-
persion physically translates into fewer partial burning cycles
even with high EGR levels in the engine.

Although exhibiting very similar dynamics, the return maps
of heat release are quantitatively different between the simpli-
fied model used for controller development and testing and the
actual engine as presented in the following. This can be at-
tributed to the fact that the engine model simply considers mass
conservation of the fuel, air, and combustion product species
and places all complexities of the fluid mechanics and combus-
tion into a phenomenological nonlinear combustion efficiency
term and stochastic variations. In spite of this simplicity in the
model, the designed controller performs highly satisfactorily on
the actual engine as will be seen in the following.

VI. CONTROLLER HARDWARE DESIGN

The experimental setup involves two research engines. The
first is a CFR engine and the second is a Ricardo hydra engine
with a modern four-valve Ford Zetec head. Both engines are
operated at 1000 r/min while multiple load set points are tested
through the addition of diluent. Being single cylinder engines,
dynamics introduced by multiple cylinders are avoided.

For each engine, shaft encoders are mounted on the cam and
crank shafts that return start-of-cycle and crank angle signals,
respectively. There are 720 of crank angle per engine cycle,
so a crank angle degree is detected every 167 s at this en-
gine speed. For the EGR portion of gaseous intake, nitrogen is
used. EGR is comprised mainly of inert gases from the previous
combustion cycle, so nitrogen, an inert gas in the combustion
process, is used in place of the residual inert gases. This allows
for accurate metering of an average EGR flow to the cylinder.

Heat release for a given engine cycle is calculated by inte-
grating in-cylinder pressure and volume over time. In-cylinder
pressure is measured every half crank angle degree during com-
bustion, which is considered from 345 to 490 , for a total of
290 pressure measurements. At 1000-r/min pressure measure-
ments must be made every 83.3 s. The calculation window is
106 wide or 17.667 ms. At this time, all engine-to-PC-to-en-
gine communications are completed. The algorithm designed
uses 15 neurons to approximate the output, though it can be seen
from Fig. 5 that even at 100 controller nodes and 100 observer
nodes calculations are complete within 1.2 ms, well within the
available time of 17.667 ms.

Since the number of nodes required in a multilayer NN for a
given approximation error is not clear in the literature, the plot
in Fig. 4 illustrates that even with large number of hidden-layer
NNs the proposed controller can be implemented on the em-
bedded hardware. However, it was found from offline analysis
that the improvement in approximation accuracy is not signifi-
cant beyond 15 hidden-layer nodes and, therefore, the hidden-
layer NN nodes in the observer and controller are limited to 15.
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Fig. 4. NN controller runtimes varying nodes.

TABLE I
COV FOR CFR

The control input is an adjustment to the nominal fuel re-
quired at a given equivalence ratio. Fuel injection is controlled
by a transistor–transistor logic (TTL) signal to a fuel injector
driver circuit. Pressure measurements come from a charge am-
plifier which receives pressure transducer signals from a piezo-
electric transducer located inside the cylinder.

An engine-to-PC interface board was designed to manage
the shaft encoder signals, pressure measurements, and fuel in-
jector signal since timing is crucial to correct engine operation.
The board uses a microcontroller to communicate between the
TTL and analog signals of the engine hardware and a parallel
digital input–output (I/O) port of the PC. A high-speed, 8-b,
analog-to-digital (A/D) converter converts the pressure mea-
surements. Pressure measurements are sent to the PC where heat
release is calculated before being sent to the controller. Fuel
pulse width for the next engine cycle is sent to the microcon-
troller from the PC.

VII. EXPERIMENTAL RESULTS

The results for engine operation at a near-stoichiometric
equivalence ratio and addition of a percentage of EGR to the
contents of the cylinder are discussed. Equation (75) shows
how the mass of nitrogen is chosen to give a desired
percentage of EGR

EGR (75)

As mentioned in Section V, COV is a metric that can quan-
tify a reduction in cyclic dispersion when viewing a return map.
The following return maps for the two engines on which the
controller was operated have COV information. It is shown that
with control, the COV is reduced. Again, this reduction in COV

means that the engine is more stable in the presence of high in-
take EGR.

Typically, COV values less than 10% are considered accept-
able for production engines. The ideal COV would be 0%. More
realistically, the cyclic dispersion of an engine cannot be re-
duced to less than the case where equivalence ratio is stoichio-
metric and no EGR is present due to ever present stochastic
effects. The experimental results will show that the controller
can reduce the cyclic dispersion, measured as a reduction in the
COV metric.

Figs. 5–11 are results from engine controller tests on the
CFR engine. The uncontrolled engine equivalence ratio was
near-stoichiometric at 0.97. The controller pushed the equiv-
alence ratio to 1.0, due to the behavior of the control input

. Equivalence ratios experienced for both uncontrolled
and controlled scenarios are near-stoichiometric although the
control input slightly modifies the effective equivalence
ratio over time.

Heat release time series and return maps were generated for
both controlled and uncontrolled cases for each of three EGR
set points: 0%, 5%, and 10%. These EGR values correspond to
average IMEP load values of 528, 476, and 410 kPa, respec-
tively. Before engine tests, air flow is measured and nominal
fuel is calculated for the desired equivalence ratio. The nominal
fuel and air are loaded into the controller configuration. During
data acquisition, ambient pressure is referenced in the acquired
cylinder pressure each engine cycle based on the in-cylinder
pressure when the exhaust valve is fully open at 600 .

The NN weight values are all initialized at zero. Heat release
return maps in Figs. 5 and 6 depict the performance of the pro-
posed NN controller for the 0% EGR case. It is important to
observe that the return maps of heat release with no control are
slightly below the target value whereas with the application of
control the heat release return maps are around the target value.
Moreover, no misfire is noted. Figs. 7 and 8 show a decrease
in cyclic dispersion for 5% EGR which corroborates the results
seen in simulation. During the absence of control, there is much
cyclic dispersion and occasional misfires, and during control the
misfires and dispersion are reduced.

The return maps at 10% EGR show distinct cyclic dispersion
during no control and a significant decrease in those dispersed
data points during control.

It can be seen that the mean heat release increases with con-
trol, which corresponds to a slightly higher equivalence ratio.
The equivalence ratio for EGR operation is intended to be held
fixed at 1.00. When using fuel as the control input, the controller
must change the fuel to affect the engine, and therefore, changes
the equivalence ratio. Fuel intake increases slightly during con-
trol causing the actual operating equivalence ratio to be slightly
higher than the set point, here, at 1.0. It is thought that this is
partly due to a higher value specified for target heat release com-
pared to uncontrolled case. Moreover, this slight offset remains
due to slow learning of the NNs which eventually becomes zero
with time. A tradeoff exists between speed of learning and per-
formance. Higher learning rate for NNs slightly degrades per-
formance in terms of dispersion and vice versa.

The COV for the EGR return maps is listed in Table I
for the CFR engine. As the EGR percentage of cylinder
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Fig. 5. CFR engine heat release (in joules) time series at 0% EGR.

Fig. 6. Uncontrolled and controlled heat release return maps plotting current cycle y(k) against next cycle y(k + 1) at 0% EGR on CFR engine.

contents is increased from 0% to 10%, the COV increases for
uncontrolled engine operation. The increased COV indicates
increased cyclic dispersion as seen in the uncontrolled EGR
return maps. The COV decreases when control is applied
in the presence of EGR, a decrease of 55% at 10% EGR,
meaning the controller has made the engine more stable.
Consequently, a 25% drop in uHC is observed with 10%
EGR for this engine. Additionally, 80% drop in NO from
stoichiometric levels is noted.

Figs. 11–18 are data collected from engine controller oper-
ation on the Ricardo research engine. Performance of the con-
troller was similar in that decreases in cyclic dispersion for high
EGR cases were seen. Higher EGR is possible with the Ricardo
engine because it is a faster burning engine, and hence, it is more
tolerant of diluent addition. The fuel control input does not in-
crease as much on the Ricardo engine as with the CFR engine,
so the time series of heat release plots do not exhibit increase
when control is activated. Total fuel input during control was
not more than 1.5% from the nominal fuel for the desired stoi-
chiometric equivalence ratio.

Aside from the stoichiometric operating condition with no
EGR added to the Ricardo engine, three cases of high EGR were

tested. EGR levels of 0%, 12.9%, 15.2%, and 18.5% were used
to obtain data. These values correspond to IMEP load values of
881, 716, 594, and 297 kPa, respectively.

In Fig. 11, the time series of heat release is plotted, showing
the last 500 cycles of the uncontrolled data set with the transi-
tion to the first 500 cycles of data with the controller enabled.
As seen in Fig. 12, there is very little cyclic dispersion at this
stoichiometric case without EGR present, indicated by the low
COV value of 2.6%. This set point can be considered optimal
in that the engine is operating under ideal conditions. When the
controller is enabled, very little improvement can be made to re-
duce the stochastic dispersion beyond the engine’s most stable
operating point.

In Figs. 13 and 14, the effect of about 12.9% EGR causes
the engine to become less stable. The controller causes a reduc-
tion in cyclic dispersion by comparing the COV values for un-
controlled and controlled data in Fig. 14. The COV falls from
0.0462 to 0.0352.

One can see from Figs. 17 and 18 that 15.2% EGR causes
the engine to become much more unstable than for the case of
12.9% EGR. The controller yields a significant improvement,
reducing the dispersion by 33% from 0.1345 to 0.0891.
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Fig. 7. CFR engine heat release time series at 5% EGR.

Fig. 8. Uncontrolled and controlled heat release return maps plotting current cycle y(k) against next cycle y(k + 1) at 5% EGR on CFR engine.

In Figs. 17 and 18, a case of very high EGR is shown for
the Ricardo engine. At 18.5% EGR, the engine becomes very
unstable, exhibiting significant cyclic dispersion of heat release.
However, the controller is still able to reduce dispersion from
0.3733 to 0.3419.

The COV values for the Ricardo engine data are shown in
Table II. The controller reduces COV for every case, corre-
sponding to a decrease in cyclic dispersion. Hence, the con-
troller can make the engine more stable in the presence of high
EGR.

The engine-out emissions of uHC and NO for the Ricardo
engine are shown in Table III. Prefixes of “u” and “c” given
before the emission type represent uncontrolled and controlled,
respectively. For all cases of EGR, uHC diminish with the con-
troller enabled. This can be expected since the controller is re-
ducing the number of partial burns encountered in the heat re-
lease. Table data for NO shows a significant reduction at high
levels of EGR. The controller makes engine operation more
stable which increases the mean heat release. The higher burn
temperatures within the cylinder during control cause the NO

to slightly increase when the controller is activated compared to
without control. At 15% EGR, a drop of 90% NO from stoi-
chiometric levels is observed. At this EGR level, an improve-
ment in fuel conversion efficiency of 2% is also noted. This im-
provement is the direct result of reduced cyclic dispersion. Even
further improvement in fuel efficiency should be possible with
further reduction in dispersion as this control scheme is refined.

Results from the controller implementation on two different
engines exemplify the controller’s flexibility. Only engine pa-
rameters such as fuel injector information and cylinder geom-
etry had to be changed to extend the controller from the CFR
engine to the Ricardo engine. No offline NN training is required
and the controller is model-free. Finally, the task of identifying
stabilizing initial weights for the observer and controller NNs,
a well-known problem in the literature [19], is overcome by ini-
tializing the NN weights to zero.

VIII. CONCLUSION

A novel NN controller scheme is presented to reduce the
cyclic dispersion in heat release at high EGR levels for an SI
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Fig. 9. CFR engine heat release time series at 10% EGR.

Fig. 10. Uncontrolled and controlled heat release return maps plotting current cycle y(k) against next cycle y(k + 1) at 10% EGR on CFR engine.

Fig. 11. Ricardo engine heat release time series at 0% EGR.
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Fig. 12. Uncontrolled and controlled heat release return maps plotting current cycle y(k) against next cycle y(k + 1) at 0% EGR on Ricardo.

Fig. 13. Ricardo engine heat release time series at 12.9% EGR for Ricardo.

Fig. 14. Uncontrolled and controlled heat release return maps plotting current cycle y(k) against next cycle y(k + 1) at 12.9% EGR on Ricardo.
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Fig. 15. Ricardo engine heat release time series at 15.2% EGR for Ricardo.

Fig. 16. Uncontrolled and controlled heat release return maps plotting current cycle y(k) against next cycle y(k + 1) at 15.2% EGR on Ricardo.

Fig. 17. Ricardo engine heat release time series at 18.5% EGR for Ricardo.
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Fig. 18. Uncontrolled and controlled heat release return maps plotting current cycle y(k) against next cycle y(k + 1) at 18.5% EGR on Ricardo.

TABLE II
COV FOR RICARDO

TABLE III
EGR NO AND UHC EMISSIONS DATA FOR RICARDO

engine which is modeled as a nonstrict feedback nonlinear dis-
crete-time system. The proposed control scheme utilizes both
the NN approximation property and a backstepping-type ap-
proach for maintaining a fixed A/F ratio by altering the fuel in-
jected into the cylinder as the control input. The stability anal-
ysis of the closed-loop control system was conducted and the
boundedness of the closed-loop signals was shown.

Experimental results show that the performance of the
proposed controller is highly satisfactory while meeting the
closed-loop stability even though the dynamics are not known
beforehand. Using the nonlinear backstepping-like controller,
the cyclic dispersion could be reduced significantly, resulting
in the potential for decreased emissions and improved fuel
economy. Even though the controller was designed for the
model heat release output which does not exhibit all the non-
linearities of actual engine heat release, the controller was still
able to minimize heat release error. Persistency of excitation
condition is not needed, separation principle and certainty

equivalence principle are relaxed, and linear in the unknown
parameter assumption is not used.

Experimental results indicate that the controller can improve
engine stability and reduce uHC at high levels of EGR where
significant reductions in NO can be realized. Furthermore, the
controller is flexible enough to be implemented on two SI re-
search engines.

APPENDIX

Proof of Theorem: Define the Lyapunov function

(A.1)

where , , are auxiliary constants, the NN
weights estimation errors , , and are defined in (36),
(46), and (63), respectively, the observation errors , ,
and are defined in (32) and (29), the system errors
and are defined in (38) and (47), respectively, and ,

, are NN adaptation gains. The Lyapunov function
(A.1) consisting of the system errors, observation errors, and
the weights estimation errors obviates the need for separation
principle and certainty equivalence principle (CE).

The first difference of Lyapunov function is given by

(A.2)

The first term of is obtained by using (68) as

(A.3)

where is defined in (37).
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Now, taking the second term in the first difference (A.1) and
substituting (69) into (A.2), we get

(A.4)

Taking the third term in the first difference (A.1) and substituting
(70) into (A.2), we get

(A.5)

Similarly, we have

(A.6)

where

CE (A.7)

CE

(A.8)

and is defined in (51)

CE (A.9)

where

CE (A.10)

(A.11)

(A.12)

(A.13)

Combining (A.3)–(A.13) to get the first difference of the Lya-
punov function and simplifying it, we get

CE

CE

(A.14)

where

(A.15)

Choose , , , ,
, , , and ; then, (A.14)

is simplified as

(A.16)
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This implies as long as (70)–(72) hold and

or or
(A.17)

or

or

(A.18)

or
(A.19)

or

(A.20)
According to a standard Lyapunov extension theorem [17],
[19], this demonstrates that the system tracking error and
the weight estimation errors are UUB. The boundedness of

, , and implies that the weight esti-
mation errors , , and are bounded,
and this further implies that the weight estimates ,

, and are bounded. Therefore, all the signals
in the closed-loop system are bounded.
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