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Causal RLGC(f ) Models for Transmission
Lines From Measured S-Parameters

Jianmin Zhang, Senior Member, IEEE, James L. Drewniak, Fellow, IEEE,
David J. Pommerenke, Senior Member, IEEE, Marina Y. Koledintseva, Senior Member, IEEE,

Richard E. DuBroff, Senior Member, IEEE, Wheling Cheng, Zhiping Yang, Senior Member, IEEE,
Qinghua B. Chen, Member, IEEE, and Antonio Orlandi, Fellow, IEEE

Abstract—Frequency-dependent causal RLGC(f ) models are
proposed for single-ended and coupled transmission lines. Dielec-
tric loss, dielectric dispersion, and skin-effect loss are taken into ac-
count. The dielectric substrate is described by the two-term Debye
frequency dependence, and the transmission line conductors are of
finite conductivity. In this paper, three frequency-dependent RLGC
models are studied. One is the known frequency-dependent ana-
lytical RLGC model (RLGC-I), the second is the RLGC(f ) model
(RLGC-II) proposed in this paper, and the third (RLGC-III) is
same as the RLGC-II, but with causality enforced by the Hilbert
transform in frequency domain. The causalities of the three RLGC
models are corroborated in the time domain by examining the
propagation of a well-defined pulse through three different trans-
mission lines: a single-ended stripline, a single-ended microstrip
line, and an edge-coupled differential stripline pair. A clear time-
domain start point is shown on each received pulse for the RLGC-II
model and the RLGC-III model, where their corresponding start
points overlap. This indicates that the proposed RLGC(f ) model
(RLGC-II) is causal. Good agreement of simulated and measured
S-parameters has also been achieved in the frequency domain
for the three transmission lines by using the proposed frequency-
dependent RLGC(f ) model.

Index Terms—Causality, dielectric materials, Hilbert trans-
forms, scattering parameters, transmission line modeling.

I. INTRODUCTION

S IGNAL integrity analysis and channel modeling in high-
speed digital systems are becoming more and more im-

portant as operating frequencies increase. When the on-board
frequencies are above hundreds of megahertz, or especially in
the gigahertz range, traces on printed circuit boards (PCBs) no
longer behave as simple conductors, but exhibit high-frequency
effects, and behave as transmission lines. Accurate models to
simulate high-frequency effects, such as dielectric dispersion,
skin-effect loss, and crosstalk, become critical, so it is desir-
able to obtain an accurate frequency-dependent causal RLGC(f )
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model to represent a transmission line. Though many cross-
sectional static and quasi-static numerical tools are able to eval-
uate R, L, G, and C parameters for transmission lines, the condi-
tion is that the causal dielectric properties of the substrate materi-
als must be known prior to using these tools. For accuracy, the R,
L, G, and C parameters must be evaluated at different frequen-
cies with different values of complex permittivity, which is cum-
bersome for a wide frequency range of interest. In addition, these
cross-sectional tools are electrostatic field solvers in nature, and
therefore, they may be suitable only for finding R, L, G, and C
parameters at low frequencies, where quasi-static approximation
is still valid, while accuracy at higher frequencies is lost. Further-
more, the frequency-dependent permittivity properties of a par-
ticular PCB substrate (typically, of flame retardant (FR)-4 type)
are usually not known exactly. This is because dielectric proper-
ties for PCBs vary in a substantial range, depending on process
technology and constituents contained in the substrates even for
the same PCB manufacturer. To develop a frequency-dependent
causal RLGC(f ) model, not only both the dielectric loss and the
conductor loss must be taken into account, but also the dielectric
dispersion. However, it is very difficult or even impossible to find
appropriate data in literature or in manufacturer’s databases that
could be applicable for describing a particular PCB in terms
of dielectric frequency dispersion, e.g., using a Debye or a
Lorentzian model [1]. If the dielectric dispersion is not taken
into account and the dielectric is described by a constant real
permittivity with a constant loss tangent, the dielectric response
turns out to be noncausal. Indeed, real and imaginary parts of
dielectric permittivity ε(ω) in any physically realizable linear
dielectric medium are not independent of each other. They must
satisfy the Kramers–Kronig relationships [2], which are analo-
gous to Hilbert transforms for any passive linear filter [3], [4]






εreal (ω) =
1
π

P

∫ ∞

−∞

εimag (x)
x − ω

dx + 1

εimag (ω) = − 1
π

P

∫ ∞

−∞

εreal (x) − 1
x − ω

dx
(1)

where P denotes the Cauchy principal value that expands the
class of functions for which the integral exists. As follows from
(1), εreal(ω) can be determined from εimag(ω) at any particular
frequency if εimag(ω) is known over the entire frequency range,
or vice versa. Hence, an RLGC model of a transmission line can
be causal only if the properties of the surrounding dielectrics
have causal representations.

0018-9375/$26.00 © 2009 IEEE
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A lossy transmission line RLGC model was first proposed
for coaxial cables, where there is no radiation loss. In the early
studies of loss for transmission lines, only skin-effect loss was
considered, while dielectric loss was neglected [5]. Wigington
and Nahman [5] had shown that the simple skin-effect loss
followed a

√
f law, and later, Nahman [6] presented a transient

model of a lossy cable by taking into account both the skin-
effect loss and the dielectric loss. Nahman’s representation of
the dielectric loss was

G (f) = Afε (f) (2)

with a geometry-related constant A and frequency-dependent
permittivity ε(f ). Nahman also theoretically discussed causal
responses from the point of view of cable loss. However, no
causal RLGC model was developed at that time. Instead, his
interest was focused on a graphical transient analysis technique.
In later studies [7], [8], Nahman and coworkers extended the
skin-effect loss model to higher frequencies. Arabi et al. [9] im-
proved the skin-effect loss model by adding a nonlinear phase
term (Ro /(2L

√
f ) versus 1) to the total phase in the transmis-

sion line propagation term e−γ l to take into account the phase
effects due to the inductance variation of the transmission line at
higher frequencies. In the aforementioned nonlinear phase term,
Ro is the per-unit-length (p.u.l.) resistance determined by the
transmission line structure and L is the transmission line p.u.l.
inductance. No dielectric loss model was formulated in [9].
Svensson and Dermer developed a lossy RLC model, where
both the dielectric loss and the skin-effect loss were taken into
account [10]. A physical relaxation model used in their study to
describe the dielectric loss is given by

ε = ε1 +
∫ τ 2

τ 1

a/τ

1 + jωτ
dτ (3)

where τ is the relaxation time, a is the “relaxation strength,” and
ε1 is the dielectric permittivity without the contribution from
relaxation term. The integrand in (3) is a Debye term [11], but
after integration, permittivity is different from the Debye model.
It is important to note that the parameters in the relaxation model
are unknown, and it is not easy to find them. Since nominal
geometrical dimensions in [10] were directly used for the skin-
effect loss calculation, the accuracy of the developed lossy RLC
model was limited by manufacturing tolerance, such as trace
width, trace thickness, substrate dielectric thickness, as well as
conductor surface roughness.

An analytical frequency-dependent RLGC model was intro-
duced in the high-optimized simulation program with integrated
circuit emphasis (HSPICE), where dielectric loss, conductor
loss, and high-frequency phase shift due to inductance variation
were taken into account [12]. This is the RLGC-I model men-
tioned in the Abstract. The dielectric loss and the conductor loss
were modeled as

{
G (f) = G0 + fGd

R (f) = R0 +
√

f (1 + j) Rs
(4)

where Ro and Rs are the p.u.l. dc resistance and skin-effect
resistance, respectively. In (4), Go was used to model the shunt
current due to free electrons in imperfect dielectrics, and the
power loss due to the dielectric polarization and rotation of

dipoles under an alternating field was modeled by Gd [13]. The
p.u.l. capacitance of the RLGC model defined in [12] is constant
over the entire frequency range of interest. Thus, the model
given in [12] is noncausal. However, using the above-mentioned
model, good agreement between measured and simulated S-
parameters has been reported in [14], while causality has still
remained a problem to be fixed.

In this paper, a frequency-dependent causal RLGC(f ) model
(RLGC-II) is proposed and detailed in Section II-A for single-
ended transmission lines. Section II-B describes how to ob-
tain the unknowns for this causal model from measured S-
parameters using an optimization technique, genetic algorithm
(GA), and how to enforce causality in a single-ended line RLGC
model (RLGC-III). For a coupled transmission line, frequency-
dependent causal RLGC(f ) models including RLGC-II model
and RLGC-III model (causality enforced) are presented Sec-
tion II-C. Based on the above-mentioned models, three cases:
1) a single-ended stripline; 2) a single-ended microstrip line;
and 3) an edge-coupled differential stripline, are studied in
Section III. Time-domain causality examination and frequency-
domain S-parameter comparison between the RLGC circuit sim-
ulations and the corresponding measurements are also presented
in Section III. Conclusions are summarized in Section IV.

II. MODEL DEVELOPMENT AND PARAMETER EXTRACTION

The causal RLGC(f ) model (RLGC-II) proposed in this paper
is derived from the analytical model given in [12] by using a
causal dielectric representation to solve the noncausal phenom-
ena. Parameters (unknowns) in the proposed model are found
from measured S-parameters using a GA. In reality, the prac-
tical dimensions of a transmission line differ from its nominal
dimensions due to manufacturing tolerances in PCB fabrication
and due to the surface roughness. The latter impacts the surface
resistance of the transmission line and can be taken into account
as causing an equivalent decrease of nominal conductivity of
transmission line conductors in the frequency range of interest.
To account for these nonideal effects and improve the model
accuracy, the known nominal conditions are used to estimate
initial parameter ranges in the GA parameter search, instead of
using them to directly calculate some of the unknowns. This is
especially beneficial, when a model is developed from measure-
ments (e. g., from the measured S-parameters), as those nonideal
effects have already been incorporated in the measurements.

A. Frequency-Dependent Causal RLGC(f ) Model and
S-Parameter Representation for Single-Ended
Transmission Lines

The lossy transmission line RLGC model based on [12] was
developed in [14], and good agreement was obtained between
simulated and measured S-parameters in the frequency do-
main. However, the noncausal phenomena have remained. As
mentioned in Section I, the constant p.u.l. capacitance and the
constant dielectric loss assumed in the model imply that the
dielectric representation is noncausal. To fix the problem asso-
ciated with the noncausal dielectric representation, the two-term
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Debye model is used in the proposed causal RLGC(f ) model

ε (ω) =
(

ε∞ +
εs1 − ε∞
1 + jωτ1

+
εs2 − ε∞
1 + jωτ2

)

ε0 (5)

where ε∞ is the high-frequency relative permittivity, ε0 is the
permittivity in free space, εs1 and τ 1 are the static dielectric
constant and the relaxation time constant of the first-term De-
bye components, while εs2 and τ 2 correspond to the second
Debye term. As reported in [15], the two-term Debye model
can successfully describe dielectric properties for FR-4 dielec-
tric substrates up to 20 GHz. By separating the real and the
imaginary parts, (5) can be rewritten as

ε (ω) =
(

ε∞ +
εs1 − ε∞

1 + (ωτ1)2 +
εs2 − ε∞

1 + (ωτ2)2

)

ε0

− jω

(
(εs1 − ε∞) τ1

1 + (ωτ1)2 +
(εs2 − ε∞) τ2

1 + (ωτ2)2

)

ε0

= εr
realε0 − jεr

imagε0 (6)

where





εr
real =

(
ε∞ + εs 1 −ε∞

1+(ωτ1 )2 + εs 2 −ε∞
1+(ωτ2 )2

)

εr
imag = ω

(
(εs 1 −ε∞)τ1
1+(ωτ1 )2 + (εs 2 −ε∞)τ2

1+(ωτ2 )2

)
.

(7)

The frequency-dependent loss tangent is then calculated as a
ratio of imaginary and real parts of the permittivity

tan (δ)f =
εr

imag

εr
real

. (8)

The frequency-dependent p.u.l. capacitance can then be eval-
uated using

C (f) = Kgε
r
realεo (9)

where Kg is a geometry-related constant. The p.u.l. shunt con-
ductance due to the dielectric loss is calculated via

G (f) = G0 + 2πfC tan (δ)f (10)

where Go is the shunt conductance at dc due to free electrons
in imperfect dielectrics. Substituting (8) and (9) into (10), the
frequency-dependent p.u. l shunt conductance is rewritten as

G (f) = G0 + 2πfKgε
r
imagε0 . (11)

The p.u.l. inductance L∞ of a transmission line at high fre-
quencies depends on its cross-sectional geometry and perme-
ability of the surrounding material. For a given transmission
line, an assumption that the p.u.l. inductance L∞ is constant
at high frequencies is reasonable, since dielectric materials are
nonmagnetic.

The frequency-dependent resistance of the conductor, approx-
imated as in (4), seems reasonable, since good agreement be-
tween simulations using (4) and measured S-parameters was
demonstrated in [14]. This approximation is inherited in the
causal RLGC(f ) model proposed here. Based on the earlier dis-
cussions, the p.u.l. parameters of the proposed RLGC(f ) model

are summarized as follows:





R (f) = R0 +
√

f (1 + j) Rs

L (f) = L∞

G (f) = G0 + 2πfKgε
r
imagε0

C (f) = Kgε
r
realε0 .

(12)

The imaginary part included in the frequency-dependent re-
sistance term can be considered as an effective inductance using
the following transform:

L′ (f) =
Rs

2π
√

f
. (13)

By adding (13) to the p.u.l. inductance L(f ) and subtract-
ing it from the p.u.l. resistance R(f ), the proposed frequency-
dependent causal RLGC(f ) model is






R (f) = R0 +
√

fRs

L (f) = L∞ + Rs/
(
2π

√
f
)

G (f) = G0 + 2πfKgε
r
imagε0

C (f) = Kgε
r
realε0 .

(14)

Causality of this model will be further examined.
The propagation constant for a piece of transmission line with

the p.u.l. parameters given in (14) is [16]

γ =
√

(R (f) + j2πfL (f)) (G (f) + j2πfC (f)) (15)

and the characteristic impedance of the line is [16]

Zc =

√
(R (f) + j2πfL (f))
(G (f) + j2πfC (f))

. (16)

The ABCD matrix for a uniform transmission line piece with
length l can be calculated as [17]

ABCD =






A B

C D




 =







cosh (γl) Zo · sinh (γl)

sinh (γl) /Zo cosh (γl)





 .

(17)
Finally, the S-parameters for a single-ended transmission line

are obtained from the ABCD matrix as [16]

[
S11 S12

S21 S22

]

=





A+B/Z0 −C Z0 −D
A+B/Z0 +C Z0 +D

2(AD−BC )
A+B/Z0 +C Z0 +D

2
A+B/Z0 +C Z0 +D

−A+B/Z0 −C Z0 +D
A+B/Z0 +C Z0 +D



 (18)

where Zo is the reference impedance.

B. GA Implementation and Causality Enforcement for a Single-
Ended Transmission Line

The frequency-dependent RLGC(f ) model (14) is potentially
causal. However, its further examination is necessary, because
the R(f ) term in the model (12) is known to be approximate.
In order to check the causal characteristics of the model, two
different methods are used in the GA optimization for find-
ing the model parameters. In the first approach, only measured
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S-parameters are used as the objective data for the model param-
eter searching. In the second approach, in addition to the mea-
sured S-parameters used as objective data, the Hilbert transform
is implemented on the minimum-phase part of the wave propa-
gation term e−γ l to enforce the causality requirements during the
parameter search. The causal feature of the proposed model can
then be explored by comparing the wave propagation using the
parameters from the two different approaches aforementioned.
Since the first approach (model RLGC-II) is similar to the second
one (model RLGC-III), except neglecting the causality require-
ment enforcement in RLGC-II, the GA implementation is then
focused on the model RLGC-III in the further discussion.

As follows from (14), to build up a frequency-dependent
causal RLGC(f ) model for a single-ended transmission line, a
set of unknowns must be obtained: Ro , Rs , L∞, Go , Kg , εr

real ,
and εr

imag . Equation (7) indicates that the εr
real and the εr

imag
can be represented over the entire frequency span by the five
parameters ε∞, εs1 , τ 1 , εs2 , and τ 2 . The causal RLGC(f ) model
for a single-ended transmission line is then formulated as

RLGC (f) = Ψ (ε∞, εs1 , τ1 , εs2 , τ2 , R0 , Rs, L∞, G0 ,Kg ) .
(19)

This is straightforward for striplines. However, for a mi-
crostrip transmission line, the dielectric represented by a two-
term Debye model is not exactly the one that corresponds to the
substrate material. Instead, it is an effective dielectric, where
both the substrate material and free space have to be taken
into account. The effective Debye model simplifies the problem
and improves the accuracy of the p.u.l. parameters in solving
microstrip transmission line problems, since the filling factor as-
sociated with the microstrip geometry configuration and derived
from electrostatic fields is eliminated in the related formulation.

The search of ten unknowns in (19) becomes an optimization
procedure. This is because the number of the equations of the
S-parameters at different frequency points is much greater than
the number of the unknowns. Since GAs are powerful, robust,
and efficient in global searching and optimization due to their
mechanics of natural selection and natural genetics [18], a GA
code is developed to search the global optimum values for the ten
unknowns [1]. To implement a GA for solving an optimization
problem, the problem itself must be represented and formulated
mathematically. For the ten unknowns, it is necessary to define
ten initial parameter ranges, which a possible solution for each
unknown correspondingly belongs to. The initial ranges are es-
timated based on the transmission line configurations including
the cross-sectional geometry, the conductivity of the transmis-
sion line conductor, and the constituent parameters of the sur-
rounding dielectric materials. These known conditions are not
directly involved in some of calculations of the unknowns. They
are, instead, only used to evaluate the initial parameter ranges
for the ten unknowns, which differ from the skin-effect loss,
directly calculated from the nominal dimensions. Therefore, the
unknowns extracted from GA in the proposed model are ac-
curate. This is because the measured S-parameters include all
the nonideal effects, such as the surface roughness and the di-
mension deviations of the transmission line. The S-parameter
differences between the evaluation and the measurement, and
the differences between the causal propagation term Hc (fi) and

Fig. 1. GA flowchart of the parameter extraction for the RLGC(f ) models.

the evaluated propagation term H(fi) are defined as an objective
function, where the subscript letter “c” stands for causal

∆ =
1
N

√
√
√
√
√
√
√
√
√
√
√
√
√

N∑

i=1






[
||P m

2 1 (fi )|−|P e
2 1 (fi )||

max|P m
2 1 |

]2

+
[
||S m

2 1 (fi )|−|S e
2 1 (fi )||

max|S m
2 1 |

]2

+
[
||Im(H (fi ))|−|Im(Hc (fi ))||

max|Im(Hc (fi ))|

]2

+
[
||Re(H (fi ))|−|Re(Hc (fi ))||

max|Re(Hc (fi ))|

]2






(20)

where |Sm
21 (fi)| and |Se

21 (fi)| are the magnitudes of the mea-
sured (index m) and evaluated (index e) S-parameters at fre-
quency fi , while |Pm

21 (fi)| and |Pe
21 (fi)| are the corresponding

phases. The parameters max|Sm
21 | and max|Pm

21 | are the max-
imum absolute values over the entire frequency range of in-
terest. Both propagation terms Hc (fi) and H(fi) are detailed
later in this section. Re(H(fi)) and Re(Hc (fi)) are the real
parts of H(fi) and Hc (fi), respectively, while Im(H(fi)) and
Im(Hc (fi)) are the corresponding imaginary parts. The pur-
pose of introducing max|Sm

21 |, max|Pm
21 |, max|Im (Hc (fi))| ,

and max|Re (Hc (fi))| in (20) is to normalize the difference
in each term so that ∆ is unitless, and each term is equally
weighted.

A fitness function, which is used to quantify the possible
solution as “good” or “bad,” is defined as [1]

p = ∆−1/3 . (21)

The higher the fitness index p, the more chance that the re-
lated value stays in the GA search pool as a parent to generate
offspring for the next generation. Therefore, the fitness index
is used for each possible solution to compete against the others
in their solution space. The expected unknowns of the causal
RLGC(f ) model are obtained as ∆ is minimized and p con-
verges. A schematic program flowchart about the GA imple-
mentation is shown in Fig. 1. More general topics about GA
operators, such as selection, recombination, and mutation, are
described in [1] and [18]–[21], and they are beyond the interest
of this paper.

The wave propagation term for a transmission line section
with length l is [16]

H (ω) = e−γ l (22)
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where the propagation constant γ is defined based on the atten-
uation constant α and phase constant β as

γ = α + jβ. (23)

Then the propagation term can be represented as

H (ω) = e−αl−jβ l = e−θ(ω )−jϕ(ω ) (24)

where θ (ω) = αl and ϕ (ω) = βl. In general, ϕ (ω) cannot be
uniquely determined from θ (ω) even if H (ω) is the transform
of a causal function of h(t) [22]. For the unique determination
of ϕ (ω) from θ (ω), it is necessary to impose certain conditions
on the transfer function H (ω). According to linear system the-
ory [23], any stable system function can be represented by the
product of a minimum phase function Hm (ω) and an all-pass
function Ha (ω) that has a unitary magnitude over the entire
frequency span of interest as

H (ω) = Hm (ω) Ha (ω) . (25)

There is the Bode condition for separating the transfer func-
tion H (ω) into a minimum phase function and an all-pass func-
tion, according to which the minimum phase function is defined
as [6], [24]

lim
ω→∞

(
γ (ω)
jω

)

⇒ 0. (26)

Substituting (7), (14), and (15) into (26), we get

lim
ω→∞

(
γ (ω)
jω

)

= lim
ω→∞

1
j

√
√
√
√
√
√
√

(
R(f )

ω + j

(

L∞ + Rs

2π
√

f

))

(
Go +Kg ωεr

im a g εo

ω + jKgε
r
realεo

)

= lim
ω→∞

1
j

√

jL∞
(
Kgεr

imagεo + jKgεr
realεo

)

=
√

L∞C∞ (27)

where C∞and L∞ are the p.u.l. capacitance and inductance
evaluated at infinite frequency. For a transmission line with the
two-term Debye dielectric representation, the C∞ corresponds
to the “optical limit” dielectric constant ε∞.

The relation shown in (27) indicates that a transmission line
described by the RLGC(f ) model (RLGC-II) is not a minimum-
phase system in the general case. The causality can be enforced
by removing the linear phase term e−j l

√
L∞C∞ from the total

phase. The transfer function (24) can then be rewritten as

H (ω) =
[
e−θ(ω )−jPm

]
e−j l

√
L∞C∞ (28)

where Pm + l
√

L∞C∞ = ϕ (ω) and Pm is the minimum phase.
By comparing (25) with (28), the all-pass function and the
minimum-phase function is split as

{
Hm (ω) = e−θ(ω )−jPm

Ha (ω) = e−j l
√

L∞C∞ .
(29)

The phase from the minimum phase function in (29) is then

θ (ω) + jPm = − ln (Hm (ω)) . (30)

The real part and the imaginary part shown in (30) now
meet the Kramers–Kronig relations, and the phase Pm can be
uniquely determined from θ (ω) by applying Hilbert transform,
i.e.,

Pm = −Im (Hilbert (θ (ω))) (31)

where Im stands for the operation of obtaining the imaginary
part after applying the Hilbert transform on θ (ω). The phase
θ (ω) is

θ (ω) = − ln |H (ω)| . (32)

Substituting (32) into (31), the phase Pm of the minimum
phase function can then be restored from the natural logarithm
of the magnitude of the transfer function (24) as

Pm = −Im (Hilbert (− ln (|H (ω)|))) . (33)

The causal propagation term Hc (ω)corresponding to the
transmission line propagation term H (ω) = e−γ l is built as

Hc (ω) = |H (ω)| e−jPm e−j l
√

L∞C∞ . (34)

The GA objective function (20) and the fitness function (21)
can be estimated based on both the causality requirements and
the S-parameter differences between the measurements and the
GA evaluations. The best solution (model parameters) is ob-
tained for the RLGC(f ) model as the causality requirements are
met, and the S-parameter discrepancies are minimized.

C. Frequency-Dependent Causal RLGC(f ) Model for Coupled
Transmission Lines

The method to enforce the causality requirement in a coupled
transmission line is more complicated than in a single-ended
case. When compared with the single-ended model given in
(19), two more unknowns must be added to the RLGC(f ) model
(RLGC-II) to take into account the coupling effects. One un-
known is the p.u.l. mutual inductance Lm and the other is a
geometry-related factor Kgm . The first unknown is associated
with inductive coupling and the second one is related to ca-
pacitive coupling. The frequency-dependent causal RLGC(f )
model for coupled transmission lines is then represented by 12
unknowns as

RLGC (f) = Ψ

(
ε∞, εs1 , τ1 , εs2 , τ2 , R0 ,

Rs, L∞, G0 ,Kg , Lm ,Kgm

)

. (35)

The initial parameter range of the p.u.l. mutual inductance
Lm can be evaluated from the initial parameter range of L∞ as
L∞ and Lm are related by the coupling factor m as

m =
Lm

L∞
(36)

where the two lines in the coupled differential stripline are as-
sumed exactly same.

The initial parameter range for the geometry factor Kgm can
be evaluated from the dimensions of the cross section of the
coupled line. The p.u.l. mutual capacitance and the p.u.l. mutual
shunt conductance of the transmission line can be evaluated as

Cm (f) = Kgm εr
realεo (37)

Gdm (f) = 2πfKgm εr
imagε0 . (38)
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To simplify the enforcement of the causality requirement in
the coupled differential pair in the model RLGC-III, it is better
to separate even and odd wave propagation modes along the
transmission line. The propagation constants for the even mode
γe and the odd mode γodd are calculated from

γe =
√

(R (f) + j2πfLe (f)) (Ge (f) + j2πfCe (f)) (39)

γodd =
√

(R (f)+j2πfLodd (f)) (Godd (f)+j2πfCodd (f))

(40)

where Le , Ge , Ce , Lodd , Godd , and Codd are evaluated from [17]





Le = L (f) + Lm

Ge = G (f) − Gdm

Ce = C (f) − Cm

(41)






Lodd = L (f) − Lm

Godd = G (f) + Gdm

Codd = C (f) + Cm .

(42)

The characteristic impedance for the even mode Ze and the
odd mode Zodd can be calculated as

Ze =

√
(R (f) + j2πfLe (f))
(Ge (f) + j2πfCe (f))

(43)

Zodd =

√
(R (f) + j2πfLodd (f))

(Godd (f) + j2πfCodd (f))
. (44)

The differential impedance and the common impedance is
determined from

{
Zcom = 0.5Ze

Zdif = 2Zodd .
(45)

For a coupled transmission line, the S-parameters can be eas-
ily evaluated for the common mode and the differential mode if
the p.u.l. R, L, G, and C parameters of the RLGC(f ) model and
the transmission line length are known. While the S-parameters
are under evaluation, the causality requirements have to be en-
forced for both even and odd modes. As long as the coupled
problem is decomposed into even and odd modes, the earlier
described procedure for single-ended transmission line can be
directly used for solving coupled problems.

III. CASE STUDIES

Three cases, a single-ended microstrip, a single-ended
stripline, and an edge-coupled differential stripline, were stud-
ied based on the method described in Section II. All the S-
parameters were measured using 8720ES VNA with ATN-4112
A S-parameters test set. The measurement frequency range was
from 200 MHz to 20 GHz. “Thru-Reflect-Line” (TRL) cali-
bration was used to remove the coaxial-connector-related port
effects in the single-ended cases [16]. Two TRL calibration kits
were designed and built on their corresponding test boards. The
frequency span of each TRL calibration pattern was broken into
three frequency ranges to meet the usable bandwidth for a sin-
gle LINE/THRU (TRL calibration standards) pair less than 8:1

and the insertion phase in the range of 30◦–150◦ [25]. For the
coupled stripline, a new deembedding method was developed
and used to eliminate the port effects [26].

The causality of a single-ended transmission line was tested
using a well-defined time-domain pulse [27]

y (t) =
10 (t/τ0)

n

1 + (t/τ0)
n e−t/τ0 (46)

that was launched at one end (driving end) of the transmission
line and observed at the other end (receiving end) with τ0 =
0.1 ns and n = 4. Then y(t) was normalized to 1 by using
y(t)/max(y(t)). A MATLAB code was written to realize the
observation. The time-domain pulse y(t) launched at the driv-
ing end was converted into the frequency domain using a fast
Fourier transform (FFT) to obtain its frequency-domain spectra.
The propagation term e−γ l obtained from the RLGC(f ) model
was multiplied by the frequency spectra of y(t), and the re-
sult was converted back to time domain using the inverse FFT
(IFFT), i.e., FFT→IFFT procedure was done. For the coupled
transmission line, the procedure was similar to the single-ended
cases. But the coupled wave propagation was decomposed into
even and odd modes, and the causality was examined for each
mode separately.

To clearly show the causal/noncausal phenomena, each of
the three studied transmission line cases was represented by
three different RLGC models. The first model was the RLGC-I
introduced in [12], and the model parameters were extracted
using the method reported in [14]. The second method RLGC-II
was the RLGC(f ) model, proposed in this paper, where the ten
(or 12) unknowns were obtained from the method described in
Section II, with measured S-parameters as the only objective
data. The third model RLGC-III was same as the RLGC-II, but
with the enforced causality requirement, and hence, the parame-
ters in these models could differ. The ten (or 12) unknowns of the
third model (RLGC-III) were extracted using (20) as an objec-
tive function with causality requirements enforced in the model
parameter extraction. Therefore, the causality in the RLGC-
III model was guaranteed. Along with the causal/noncausal
phenomenon observation, the S-parameters of each studied
case were modeled by the three RLGC(f ) representations.
Comparisons of the obtained S-parameters and comparison of
the time-domain waveforms at receiving end for the three stud-
ied cases were conducted.

The first studied case is a single-ended stripline. It is built
on layer 7 within an eight-layer board having FR-4 as sub-
strates. The cross-sectional dimensions of the stripline, the test
board, and the measurement reference plane after TRL calibra-
tion are shown in Fig. 2. The thickness of the copper is t =
1.35 mil, the width of the trace is w = 12.5 mil, and the to-
tal height between the reference planes is b = 27.7 mil. The
stripline length after TRL calibration is 7976 mil. Fig. 3 demon-
strates the comparison between the measured S-parameters, the
corresponding results of HSPICE simulation using the RLGC-I
model with the extracted model parameters, and the results of the
RLGC(f ) model with the parameters extracted using the above-
mentioned RLGC-II and RLGC-III methods. Comparison of the
time-domain waveforms at the receiving end is shown in Fig. 4.
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Fig. 2. Test board, TRL measurement reference plane, and cross-sectional
dimensions of the single-ended stripline.

Fig. 3. S-parameter comparison between the RLGC(f ) models (RLGC-I, II,
and III) and the measurements for the single-ended stripline.

Fig. 4. Comparison of the time-domain waveforms at the receiving end for
the single-ended stripline.

The second studied case is a single-ended microstrip trans-
mission line. It is built on the top layer on a 26-layer
board with FR-4 substrates. The cross-sectional dimensions
of the microstrip and the test board are shown in Fig. 5,
where t = 2.4 mil, t1 = 1.35 mil, w = 5.75 mil, and h =
3.65 mil. The microstrip is 6976 mil long after TRL calibration.
S-parameters obtained from measurement, HSPICE simulation
using the RLGC-I model with the extracted model parameters,

Fig. 5. Test board and the cross-sectional dimensions of the single-ended
microstrip line.

Fig. 6. S-parameter comparison between the RLGC(f ) models (RLGC-I, II,
and III) and the measurements for the microstrip line.

Fig. 7. Comparison of the time-domain waveforms at the receiving end for
the microstrip line.

and the RLGC(f ) model with two sets of model parameters
extracted from the RLGC-II and RLGC-III models are com-
pared in Fig. 6. The time-domain waveform comparison at the
receiving end is shown in Fig. 7.

The third studied case is an edge-coupled differential stripline.
It is built on layer 7 within an eight-layer board with FR-4
as substrates. The cross-sectional dimensions of the coupled
stripline and the test board shown in Fig. 8 are t = 1.35 mil,
w = 10 mil, and s = 12.5 mil. The coupled pair is 6905.5 mil
long after TRL calibration [26]. Common-mode S-parameter
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Fig. 8. Test board and the cross-sectional dimensions of the edge-coupled
stripline.

Fig. 9. Common-mode S-parameter comparison between the RLGC(f ) mod-
els (RLGC-I, II, and III) and the measurements for the edge-coupled stripline.

comparison between the measurement and simulations using
the RLGC-I model with extracted model parameters, and the
RLGC(f ) model with two sets of model parameters from the
RLGC-II and the RLGC-III model extractions is shown in Fig. 9,
while the differential-mode S-parameter comparison is shown in
Fig. 10. The time-domain waveforms for the even mode and odd
mode propagations through the stripline are shown in Figs. 11
and 12, respectively.

S-parameter comparisons, including the magnitude and the
phase shown in Figs. 3, 6, 9, and 10, demonstrate that the pro-
posed RLGC(f ) model (RLGC-II), the analytical RLGC model
(RLGC-I), and the causality enforced model (RLGC-III) agree
well with the measurements. The maximum magnitude differ-
ence between simulation and measurement is less than 1 dB up
to 20 GHz for the three studied cases, and the phase differences
are hard to distinguish. However, the time-domain waveforms
shown in Figs. 4, 7, 11, and 12 clearly demonstrate that the
RLGC(f ) models (RLCG-II and RLCG-III) are causal, but the
RLGC-I model is not.

Fig. 10. Differential-mode S-parameter comparison between the RLGC(f )
models (RLGC-I, II, and III) and the measurements for the edge-coupled
stripline.

Fig. 11. Comparison of the time-domain even mode waveforms at the receiv-
ing end for the edge-coupled stripline.

Fig. 12. Comparison of the time-domain odd mode waveforms at the receiving
end for the edge-coupled stripline.

IV. DISCUSSION AND CONCLUSION

Frequency-dependent causal RLGC(f ) models are proposed
for single-ended and coupled transmission lines, and the
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methodology for building the models directly from measured
S-parameters is developed. Time-domain waveforms in the
three studied cases clearly show causal phenomena for the pro-
posed RLGC(f ) models while showing noncausal phenomena
for the RLGC-I model. For the proposed RLGC(f ) model, the
start points of the received waveforms at the receiving end with
model parameters extracted from S-parameters only (RLGC-II)
and from the S-parameters plus enforced causality requirements
(RLGC-III) are exactly same. This observation indicates that
the proposed RLGC(f ) model (RLGC-II) is causal, as expected.
Therefore, enforcing the causality requirements in the model
parameter extraction is not necessary.

Although the studied cases are tested on PCBs with FR-4-
type epoxy resin fiber-glass-filled substrates in the frequency
range from 200 MHz to 20 GHz, the approach presented herein
is more general than that typically used to analyze PCBs. It
can also be applied to on-silicon interconnects, provided that
the TEM/quasi-TEM conditions are fulfilled for transmission
lines, and causal relations for permittivity are valid for substrate
dielectric materials. For higher frequency applications, or for
modeling other types of substrate dielectric materials with more
complex-shaped frequency dispersion, more than two Debye
terms may be needed.
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