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EMI Considerations in Selecting
Heat-Sink-Thermal-Gasket Materials

Yu Huang, Joseph E. Butler, Senior Member, IEEE, Miksa de Sorgo, Member, IEEE,
Richard E. DuBroff, Senior Member, IEEE, Todd H. Hubing, Senior Member, IEEE,
James L. Drewniak, Member, IEEE, and Thomas P. Van Doren, Senior Member, IEEE

Abstract—Specific design criteria are proposed to mitigate
radiated emissions from a resonant enclosure excited by a heat
sink acting as a microstrip patch antenna source. In this par-
ticular application, the EMI mechanism is assumed to be due
to coupling from the dominant TM

010
mode to one or more

resonant modes associated with the enclosure dimensions. The
enclosure is then presumed to radiate, at the enclosure resonance
frequencies, through one or more apertures, slots, or seams.
The EMI-reduction strategy consists of shifting the resonant
frequency of the dominant-patch antenna mode by dielectrically
loading the patch antenna with thermal-gasket material having a
specified electric permittivity. Specific formulas and graphs will
be presented showing how to select the electric permittivity of
the thermal-gasket material in order to obtain a given frequency
shift. A comparison of experimental measurements with the
predictions of the design criteria indicates that frequency shifts
of up to approximately three times the bandwidth of the patch
resonance can be predicted with reasonable accuracy. In at least
two different commercial products that we are aware of, changing
the electrically insulating heat sink gasket materials has solved
specific radiated EMI problems.

Index Terms—Electromagnetic interference, resonance, mi-
crostrip antenna.

I. INTRODUCTION

EXPERIMENTAL data and testing [1] has shown that
heat sinks can be an important part of the mechanism

allowing CPU clock harmonics on a circuit board to radiate.
Noise voltages generated on the circuit board can capacitively
couple to the relatively large metal structure of a heat sink. If,
as is customary, the heat sink is not well grounded, the heat
sink and power or ground planes associated with the printed
circuit boards can form an antenna resembling a microstrip
patch antenna. Given an enclosure with sufficiently large slots,
seams, or apertures a favorable coupling path can occur when
a clock harmonic frequency closely matches both the resonant
frequency of the heat sink-patch antenna structure and the
resonant frequency of an enclosure mode.
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As long as the physical dimensions of the enclosure are un-
changed, the cavity-resonance frequencies should remain the
same. However, as will be shown in the following sections, the
introduction of thin layers of electrically nonconductive thermal
gasket materials can produce significant and predictable shifts
in the resonant frequency of the patch source.

The predicted frequency shifts are compared with experi-
mental measurements for patch sources both in free space and
in slotted metal enclosures having dimensions commensurate
with desktop personal computers or workstations. For patch
sources in enclosures, shifts in the patch-resonance frequency
are often obscured by the presence of numerous cavity modes.
In these cases, a cross-correlation method has been used to
identify the frequency shift due to the presence of thermal
gasket material.

The amount of frequency shift produced by the introduction
of nonconductive materials can be significant when compared to
the bandwidth of the patch source resonance. For this reason, a
procedure for predicting the frequency shift to bandwidth ratio
is developed and confirmed with experimental measurements.
The predicted frequency shift to bandwidth ratio is then pre-
sented in a graphical form to assist designers in selecting (or
changing) heat-sink gasket materials on the basis of electrical
permittivity.

II. EXPERIMENTAL RESULTS

An initial set of experimental measurements was performed
to compare the calculated and measured frequency shifts pro-
duced when a microstrip patch antenna structure was loaded
with various dielectrics. The patch structure for these initial
measurements consisted of a 40 by 50 cm aluminum ground
plane with an 8 by 8 cm square driven patch. The driven patch
was constructed from copper tape and located 3.8 mm above the
ground plane. The dielectric material was placed between the
driven patch and the ground plane. A 50-coaxial cable con-
nected port 1 of a Wiltron 3724 A Network Analyzer, through
a type-N connector, to the center of the driven patch. The feed
point was at cm and 12.5 cm for the coordinate
system shown in Fig. 1. The inner conductor of the coaxial cable
was extended by a thin wire, 0.16 cm in diameter, and attached to
the driven patch while the outer conductor was connected to the
ground plane. A horizontally-polarized receiving antenna was
placed in the broadside direction relative to the patch antenna.
The receiving antenna was connected to port 2 of the network
analyzer, using another 50-coaxial cable. The microstrip
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Fig. 1. Top and side views showing the dimensions of the patch antenna.

patch antenna and the receiving antenna were placed inside a
shielded room to prevent contamination of the measurements
from external radio frequency sources.

Eight different electrically nonconductive heat-sink gasket
materials, having differing values of relative permittivity, were
investigated. These materials were placed, one at a time, be-
tween the driven patch and the ground plane as shown by the
region labeled “Dielectric material” in Fig. 1(b). Each of these
test materials was in the form of one (or more) thin sheets. Due
to the differing thicknesses of each sheet of material, the 3.8-mm
space between the driven patch and the ground plane could not
always be completely filled with the test material. In these cases,
the space between the driven patch and the ground plane was
filled partially with air and partially with a sheet of di-
electric material . To compensate for this nonuniform
dielectric, an effective relative permittivity was determined on
the basis of an idealized parallel-plate capacitor having two di-
electric slabs (one with and one with ). Letting

be the thickness of the gasket material and lettingbe the sep-
aration between the driven patch and the ground plane (3.8 mm
in this case) the effective relative permittivity can be defined as

(1)

where is the thickness of the air layer and is
the area of the driven patch. The effective relative permittivity
is then

(2)

Fig. 2 shows, as one example, the swept frequency
parameter curve for a reference case, together with a curve
for a thermal gasket material characterized by and

. Without the thermal gasket material, there is
a patch-source resonance at approximately 3.26 GHz. With the

Fig. 2. TheS characteristics of a patch source with (dark curve) and without
(light curve) thermal gasket material.

Fig. 3. Patch-antenna source incorporated into a slotted metal enclosure.

gasket material the patch resonance occurs at approximately
2.76 GHz. In short, as shown in Fig. 2 the patch resonance
frequency shifts by an amount (approximately 500 MHz) that is
significant when compared to the bandwidth of the resonance
at either frequency.

For the next set of measurements, the patch antenna struc-
ture including the ground plane was incorporated as one wall
of a slotted metal enclosure. Fig. 3 shows the dimensions of the
enclosure and the slot. Again, parameter curves were ob-
tained for a reference case and for the same
thermal gasket material . The results of these
measurements are shown in Fig. 4. In this case, any frequency
shift between the upper and lower panels is well camouflaged
by the presence of numerous cavity-mode resonances. These
cavity-mode resonances are determined in turn by the physical
dimensions of the enclosure through the relationship

(3)
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Fig. 4. TheS characteristics of a patch source in an enclosure with (lower
panel) and without (upper panel) thermal gasket material.

where is the speed of light, 40 cm, 20 cm, and
50 cm. The quantities , and are integer valued mode

indices.
Cross correlation, as defined in signal analysis (e.g., [3]), can

be used to check the degree of similarity between two signals.
In this case, the two signals will be defined as consisting
of 1600 equally-spaced frequency domain samples of ex-
pressed in decibels for the reference case (no thermal gasket
material) and consisting of 1600 equally-spaced frequency
domain samples of expressed in decibels for the dielec-
trically loaded patch. The cross correlation coefficient for these
two signals will then be where

for

for
(4)

Figs. 5 and 6 show the cross-correlation coefficient with the fre-
quency-shift index converted into gigahertz. Fig. 5 shows the
cross correlation for the two curves shown in Fig. 2 (patch an-
tenna structure in open space) while Fig. 6 shows the cross
correlation for the two curves shown in Fig. 4 (patch-antenna
structure in a slotted metal enclosure). In both cases, the peak
cross-correlation coefficient seems to occur at a frequency shift
of approximately 0.5 GHz. Of course, the cross correlation
curve in the latter case is both more diffuse and more jagged
since the curve in this case contains individual enclosure
resonances that are not significantly altered by the presence
or absence of thermal gasket material. Nevertheless, the ob-
served frequency shift is consistent in both cases and also agrees
closely with the frequency shift suggested by a visual inspection
of Fig. 2.

III. FREQUENCYSHIFT VERSUSBANDWIDTH

For the TM mode of the patch antenna, the resonant fre-
quency is given by [4] as

(5)

Fig. 5. Cross correlation betweenS curves for reference and dielectrically
loaded patch sources in open space.

Fig. 6. Cross correlation betweenS curves for reference and dielectrically
loaded patch sources in a slotted metal enclosure.

The quantities and are both the results of intermediate
calculations for the fringing field compensation. From [4], when
the relative permittivity is replaced with the effective relative
permittivity these additional quantities are given by

(6)

(7)

where and are the length and height of the patch. For a patch
antenna the bandwidth, the radiation quality factor, and the
standing wave ratio (VSWR) for the mode are related by [4]

(8)
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Fig. 7. Driven-patch dimensions for exciting the TM mode.

The standing-wave ratio of the patch antenna, in turn, is related
to the parameter by

(9)

Therefore, knowing the quality factor and specifying
an acceptable value for either or VSWR allows the
estimation of the fractional bandwidth. The quality factor for
the TM -mode can be estimated by following the procedure
described by Carver and Mink [4]

(10)

where is the complex eigenvalue associated with the prop-
agation of the TM -mode. This eigenvalue is obtained as the
iterative solution of a complex transcendental equation.

An additional set of experimental measurements was made
to compare the calculated and experimental values of both the
resonant frequency and the bandwidth of the TM-mode. By
placing the feed point off center with respect to the long dimen-
sion of the patch, it was possible to excite the TM-mode. By
placing the feed point in the center of the short dimension, it
was possible to suppress the TM-mode. The geometry of the
patch antenna source used in this set of measurements is shown
in Fig. 7. Fig. 8 is a comparison of the numerically predicted
frequency shift and the measured frequency shift. The reference
case for this figure was a patch antenna structure with a 3.8-mm
thick cardboard spacer and therefore a zero-frequency shift in
this case occured by definition at rather than

.
As an example of the calculated bandwidth, Fig. 9 shows a

small portion of the curve. The 3-dB bandwidth for the
magnitude of corresponds to a measured bandwidth of ap-
proximately 0.157 GHz on Fig. 9. Substituting (9) and (10) into
(8) while using (5) to convert from normalized bandwidth to
bandwidth in gigahertz, yields a calculated bandwidth of 0.15
GHz.

Based on the calculated values of the resonant frequency and
bandwidth for the TM -mode, a table was constructed to show

Fig. 8. Measured(�) and calculated (solid line) values of the frequency shift
as a function of the effective-relative permittivity.

Fig. 9. �3-dB bandwidth of an 8 by 5 cm by 3.81 mm patch antenna
TM -mode.

how changes in the effective relative permittivity result in var-
ious frequency shift to bandwidth ratios. Specifically, the rows
of Table I correspond to the old values of effective relative per-
mittivity and the columns correspond to the new values of the
effective relative permittivity. Entries in the top row denote the
effective relative permittivity of the new material while entries
in the first column denote the effective relative permittivity of
the old material. The specific values of effective relative permit-
tivity were chosen to match the effective relative permittivities
of a number of available test materials.

The remaining entries in this table consist of frequency shift
to bandwidth ratios. Thus, for example, in going from an effec-
tive relative permittivity of to an effective rela-
tive permittivity of the frequency shift to band-
width ratio of denotes that the resonant frequency of the
TM -mode has been lowered by 1.99 times the bandwidth.
The bandwidth in this context is defined as the frequency in-
terval in gigahertz between the3-dB points in the curve
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TABLE I
CALCULATED VALUES OF THEFREQUENCYSHIFT TO BANDWIDTH RATIO.

(see Fig. 9 for an example). It should be noted, however, that re-
placing the dielectric material, generally changes both the res-
onant frequency and bandwidth of the mode. The data shown
in this table use the wider of the old and new bandwidths. Gen-
erally, this means that when the frequency shift is positive (the
new material has a smaller effective relative permittivity) the
frequency shift to bandwidth ratio uses the bandwidth associ-
ated with the new material. When the frequency shift is nega-
tive, the bandwidth associated with the old material is used.

Table II presents the corresponding measured results in the
same format. One of the possible sources of disagreement be-
tween the results in Tables I and II reflects the uncertainty in
determining the relative permittivity [5]. The relative permit-
tivity values were determined experimentally with both custom
built-test fixtures and a commercial material analyzer. The dif-
ferences in the results of Tables I and II are commensurate with
the uncertainties in the relative permittivity.

IV. DESIGN GUIDELINES

The purpose of the design guidelines is to indicate how much
the resonant frequency of the TM-mode will be shifted as
the effective relative permittivity of the dielectric material in
the patch antenna is changed from an old value to a new value.
These guidelines are based upon numerical calculation for a
simplified model of a patch source operating in the lowest order
mode (TM ).

As a first step, a table of frequency shift to bandwidth ratios
was again calculated for a patch source measuring 5 by 8 cm

with a thickness of 0.38 cm. The effective relative permittivi-
ties in this case ranged from 1 to 4 in steps of 0.5. The data in
the table were used to construct a graphical-design guideline in
the form of a contour plot as shown in Fig. 10. Starting with
a heat-sink gasket material having an effective relative permit-
tivity of 2.0, for example, this figure shows that the resonant
frequency of the TM could be shifted downward by three
times the bandwidth if the heat sink material is replaced with a
new material having an effective relative permittivity of approx-
imately 3.2 as denoted by the small open circle in this figure. A
similar procedure can be used to develop graphical design charts
for heat sinks having different dimensions.

V. SUMMARY AND CONCLUSION

Ultimately, the primary criterion in selecting thermal gasket
materials is their thermal characteristics. However, given
a choice of two or more materials having similar thermal
characteristics, the EMI considerations addressed in the design
guidelines may be useful in mitigating radiated emissions based
on the resonant frequency shifting effect of nonconductive
materials placed in patch-antenna sources. The patch-antenna
source was used as a simplified model for the mechanism
of radiated emissions attributed to poorly grounded heat
sinks. Simple cavity-resonance models of the patch antenna
sources were used to predict the resonant frequencies and
these predictions generally agreed with measured values when
the patch antenna source was located in the shielded room
test site. However, when the patch source was placed inside
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TABLE II
EXPERIMENTALLY DETERMINED VALUES OF THEFREQUENCYSHIFT TO BANDWIDTH RATIO

Fig. 10. Contour plot of the frequency shift to bandwidth ratio for a heat sink
measuring 8 cm by 5 cm by 3.81 mm.

a slotted metal enclosure, having dimensions comparable
with a personal computer or workstation chassis, the resonant
frequencies of the patch antenna were obscured by the presence
of resonant modes due to the enclosure. These enclosure modes
made it difficult to compare the frequency shifting effects of
various materials placed in the patch antenna. For this reason, a
cross-correlation technique was developed. After applying this

data-analysis tool, the frequency shift produced by loading the
patch antenna source with various nonconductive materials was
found to be comparable regardless of whether the patch source
was in an enclosure or in free space.

In order to be useful as a radiated-emissions reduction
strategy, it is necessary for the frequency shift to be significant
when compared to the bandwidth of the patch-antenna reso-
nance. Therefore, experimental measurements of the frequency
shift to bandwidth ratio were made. Numerical predictions
of the frequency shift to bandwidth ratio were also made for
the dominant (lowest frequency) mode. The predicted and
measured ratios generally agreed well (within 30% for most
cases). Therefore, the numerical predictions can be used to
generate a set of design guidelines for heat sinks of various
sizes.

It should be emphasized that changing heat-sink gasket mate-
rials as an EMI mitigation strategy is limited to cases in which
the heat-sink patch resonance constitutes a significant part of
the overall coupling mechanism. Even then, it is necessary to
ensure that the shifted patch-resonance frequency does not co-
incide with a clock harmonic. Despite these limitations, there
are at least two commercial products in which the substitution
of one electrically insulating heat sink gasket for another (of the
same size but different composition) has resulted in significantly
reduced radiated EMI at certain troublesome frequencies. In one
of these cases, this reduction was sufficient to allow the product
to meet FCC requirements.



260 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 43, NO. 3, AUGUST 2001

REFERENCES

[1] S. Radu, Y. Ji, J. Nuebel, J. L. Drewniak, T. P. Van Doren, and T. H.
Hubing, “Identifying an EMI source and coupling path in a computer
system with sub-module testing,” inProc. IEEE Electromagnetic Com-
patibility Symp., Austin, TX, 1997, pp. 165–170.

[2] J.-F. Zurcher and F. E. Gardiol,Broadband Patch Antennas. Norwood,
MA: Artech House, 1995.

[3] A. Papoulis,Random Variables and Stochastic Processes, 2nd ed. New
York: McGraw-Hill, 1984.

[4] K. R. Carver and J. W. Mink, “Micro antenna technology,”IEEE Trans.
Antennas Propagat., vol. AP-29, pp. 2–24, Jan. 1981.

[5] Y. Huang, “Numerical and Experimental Studies of EMI Reduction
Through the Use of Thin Conductive and Nonconductive Materials,”
Master’s thesis, Dept. of Elect. Eng., Univ.of Missouri-Rolla, Rolla,
MO, 1999.

Yu Huang received the B.S. degree from Tsinghua
University, Beijing, China, in 1997, and the M.S.
degree from University of Missouri, Rolla, in 1999,
both in electrical engineering. She is currently
working toward the Ph.D. degree in computer
science at the University of Washington, Seattle.

From 1997 to 1999, she was a Research Assistant
in the EMC Laboratory at the University of Missouri.
She is now a Software Engineer with the AOL Wire-
less Division, Seattle, WA.

Joseph E. Butler (M’75–SM’90) received the
B.S. degree in engineering physics from Merri-
mack College, North Andover, MA, in 1967, the
M.A. degree in physics from Williams College,
Williamstown, MA in 1969, and the M.B.A. degree
from Northeastern University, Boston, MA in 1974.

From 1969 to 1971 he was an EMC Engineer
for RCA Aerospace Systems Division, Burlington,
MA, and in a similar position with Raytheon
Company Missile Systems Division, Bedford, MA,
from 1971to 1980. From 1980 to 1986 he was the

Manager of Corporate Standards for GenRad, Concord, MA. Since 1986, he
has been with the Chomerics Division of Parker Hannifin Company, Woburn,
MA, where he is currently a Senior Electromagnetic Compatibility Consultant
and Marketing Manager involved with new product development and new
technology investigations. His new product development activities involve
emerging EMI gasket technologies.

Mr. Butler is president of the IEEE EMC Society for the two-year term
2000–2001.

Miksa de Sorgo(M’94) received the B.S.degree in
chemistry, from John Carroll University, Cleveland,
OH, in 1963, and the Ph.D. degree in physical chem-
istry, from the University of Alberta, Edmonton,
Canada, in 1968.

He was a postdoctoral Fellow at the SUNY College
of Forestry, Syracuse, NY, from 1969 to 1971, and
a Chemistry Research Associate at Syracuse Univer-
sity, Syracuse, NY, from 1971 to 1972. From 1972 to
1977, he was a Senior Research Chemist at the SCM
Corporation, Cleveland, OH, where he worked in the

field of polymer coatings. From 1977 to 1981, he was a New Products Develop-
ment Manager at Mobil Chemical Company, Edison, NJ. He joined Chomerics
in 1981, now a division of Parker Hannifin Corporation, Woburn, MA, where
he presently holds the position of Principal R & D Scientist. He is actively in-
volved in the development of materials for the thermal management of electronic
components and the development of standards for the measurement of material
thermal properties.

Dr. de Sorgo is a member of ASTM and IMAPS.

Richard E. DuBroff (S’74–M’77–SM’84) received
the B.S.E.E. degree from Rensselaer Polytechnic In-
stitute, Troy, NY, in 1970, and the M.S. and Ph.D.
degrees in electrical engineering from the University
of Illinois, Urbana-Champaign, in 1972 and 1976, re-
spectively.

From 1976 to 1978, he held a postdoctoral posi-
tion in the Ionosphere Radio Laboratory, University
of Illinois, Urbana-Champaign, and worked on
backscatter inversion of ionospheric electron density
profiles. From 1978 to 1984, he was a Research

Engineer in the geophysics branch of Phillips Petroleum, Bartlesville, OK.
Since 1984, he has been affiliated with the University of Missouri, Rolla
where he is currently a Profesor in the Department of Electrical and Computer
Engineering.

Todd H. Hubing (S’82–M’82–SM’93) received the
B.S.E.E. degree from the Massachusetts Instituyte of
Technology, Cambridge, in 1980, the M.S.E.E. de-
gree from Purdue University, West Lafayette, IN, in
1982, and the Ph.D. degree in electrical engineering
from North Carolina State University, Raleigh, NC,
in 1988.

He is currently a Professor of electrical engi-
neering at the University of Missouri, Rolla where
he is also a member of the principal faculty in the
Electromagnetic Compatibility Laboratory. Prior

to joining the faculty at the University of Missouri-Rolla in 1989, he was an
Electromagnetic Compatibility Engineer at IBM, Research Triangle Park, NC.
He has authored or presented more than 70 technical papers, presentations, and
reports on electromagnetic modeling and electromagnetic compatibility-related
subjects. He also writes the satirical “Chapter Chatter” column for the IEEE
EMC SOCIETY NEWSLETTER. Since joining the UMR, the focus of his research
has been measuring and modeling sources of electromagnetic interference.

Dr. Hubing is on the Board of Directors for the IEEE EMC Society.

James L. Drewniak (S’85–M’90) received the B.S.
(highest honors), M.S., and Ph.D. degrees in elec-
trical engineering, all from the University of Illinois,
Urbana-Champaign, in 1985, 1987, and 1991, respec-
tively.

In 1991, he joined the Electrical Engineering De-
partment at the University of Missouri, Rolla, where
he is a Professor and is affiliated with the Electro-
magnetic Compatibility Laboratory. His research in-
terests include the the development and application
of numerical methods for investigating electromag-

netic compatibility problems, packaging effects, and antenna analysis, as well
as experimental studies in electromagnetic compatibility and antennas.

Thomas P. Van Doren (S’60–M’69–SM’96)
received the B.S., M.S., and Ph.D. degrees from the
University of Missouri, Rolla in 1962, 1963, and
1969, respectively.

From 1963 to 1965, he served as an Officer in the
U. S. Army Security Agency. From 1965 to 1967, he
was a Microwave Engineer with Collins Radio Com-
pany, Dallas, TX. Since 1967, he has been a member
of the electrical engineering faculty at the University
of Missouri, where he is currently a Professor. His
research interests concern developing circuit layout

grounding, and shielding techniques to improve electromagnetic compatibility.
He has taught short courses on electromagnetic compatibility to over 10 000
engineers and technicians representing 200 corporations.

Dr. Van Doren received the IEEE EMC Society Richard R. Stoddard Award
for his contributions to electromagnetic compatibility research and education in
1995. He is a Registered Professional Engineer in the state of Missouri and a
member of Eta Kappa Nu, Tau Beta Pi, and Phi Kappa Phi.


	EMI Considerations in Selecting Heat-Sink-Thermal-Gasket Materials
	Recommended Citation

	EMI considerations in selecting heat-sink-thermal-gasket materials

