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FDTD Modeling of Lumped Ferrites
Min Li, Xiao Luo, and James L. Drewniak, Member, IEEE

Abstract—Implementing ferrites in finite-difference time-do-
main (FDTD) modeling requires special care because of the
complex nature of the ferrite impedance. Considerable compu-
tational resources and time are required to directly implement a
ferrite in the FDTD method. Fitting the ferrite impedance to an
exponential series with the generalized-pencil-of-function (GPOF)
method and using recursive convolution is an approach that
minimizes the additional computational burden. An FDTD algo-
rithm for a lumped ferrite using GPOF and recursive convolution
is presented herein. Two different ferrite impedances in a test
enclosure were studied experimentally to demonstrate the FDTD
modeling approach. The agreement is generally good.

Index Terms—FDTD, ferrite, GPOF.

I. INTRODUCTION

NUMERICAL modeling is a common approach for de-
veloping insight and EMC design directions. FDTD is

one method used extensively because it is straightforward
and simple to incorporate lumped elements and subcellular
modeling. It is of concern to implement ferrites in numerical
modeling, since they are often used in high-speed digital
designs to mitigate EMI problems. However, incorporating a
ferrite in FDTD modeling is difficult because of the complexity
of the ferrite frequency response. Special treatment is required
to develop an efficient method for modeling ferrites in the
FDTD method. Considerable work has been done on incor-
porating the ferrite behavior through the electromagnetic field
interactions [1]–[3], i.e., the magnetic flux density vectoris
related to the magnetic field vector via a frequency depen-
dent permeability tensor. This relation is then transformed
to the time domain and introduced into Maxwell’s equations.
Usually, a recursive approach is applied to reduce the required
computational resources associated with convolution. Other
modeling of ferrites in the FDTD method is through the sup-
plement of Gilbert’s equation of motion, which describes the
interaction between the magnetic fieldand the magnetization
vector in a magnetized ferrite in the time domain [4]–[8], or
through the incorporation of a frequency-dependent magnetic
susceptibility [9], [10]. Most of this previous work is on ferrite
materials that span a number of FDTD cells. Small-size lumped
element ferrites are extensively used in printed circuit board
(PCB) designs as well as for EMI suppression on connector
pins and cables.
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Fig. 1. FDTD modeling of a ferrite as a lumped element.

Work on a ferrite, which is smaller than an FDTD cell size
and can be deemed as a lumped element, is limited to mod-
eling it as anRLCcircuit [11]. An accurate implementation of a
lumped ferrite in FDTD is necessary for modeling at the PCB,
connector, and cabling levels. It can also be useful to incor-
porate a lumped ferrite in time-domain multiconductor trans-
mission-line (MTL) modeling [12]. An FDTD algorithm using
the generalized-pencil-of-function (GPOF) method and recur-
sive convolution is developed herein for lumped, unsaturated
ferrites, and demonstrated experimentally in particular for sur-
face-mount (SMT) ferrites. In the applications herein, the hys-
teresis is assumed to be negligible. The SMT’s are incorporated
in the FDTD modeling as lumped elements since their sizes are
usually small compared to the FDTD cells. The FDTD results
using the algorithm are compared with measured results in a
shielding enclosure geometry and generally compare well.

II. FDTD ALGORITHM FOR A LUMPED FERRITE

The subcellular ferrite algorithm is developed by trans-
forming the frequency-domain ferrite impedance to a time-do-
main response, then incorporating the time-domain response
into the FDTD modeling through an impressed current. GPOF
and recursive convolution are used to minimize the computa-
tional burden in the time-marching scheme. Specifically, the
procedure entails:

• obtaining the frequency-domain ferrite impedance from
measurements or a data sheet;

• inverse fast Fourier transforming (IFFT) to get the
time-domain ferrite response from the frequency-domain
impedance;

• extracting a finite sum of complex exponential terms using
GPOF to express the time-domain response;

0018–9375/00$10.00 © 2000 IEEE
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(a) (c)

(b) (d)

Fig. 2. Measured resistance and reactance for (a) Ferrite 1 and (b) Ferrite 2 and extended resistance and reactance for (c) Ferrite 1 and (d) Ferrite 2.

• modifying the complex exponential terms to correspond
to the time increment of the FDTD modeling (which usu-
ally is not the same as the time interval obtained from the
sampling in the frequency-domain);

• incorporating the ferrite time-domain response into the
FDTD updating equations through an impressed current;

• using recursive convolution with the complex exponential
terms of the ferrite time response and a complex supple-
mentary function;

• decomposing the complex exponential terms and the sup-
plementary function into real and imaginary parts, which
are updated separately;

• implementing the final FDTD updating equation using the
real or imaginary parts of the complex exponential terms
and the supplementary function.

The frequency-domain response of a ferrite impedance can be
obtained from the manufacturer’s data sheet or measurements
with an impedance analyzer. The corresponding frequency for
the th frequency data point is where is the fre-
quency discretization increment. The IFFT is then employed to
obtain the time-domain response of the ferrite impedance from

the frequency-domain information. The frequency data is then
further extended to by conjugating the first steps in order
to get a real time response after the IFFT, i.e.,

(1)

where the tilde denotes a frequency-domain quantity. The re-
sulting time response from the IFFT should be causal because
the ferrite is physically a causal convergent filter [13]. However,
the causality may be violated due to experimental error in char-
acterizing the ferrite impedance. The time-domain response at
time steps less than zero is ignored because it is usually much
smaller than that at time steps greater than zero. The time-do-
main response of the ferrite impedance is for time steps

and the time interval is .
The time response is then incorporated in the FDTD

modeling through an impressed current relating the voltage and
current in the FDTD cell where the lumped ferrite is located.
A recursive formulation by means of GPOF is also utilized to
reduce the required computational burden. First, a finite sum
of complex exponential terms to express the time response
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(a)

(b)

Fig. 3. Calculated time response for: (a) Ferrite 1 and (b) Ferrite 2.

is obtained. GPOF is used to extract these terms [14].
A sum of terms is used as

(2)

where , , , and are the terms obtained by the
GPOF method, and and are generally complex. The
time increment is , from the previous IFFT
calculation. However, the time increment in the FDTD modeling
is , which usually is not equal to , requiring a modification
of the complex exponential terms due to different sampling in-
crements in the time domain

(3)

(4)

(a)

(b)

Fig. 4. Comparison between the measured and data-processed impedance for:
(a) Ferrite 1 and (b) Ferrite 2.

It can then be shown that approximately the same frequency
response is obtained as

(5)
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where the time increment is small with respect to the func-
tional variation in the integral between the sum and integral to
satisfy the approximation, which is satisfied herein.

The time-domain response of the ferrite impedance at time
step (time interval of ) in the FDTD modeling is then

(6)

The FFT result of for a time interval of then gives
nearly the same frequency response as that of for time
interval of . The parameters and are then used in the
following development of the lumped ferrite algorithm.

The ferrite time-domain response obtained above can be im-
plemented in the FDTD modeling through an impressed current

since lumped element ferrites are of concern here. The ferrite
is assumed oriented along the-direction and placed at the po-
sition of in the FDTD cell (, , ), shown in Fig. 1. The, ,
and are the FDTD cell indexes along the, , and directions,
respectively. The updating equation for at time step
based on its value at the previous time step, circulating mag-
netic field components and , and the impressed current
is [15]

(7)

where is the permittivity and , are the FDTD cell di-
mensions along the and directions. The impressed current

is related to through the voltage across the ferrite by
and the ferrite response in the time domain by the

discrete convolution

(8)

where is the voltage across the ferrite at time step. At
time-step

(9)

where the last term is zero since (the initial condition
in the FDTD modeling). Using a semi-implicit approximation
gives

(10)

Fig. 5. The geometry of the shielding enclosure for the measurements and
FDTD modeling.

or

(11)

where the value of and at time step is obtained
as the average of the values at time stepsand .

The sum in (11) requires all thevalues at the previous time
steps, and in general can consume an inordinate amount of com-
putational resources and time. The terms of the exponential
sum in (6) are employed in (11) to obtain the recursive updating

(12)

which is shown in Appendix A to be

(13)

where is not a function of the index and
is updated as

(14)

Further data processing is again required since the constants
and are generally complex. It is shown in Appendix B that
the real and complex parts of the function can be updated
separately and the updating equation for can be
rewritten as

(15)
where is the number of conjugate pairs plus any real terms
for the exponential sums in (6). can be expressed
with from (15) as

(16)
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Fig. 6. Comparison between measurements and FDTD modeling of the delivered power and electric field strength 3 m away for the enclosure configurationwith
Ferrite 1.

Equation (16) is then used in the FDTD update (7) to get the
ferrite lumped-element equation for at time step as
shown in (17), where is updated as in (B.9) and (B.10)
in Appendix B.

III. EXPERIMENTAL CORROBORATION

The FDTD procedure detailed above for a lumped ferrite
was implemented and the results compared with measurements
in a shielding enclosure configuration. Two surface mount
(SMT) ferrites with package sizes 1.6 mm0.8 mm and 4.5
mm 1.6 mm, denoted Ferrite 1 and Ferrite 2, respectively,
were measured with an HP 4291A impedance analyzer with
an HP16192A SMT test fixture over the frequency range from
1 to 1800 MHz. The number of measured data points over
the frequency range was 801, thus, the sampling interval was

MHz. The measured resistance
and reactance are shown in Fig. 2(a) and (b) for Ferrite 1 and

Ferrite 2, respectively. The frequency of the magnitude peak
for Ferrite 1 was approximately 250 MHz and the resistance
peak value was 360 . The frequency of the magnitude peak
for Ferrite 2 was approximately 700 MHz and the resistance
peak value was 180.

The frequency response information was not complete
because the upper frequency of the measurements was limited
to 1.8 GHz by the upper band limit of the impedance analyzer.
Since the complete frequency response was required in the
IFFT, the GPOF method was also employed to extrapolate the
higher frequency responses [14]. This was not a part of the
ferrite algorithm, but rather an extrapolation of information.
The total number of data points was extrapolated to
for Ferrite 1 and for Ferrite 2, as shown in Fig. 2(c)
and (d), respectively. For Ferrite 2, it was difficult to apply
the Matrix Pencil method directly to the reactance since the
magnitude of the reactance was still increasing at the upper
frequency 1.8 GHz. Some decreasing points were artificially

(17)
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Fig. 7. Comparison between measurements and FDTD modeling of the delivered power and electric field strength 3 m away for the enclosure configurationwith
Ferrite 2.

introduced above 1.8 GHz before the GPOF was applied in
order to achieve convergence in the algorithm. Inaccuracy
due to the artificially added data points inevitably resulted
and could be avoided with a measurement extended to higher
frequencies. However, the available HP 4291A instrument had
an upper frequency limit of 1.8 GHz.

The IFFT was applied to obtain the time-domain responses
for Ferrite 1 and Ferrite 2. The time-response at time steps less
than zero was ignored because it was noncausal, and resulted
from measurement errors. The peak of the time-response at time
steps less than zero was generally one fifth of that at time steps
larger than zero. The time-domain response for Ferrite 1 and
Ferrite 2 are shown in Fig. 3(a) and (b), respectively. The shapes
of the time responses were similar for both ferrites, with the late
time responses approaching zero. To study the effect of the in-
complete data, GPOF extrapolation, and IFFT in the last step,
an FFT was applied to the resulting real and causal time-do-
main responses to compare the transformed frequency-domain
ferrite impedance with the measurements. The resulting com-
parisons for Ferrite 1 and Ferrite 2 are shown in Fig. 4(a) and
(b), respectively. The agreement for Ferrite 1 is good, while the
discrepancy for Ferrite 2 is about 20% for the resistance peak
value, due to the artificially added points in the reactance as a
consequence of incomplete measurements through the rapidly
changing part of the ferrite response. The effect of the IFFT
was not significant if complete measurements (adequate for the
GPOF extrapolation) were available.

Measurements using Ferrite 1 and Ferrite 2 in an enclosure
were made in order to assess the accuracy of the proposed fer-
rite subcellular algorithm in FDTD modeling. The geometry
of the experimental conducting enclosure is shown in Fig. 5.
The cavity was fed with a 50- coaxial cable probe through a

type- bulkhead connector, which was peripherally bonded to
the cavity. The center conductor of the probe was extended to
span the width of the cavity with a 0.16-cm-diameter wire and
terminated on the opposite cavity wall with an SMT ferrite sol-
dered to a 1.5 in 1.5 in square of conductive adhesive copper
tape. The feed probe was located at cm, cm,

cm. The inside dimensions of the enclosure were 22
cm 14 cm 30 cm. One-inch copper tape with conductive
adhesive was used to electromagnetically seal the seams on the
enclosure interior. A 12 cm 0.1 cm slot near one corner was
employed as the radiator. The case without the slot was obtained
by sealing the slot with copper tape. The frequency range of the
measurements was 600 MHz to 1.6 GHz in order to excite sev-
eral cavity modes, slot modes, and the feed-probe TEM mode.

A Wiltron 37 247A network analyzer was employed to mea-
sure the reflection coefficient with Port 1 connected to the
feed probe of the enclosure. The real power delivered to the en-
closure by the source was calculated from the measure-
ments as

(18)

where is the 50- characteristic impedance of the connecting
cables and source impedance andis the source voltage, which
is normalized to 1 mV, and used in the FDTD modeling. The
power available from the source is then 2.5 nW. The radiated
field in an anechoic chamber was also measured. The transmis-
sion coefficient was measured with a biconical-log peri-
odic receiving antenna 3 m away connected to Port 2 of the net-
work analyzer. is related to the electric field strength 3 m
away by the antenna factor of the receiving antenna as [16]

(19)



148 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 42, NO. 2, MAY 2000

(a)

(b)

Fig. 8. Comparison between measurements and FDTD modeling for the
enclosure configuration without the slot for (a) Ferrite 1 and (b) a 360


resistor terminating the feed probe.

where is the antenna factor of the receiving antenna, and
is the incident voltage from Port 1, which is 0.5 mV for the

normalized 1-mV source with a 50-source impedance.
A cell size of 1.0 cm 0.5 cm 1.0 cm was employed in

the FDTD modeling, where finer discretization along thedi-
rection was used in order to better model the spatial extent of
the SMT ferrite terminating the feed probe. Aluminum plates
were modeled with perfect electric conducting surfaces by set-
ting the tangential electric field to zero on the cavity walls. The
feed probe was modeled by a simple voltage source mV,
with a 50- resistance incorporated into a single cell at the feed
point. The ferrite was modeled as a lumped element using the al-
gorithm described above. The number of complex exponentials

, was 12 and 13 and the number of conjugate pairs plus real
terms , for the exponential sums was 8 and 9 for Ferrite 1 and
Ferrite 2, respectively. The magnetic fields circling the source
and ferrite were modeled in the same fashion as a thin wire to
give the cross section of the source and ferrite specified physical

dimensions [17], [18]. The slot was modeled with the C-TSF
thin-slot subcellular algorithm [18], [19] and PML absorbing
boundary conditions were employed for the three-dimensional
simulations [20]. The PML absorbing layers were eight cells
away from the enclosure.

The results for the delivered power and electric field strength
3 m away for Ferrite 1 as the terminating element, with the 12 cm
slot as the radiator are shown in Fig. 6. The agreement between
the measurements and FDTD modeling is good. The resonances
can be identified as cavity-mode resonances and resonances due
to the slot [18]. Radiation from cavity-mode resonances, and
resonances due to the slot coincided with the delivered power.
The discrepancy between the measured and FDTD results at
1.47 GHz is experimental error resulting from a feed probe that
was not strictly along the direction, thus unintended cavity
modes were experimentally excited.

The results on the delivered power and electric field strength 3
m away for Ferrite 2 as the terminating element, with the 12 cm
slot as the radiator, are shown in Fig. 7. The measurements and
FDTD modeling generally agree, but not as well as that of Fer-
rite 1 due to incomplete frequency-domain impedance informa-
tion of Ferrite 2. For the delivered power, the maximum discrep-
ancies were around 1.2 GHz, e.g., the frequency at which the
ferrite impedance peaks and the cavity half-wavelength window
frequency (at this frequency the cavity can be treated as a trans-
mission line with the feed probe as the center conductor [21]). In
the modeling, the frequency response of Ferrite 2 obtained from
the data processing, shown in Fig. 4(a), was generally lower than
the actual frequency response. Thus, the resistance of Ferrite 2
in the modeling was closer to the match of 50than it actually
was. At the half-wavelength windowing frequency, more power
was delivered to the enclosure in the FDTD modeling, as seen
in Fig. 4(a). The comparison between measurements and mod-
eling for the electric field strength at 3 m is good.

The electric field strengths 3 m away in the above configura-
tions of Ferrite 1 and Ferrite 2 are similar because the radiation
mechanism was dominated by the enclosure and slot. Thus, the

field at 3 m is not a severely discriminating criteria for the
ferrite model. In order to focus on the ferrite effect, the slot in
the enclosure was sealed. The results for Ferrite 1 as the termi-
nation without the slot are shown in Fig. 8(a). A 360resistor
[the resistance value at the peak for Ferrite 1, shown in Fig. 2(c)]
was utilized in place of the ferrite to compare the above ferrite
model and a simple resistor. The results for the delivered power
with the 360 resistor termination are shown in Fig. 8(b). The
agreement between the measurements and FDTD modeling is
generally good. The difference between the ferrite model and
resistor model is significant. The recursive ferrite model is more
suitable for modeling the ferrite, especially at low frequencies
below 500 MHz and frequencies around 1.2 GHz.

The results for delivered power with Ferrite 2 as the termi-
nating element without the slot are shown in Fig. 9(a). A 180

resistor (the resistance value at the peak) was also utilized in
place of Ferrite 2. The measured and modeling results are shown
in Fig. 9(b). The difference between these two models is signif-
icant and the recursive model for a ferrite is more suitable than
a resistor at most of the frequencies.
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(a)

(b)

Fig. 9. Comparison between measurements and FDTD modeling for the
enclosure configuration without the slot for (a) Ferrite 2 and (b) a 180-


resistor terminating the feed probe.

The phase of was also compared to further test the fer-
rite model. The results of for Ferrite 1 terminating the
feed wire with no slot in the enclosure are shown in Fig. 10(a),
and the results of for the 180 resistor are shown in
Fig. 10(b). Again, the difference is significant, and the recur-
sive ferrite model is more suitable than a resistor model for a
lumped ferrite.

IV. SUMMARY AND CONCLUSION

A lumped ferrite was modeled in FDTD through an im-
pressed current using a recursive convolution formulation.
Measurements in a shielding enclosure, which was fed with a
wire probe terminated by a ferrite, were made to corroborate
the FDTD modeling results. The agreement was generally
good. This algorithm is suitable for lumped ferrites and useful
in PCB and MTL modeling.

(a)

(b)

Fig. 10. Comparison of S between measurements and FDTD modeling
for the enclosure configuration without the slot for (a) Ferrite 1 and a (b) 360-


resistor terminating the feed probe.

APPENDIX A

The time-domain response of a ferrite is actually a dis-
crete-time filter, with the current at different time steps as the
input, and the voltage as the output. Its recursive convolution
can be obtained from the following steps. For

(A.1)

where is defined as . And, for
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(A.2)

where is defined as . At
the time step

(A.3)

where is updated by

(A.4)

APPENDIX B

The ferrite time-domain response is real. Then for each
term in the exponential series, with complex constantsand

, there are always conjugate terms and ( ,
), otherwise the constants and are real. The con-

jugate pair can be combined to obtain the new updating equa-
tions for . Let , , ,
and , the update at the first time step is

(B.1)

(B.2)

where the constants is the real part of
and is the imaginary part. Then

let

(B.3)

(B.4)

(B.5)

At time step

(B.6)

So the real and imaginary part of the function can be
updated independently as

(B.7)

(B.8)

For the conjugate term, the correspondingis updated as

(B.9)

(B.10)

It can be shown that and are conjugates of each
other. The updating (13) for can then be rewritten
as

(B.11)

where is the number of conjugate pairs for the exponen-
tial sums in (6). If and are real, they can be deemed as
conjugates to themselves, resulting in the new conjugate pair of
( , ) and ( , ).
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