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Error Performance of Double Space Time Transmit Diversity System
Jingxian Wu, Member, IEEE, Yahong Rosa Zheng, Senior Member, IEEE, Ashwin Gumaste, Member, IEEE,

and Chengshan Xiao, Senior Member, IEEE

Abstract— The theoretical error performance of double space
time transmit diversity (DSTTD) system with optimum com-
bining receiver is analyzed in this paper. By employing both
spatial multiplexing and transmit diversity in one system, DSTTD
provides practical tradeoff between system spectral efficiency and
diversity gain. We derive exact analytical expressions to describe
the symbol error rate for DSTTD systems. The effects of both
diversity gain and antenna interference introduced by spatial
multiplexing are quantified in the results. In addition, the perfor-
mance of DSTTD system with successive interference cancellation
is also investigated. Simulation results are in excellent agreement
with the theoretical results obtained in this paper.

Index Terms— Double space time transmit diversity, error
performance, successive interference cancellation.

I. INTRODUCTION

THE next generation wireless communication system is
required to provide high quality voice service as well as

broadband data services. To achieve this goal, multiple-input
multiple-output (MIMO) systems with multiple antennas at
both transmitter and receiver are adopted to utilize the spatial
domain of the wireless communication system.

The spatial dimension of MIMO systems can be explored
in two different ways, spatial multiplexing [1] or transmit
diversity [2] – [4]. In a system with spatial multiplexing, dif-
ferent data streams are sent out by different transmit antennas
simultaneously to improve the overall system throughput. On
the contrary, transmit diversity system has one data stream
spatially encoded across all transmission antennas to achieve
spatial fading diversity. Spatial multiplexing and transmit
diversity feature the fundamental tradeoff between spectral
efficiency and diversity gain in wireless communication sys-
tems [5], [6]. Spatial multiplexing improves system spectral
efficiency at the cost of diversity gain, while diversity gain is
achieved in transmit diversity system by trading off spectral
efficiency.
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The tradeoff relationship between spatial multiplexing and
transmit diversity was exploited in the design of various
MIMO systems [7] – [10].

Specifically, double space time transmit diversity (DSTTD)
[10] provides a simple yet effective solution to achieve spatial
multiplexing and transmit diversity in one system. DSTTD
system has four transmit antennas divided into two 2-antenna
groups, with the two antennas in each group associated with
an orthogonal space time transmit diversity (STTD) encoder.
Spatial multiplexing are employed across groups, i.e., different
data streams are sent out by different groups. DSTTD tech-
nique operates on a practical tradeoff point between spatial
multiplexing and transmit diversity. The error performance
of DSTTD system was studied with simulations in [10] and
[11]. The theoretical error performance of DSTTD system with
zero-forcing decision feedback receiver was derived in [12],
where ideal interference cancellation of all data streams are
assumed.

In this paper, we derive exact analytical error probabil-
ity expressions for linearly modulated DSTTD systems with
optimum combining receivers and independent identically
distributed (i.i.d.) Rayleigh fading channels. The difficulty
in DSTTD system performance analysis mainly arises from
the interference among the spatially multiplexed transmission
antennas. We tackle this problem by analyzing the eigen-
structure of the interference correlation matrix, which leads
to closed-form expressions of the moment generating function
(MGF) of the post-detection signal to interference plus noise
ratio (SINR) at the receiver. The statistical properties of the
post-detection SINR are used to facilitate the system error
probability analysis. The effects of both spatial diversity and
inter-group interference are taken into account during the
performance analysis. The statistical properties of the post-
detection SINR is analyzed by examining the eigen-structure
of the correlation matrix of the interfering channels. Closed-
form expressions are derived for the MGF of the post-detection
SINR, and the results are employed in the error probability
analysis.

Successive interference cancellation (SIC) can be employed
at DSTTD receiver to improve the overall system performance
at the cost of system complexity [10]. The theoretical per-
formance of DSTTD system with SIC is also investigated in
this paper, and the results are compared to DSTTD systems
without SIC to demonstrate the impact of SIC on system
performance.

The rest of the paper is organized as follows. Section II
describes the model and operation of DSTTD system. In
Section III, the theoretical error performances of DSTTD
system with and without SIC are derived by analyzing the

1536-1276/07$25.00 c© 2007 IEEE
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Fig. 1. The block diagram of a DSTTD system.

statistical properties of the post-detection SINR. Numerical
examples are given in Section IV to validate the analytical
results, and Section V concludes the paper.

II. SYSTEM MODEL

The block diagram of a DSTTD system with Nt = 4
transmission antennas and Nr ≥ 2 receive antennas is shown
in Fig. 1. The input information symbols are demultiplexed
into two data streams, each stream is encoded by an orthogonal
STTD encoder. The output of the two orthogonal STTD
encoders at two consecutive symbol periods t1 and t2 can
be represented by a size 4 × 2 matrix as

C = {cij}4×2 =
[

x1 x2 x3 x4

−x∗2 x∗1 −x∗4 x∗3

]T
∈ C4×2 (1)

where (·)∗ denotes the operation of complex conjugate, (·)T
represents matrix transpose, and xi is an M -ary modulated
symbol with power Es. For each element cij in the matrix
C, the column index j corresponds to the time instant tj ,
for j = 1 or 2, whereas the symbol on the ith row of C
is going to be sent out by the ith transmission antenna, with
i ∈ {1, 2, 3, 4}.

In the channel, the transmitted signal is corrupted by
both frequency flat Rayleigh fading and additive noise. To
maintain the orthogonality of the STTD encoding scheme,
the channel is assumed to be varying slowly enough that the
fading remains constant for two consecutive symbol periods
[2]. Let hnm denote the fading coefficient between the mth
transmission antenna and the nth receive antenna, then the
signals collected by the nth receive antenna at time instant tj
can be written as

rnj =
[
hn1 hn2 hn3 hn4

] · cj + znj, for j = 1, 2. (2)

where rnj is the received signal of the nth receive antenna
at time instant tj , znj is the corresponding additive white
Gaussian noise (AWGN) component with variance N0, and
cj is the jth column of the encoded data matrix C. With
simple algebraic manipulation of (1) and (2), we have

[
rn1

r∗n2

]
=

[
hn1 hn2 hn3 hn4

h∗n2 −h∗n1 h∗n4 −h∗n3

]⎡⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦+

[
zn1

z∗n2

]
,

or in matrix format

rn = Hn · x + zn, for n = 1, 2, · · · , Nr. (3)

Stacking up the Nr receive vectors rn leads to the input-
output relationship of the system as

r = H · x + z, (4)

where

r =
[

rT1 rT2 · · · rT
Nr

]T ∈ C(2Nr)×1, (5a)

H =
[

HT
1 HT

2 · · · HT
Nr

]T ∈ C(2Nr)×4, (5b)

z =
[

zT1 zT2 · · · zT
Nr

]T ∈ C(2Nr)×1. (5c)

with rn ∈ C2×1, Hn ∈ C2×4, and zn ∈ C2×1 defined in (3).
From (4), the system is equivalently represented by a

spatially multiplexed MIMO system with four transmission
antennas and 2Nr receive antennas. Four input streams,
{x1, x2, x3, x4}, are spatially multiplexed across the transmis-
sion antennas. Correspondingly, the equivalent channel matrix,
H, has four column fading vectors, {h1,h2,h3,h3}, with
each fading vector relevant to one of the four data streams.

The four transmission streams can be further partitioned
into two groups based on the two STTD encoders. The first
and second data streams {x1, x2} are in group 1 associated
with the first STTD encoder, and the second group contains
the third and fourth data streams {x3, x4} related to STTD
encoder 2. Due to the orthogonality of the STTD encoder, the
channel vectors belonging to the same transmission group are
orthogonal to each other, i.e.,

hH1 h2 = hH2 h1 = 0, (6a)

hH3 h4 = hH4 h3 = 0. (6b)

However, there are still interferences between the data streams
belonging to different transmission groups, and this interfer-
ence will seriously affect the performance of the DSTTD
system.

III. PERFORMANCE ANALYSIS

A. Optimum Combining

To suppress the interference between the two spatially
multiplexed transmission groups, optimum combining (OC)
is employed at the receiver. The OC detection vectors for the
kth data stream can be written by [13]

wk =
(
Bk +

1
ρ
I2Nr

)−1

hk (7)
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where ρ = Es/N0 is the signal to noise ratio (SNR) of one
data stream without fading, I2Nr is a 2Nr × 2Nr identity
matrix, and the matrix Bk is the interference covariance matrix
defined below

Bk =
{

h3hH3 + h4hH4 , for k = 1, 2,
h1hH1 + h2hH2 , for k = 3, 4. (8)

From the OC weight vector given in (7), the detection
variable for the kth data stream can be formulated as wH

k rk,
and the corresponding SINR of the kth data stream is

γk =
|wH

k hk|2
wH
k

(
Bk + 1

ρI2Nr

)
wk

. (9)

To simplify the SINR representation given in (9), we left
multiply both sides of (7) with wH

k

(
Bk + 1

ρI2Nr

)
, and the

result is

wH
k

(
Bk +

1
ρ
I2Nr

)
wk = wH

k hk. (10)

Substituting (10) into (9) yields

γk = wH
k hk. (11)

Combining (7) with (11) leads to an alternative representa-
tion of the SINR as

γk = hHk

(
Bk +

1
ρ
I2Nr

)−1

hk, (12)

with the matrix Bk defined in (8). The statistical properties
of the SINR given in (12) is analyzed in the next subsection
to facilitate the error performance analysis.

B. Statistical Properties of the SINR

For i.i.d. fading channels with variance normalized to unity,
the post-detection SINR of the four data streams share the
same statistical properties. Without loss of generality, the
analysis is performed for the first data stream, x1, and the
results can be directly applied to other data streams.

From (8) and (12), the SINR γ1 can be written as

γ1 = hH1

(
h3hH3 + h4hH4 +

1
ρ
I2Nr

)−1

h1. (13)

Performing eigenvalue decomposition (EVD) for the interfer-
ence covariance matrix B1 = h3hH3 + h4hH4 yields B1 =
UΛUH . The matrices U and Λ are defined as

U =
[

u1 u2 · · · u
Nr

] ∈ C2Nr×2Nr , (14a)

Λ = diag
[
λ1 λ2 0 · · · 0

] ∈ C2Nr×2Nr (14b)

where Λ is a diagonal matrix, with the diagonal elements λk
being the eigenvalues of B1, and uk are the corresponding
orthonormal eigenvectors defining the eigen-space. Since h3

and h4 are linearly independent, there are only two non-zero
eigenvalues, λ1 and λ2. Due to the orthonormality of the
eigenvectors, the matrix U is unitary, i.e., UHU = I2Nr .

With EVD, The SINR given in (13) can be rewritten as

γ1 = hH1 U
(
Λ +

1
ρ
I2Nr

)−1

UHh1. (15)

If we define a new vector, g = UHh1, then the SINR γ1 can
be further simplified to

γ1 =
2∑

k=1

|gk|2
λk + 1/ρ

+
2Nr∑
k=3

|gk|2 · ρ. (16)

where gk is the kth element of the vector g. Based on the facts
that U is unitary and it is independent of h1, the vector g is
still zero-mean complex Gaussian distributed with covariance
matrix E[ggH ] = I2Nr .

The SINR given in (16) conditioned on the eigenvalues λ1

and λ2 is the summation of 2Nr independent exponentially
distributed random variables (RV). Thus, the MGF Mγ|λ(s) =
Eγ1|λ(e

sγ) of γ1 conditioned on λ1 and λ2 is [14]

Mγ|λ(s) =
1

(1 − s
λ1+1/ρ )

1
(1 − s

λ2+1/ρ)
1

(1 − ρs)2Nr−2
, (17)

where E(·) represents mathematical expectation.
The derivation of the unconditional MGF requires the

knowledge of the distribution of λk. For a general interference
covariance matrix as defined in (8), it is usually very difficult
to find the expressions of the eigenvalues. However, for
DSTTD system, the vectors h3 and h4 are mutually orthog-
onal to each other. The orthogonality between the interfering
vectors leads to an explicit representation of the eigenvalues
λ1 and λ2 as [14, p. 457]

λ1 = λ2 =
2Nr∑
k=1

(|hn3|2 + |hn4|2
)

= λ. (18)

Since the fading coefficients are zero-mean Complex Gaussian
distributed, the eigenvalues given in (18) are χ2-distributed
with 8Nr degrees of freedom. The probability density function
(pdf) of λ is given by [14]

p(λ) =
λ2Nr−1

Γ(2Nr)
exp(−λ). (19)

With the pdf of the eigenvalues defined in (19), the uncon-
ditional MGF Mγ(s) can be obtained by integrating (17) over
the distribution of λ as

Mγ(s) =
∫ +∞

0

1
(1 − s

λ+1/ρ )
2

λ2Nr−1

Γ(2Nr)
exp(−λ)dλ

× 1
(1 − ρs)2Nr−2

. (20)

With the procedures described in the Appendix, the MGF
of (20) can be expressed in closed-form as in (21), which
is shown at the top of the next page. In (21), Γ(a, x) =∫ +∞
x ta−1e−tdt is the incomplete Gamma function [16,

(8.350.2)].
Eqn. (21) gives the unconditional MGF of the SINR γ1

at the presence of interferences from h3x3 and h4x4. If no
interference cancellation is employed at the receiver, then (21)
can be used to describe the MGF of the SINR of all the four
spatially multiplexed data streams.

Successive interference cancellation can be used at the
receiver to further improve system performance. Without
loss of generality, it’s assumed here that the streams in the
group {x1, x2} are detected first, and the results are used in
interference cancellation for data streams {x3, x4}. For ideal
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Table 1. Parameters of (24) for Various Modulation Schemes.
Modulation ζ β1 β2 ψ1 ψ2

MPSK sin2 π
M 1 0 π − π

M 0
MASK 3

M2−1 2(1 − 1
M ) 0 π

2 0

MQAM 3
2(M−1) 4

(
1− 1√

M

)
−4

(
1− 1√

M

)
2 π

2
π
4

Mγ(s) =
1

(1 − ρs)2Nr−2
×

[
1 + (2s− s2)

(
1
ρ
− s

)2Nr−1

× exp
(

1
ρ
− s

)
Γ

(
1 − 2Nr,

1
ρ
− s

)
+ s2

(
1
ρ
− s

)2Nr−2

× exp
(

1
ρ
− s

)
Γ

(
2 − 2Nr,

1
ρ
− s

)]
, (21)

interference cancellation, the post-detection SNR, γ̂3 and γ̂4,
can be written as

γ̂3 = γ̂4 = ρ ·
Nr∑
n=1

(|hn3|2 + |hn4|2
)

= ρ · λ, (22)

with λ being defined in (18). The corresponding MGF of the
χ2-distributed SNR, γ̂k, is

Mγ̂(s) =
1

(1 − ρs)2Nr
. (23)

The MGFs of the post-detection SINR or SNR will be used
in the error performance analysis.

C. Performance Analysis

In this subsection, we derive the symbol error rate (SER)
expression for linearly modulated systems, such as M-ary
Amplitude Shift Keying (MASK), M-ary Phase Shift Keying
(MPSK), and square M-ary Quadrature Amplitude Modulation
(MQAM).

For MASK, MPSK, and MQAM systems, the error proba-
bility of each individual data stream can be written in a unified
form as [15]

P (E) =
2∑
i=1

βi
π

∫ ψi

0

Mγ

(
− ζ

sin2 θ

)
dθ, (24)

where the values of the parameters βi, ψi and ζ for different
modulation schemes are given in Table 1, and Mγ(s) is the
MGF of the SINR (or SNR) as defined in Section III-B.

For system without interference cancellation, the post-
detection SINR, γn, for n = 1, 2, 3, 4, follow the same
statistical distribution. Therefore, the overall symbol error
rate (SER) of the entire system, which can be calculated by
averaging over the individual SER of the four data streams, is
obviously equal to the SER of any of the four data streams.
Thus, the exact overall symbol error rate for DSTTD system
without interference cancellation can be obtained by replacing
Mγ

(
− ζ

sin2 θ

)
of (24) with that defined in (21). The integral in

(24) only involves elementary functions and small integration
limits, thus it can be easily evaluated with numerical methods.

On the other hand, for system with ideal SIC, there is no
interference present at one of the two transmission groups. The

overall system error probability can be obtained by averaging
the SER of the two transmission groups as

P (E)=
2∑
i=1

βi
2π

∫ ψi

0

[
Mγ

(
− ζ

sin2 θ

)
+Mγ̂

(
− ζ

sin2 θ

)]
dθ, (25)

where Mγ(s) is the SINR MGF defined in (21), and Mγ̂(s)
is the MGF for the SNR given by (23). The error probability
given in (25) is based on the assumption of ideal interference
cancellation. However, for practical systems, residual interfer-
ence is always present at the receiver, especially at low SNR.
Thus the error probability given by (25) can be treated as a
lower bound for DSTTD system with practical SIC receiver.

IV. NUMERICAL EXAMPLES

Numerical examples are provided in this section to validate
the analytical expressions derived in this paper as well as to
compare the performance of DSTTD systems under various
system configurations.

During the simulation, the total transmission power from the
four transmission antennas are normalized to 1. As a common
practice of digital communication systems, Eb/N0 is used as
a metric to measure the SNR of the system. The relationship
between Eb/N0 and the per data stream SNR ρ used in the
analytical SER expressions can be described as

ρ =
Eb/N0 · log2M

Nt
(26)

where Nt is the number of transmission antennas, and M is
the modulation constellation size.

Fig. 2 plots the SER of 8PSK modulated DSTTD system
with different number of receive antennas. In this example, no
interference cancellation is employed at the receiver. In Fig. 2,
the SER results from the analytical error expressions are com-
pared to those obtain from simulations, and perfect agreement
between them are observed. In addition, as expected, the error
performance improves with the number of receive antennas
thanks to the increase of spatial diversity order contributed by
the receive antennas.

The impact of interference cancellation on system per-
formance is illustrated in Fig. 3 for QPSK and 16QAM
modulated systems. Four antennas are used at the receiver.
It’s apparent from Fig. 3 that systems with SIC (labeled as



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 9, SEPTEMBER 2007 3195

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

S
E

R

8PSK

2 Rx, analytical

2 Rx, simulation

3 Rx, analytical

3 Rx, simulation

4 Rx, analytical

4 Rx, simulation

Fig. 2. Error performance of 8PSK modulated DSTTD system with different
number of Rx antennas.

0 2 4 6 8 10 12
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

S
E

R

4 Rx

16QAM,DSTTD,analytical
16QAM,DSTTD,simulation
16QAM,DSTTD−IC, analytical
16QAM,DSTTD−IC, simulation
QPSK,DSTTD,analytical
QPSK,DSTTD,simulation
QPSK,DSTTD−IC,analytical
QPSK,DSTTD−IC, simulation
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DSTTD-IC) always outperform DSTTD systems without SIC.
A performance gain of about 0.5 dB is observed for both of
the two modulation schemes. In addition, the results presented
in this figure show that the analytical expression derived for
DSTTD system with SIC is a very tight lower bound compared
to the simulation results, and it can accurately predict the error
performance of corresponding DSTTD systems.

V. CONCLUSIONS

Theoretical error performance of DSTTD system with opti-
mum combining receiver was investigated in this paper. Spatial
multiplexing employed by DSTTD system introduces interfer-
ences among transmission antennas. By analyzing the eigen-
structure of the interference covariance matrix, we obtained
closed-form expressions of the MGF of the post-detection
SINR at DSTTD receiver. The results were then used to obtain
the exact analytical symbol error rate expressions for linearly
modulated DSTTD systems. In addition, a tight lower bound

was derived for DSTTD system with successive interference
cancellation. Simulation results show that the analytical results
obtained in this paper can accurately predict the performance
of DSTTD systems with or without SIC.

APPENDIX: DERIVATION OF (21)

Define b = 1
ρ − s, then (20) can be written as

Mγ(s) =
1

(1 − ρs)2Nr−2

∫ +∞

0

(
1 +

s

λ+ b

)2
λ2Nr−1

Γ(2Nr)
e−λdγ,

=
1

(1 − ρs)2Nr−2
[1 + 2s · f(2Nr, b)+

s2 ·
∫ +∞

0

1
(λ+ b)2

λ2Nr−1

Γ(2Nr)
e−λdλ

]
, (27)

where the function f(a, b) is defined as

f(a, b) =
∫ +∞

0

1
λ+ b

λa−1

Γ(a)
e−λdλ, (28)

and it can be written in closed-form as [16, (3.383.10)]

f(a, b) = ba−1ebΓ(1 − a, b). (29)

The integral in the expression of (27) can be simplified with
integration by part, and the result is∫ +∞

0

1
(λ+ b)2

λ2Nr−1

Γ(2Nr)
e−λdλ

= −λ
2Nr−1

Γ(2Nr)
e−λ

λ+ b

∣∣∣∣
+∞

0

+ f(a− 1, b) − f(a, b),

= f(a− 1, b)− f(a, b). (30)

Replacing (30) into (27) yields

Mγ(s) =
1

(1 − ρs)2Nr−2

[
1 + (2s− s2)f(2Nr, b)+

s2f(2Nr − 1, b)
]
. (31)

Combining (29) and (31) leads to (21), and this completes the
derivation.
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