
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Jan 2009 

Seven-Level Shunt Active Power Filter for High-Power Drive Seven-Level Shunt Active Power Filter for High-Power Drive 

Systems Systems 

Peng Xiao 

Ganesh K. Venayagamoorthy 
Missouri University of Science and Technology 

Keith Corzine 
Missouri University of Science and Technology 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
P. Xiao et al., "Seven-Level Shunt Active Power Filter for High-Power Drive Systems," IEEE Transactions on 
Power Electronics, Institute of Electrical and Electronics Engineers (IEEE), Jan 2009. 
The definitive version is available at https://doi.org/10.1109/TPEL.2008.2005897 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator 
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229202207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TPEL.2008.2005897
mailto:scholarsmine@mst.edu


6 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 1, JANUARY 2009

Seven-Level Shunt Active Power Filter for
High-Power Drive Systems

Peng Xiao, Student Member, IEEE, Ganesh Kumar Venayagamoorthy, Senior Member, IEEE,
and Keith A. Corzine, Senior Member, IEEE

Abstract—In high-power adjustable-speed motor drives, such as
those used in electric ship propulsion systems, active filters provide
a viable solution to mitigating harmonic related issues caused by
diode or thyristor rectifier front-ends. To handle the large com-
pensation currents and provide better thermal management, two
or more paralleled semiconductor switching devices can be used.
In this paper, a novel topology is proposed where two active filter
inverters are connected with tapped reactors to share the compen-
sation currents. The proposed active filter topology can also pro-
duce seven voltage levels, which significantly reduces the switching
current ripple and the size of passive components. Based on the
joint redundant state selection strategy, a current balancing algo-
rithm is proposed to keep the reactor magnetizing current to a
minimum. It is shown through simulation that the proposed active
filter can achieve high overall system performance. The system is
also implemented on a real-time digital simulator to further verify
its effectiveness.

Index Terms—Active filters, harmonic analysis, power conver-
sion, power electronics.

I. INTRODUCTION

ADJUSTABLE-SPEED motor drives (ASDs) have found
extensive application in a variety of high-power systems.

One example is the electric propulsion system used in mod-
ern naval ships, the power ratings of which can be tens of
megawatts. Typically, the front-ends of such ASDs employ a
diode or a thyristor rectifier. In spite of their simple control and
robust operation, these devices can generate voltage and current
harmonics that might affect the operation of other devices in
the same ac system. Conventionally, passive LC filters are used
to mitigate harmonic-related problems. However, due to their
large size and inflexibility, passive filters are gradually being
replaced by active filters that utilize power electronic inverters
to provide compensation for harmonics [1].

Among various active filter configurations, the shunt active
filter systems have a number of advantages and constitute the
optimal harmonic filtering solution for ASD rectifier front-ends
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[2]. In general, the ratings of shunt active filters are based on the
rms compensating current and the rms filter terminal voltage.
For high-power applications such as ship propulsion systems,
the large compensation current often requires parallel operation
of two or more switching devices or active filters.

In recent years, multilevel converters have shown some sig-
nificant advantages over traditional two-level converters [3]–[5],
especially for high-power and high-voltage applications. In ad-
dition to their superior output voltage quality, they can also
reduce voltage stress across switching devices. Since the output
voltages have multiple levels, lower dv/dt is achieved, which
greatly alleviates electromagnetic interference problems due
to high-frequency switching. Over the years, most research
work has focused on converters with three to five voltage lev-
els [4], [5], although topologies with very high number of volt-
age levels were also proposed [6]. In general, the more voltage
levels a converter has, the less harmonic and better power qual-
ity it provides. However, the increase in converter complexity
and number of switching devices is a major concern for a mul-
tilevel converter. It has been shown that although more voltage
levels generally mean lower total harmonic distortion (THD),
the gain in THD is marginal for converters with more than seven
levels [7].

This paper presents a shunt active filter configuration that uses
tapped reactors for harmonic current sharing. It reduces current
stress of the switching devices by distributing the compensa-
tion current between two parallel legs of an H-bridge topology.
It also reduces voltage stress across the switches by utilizing
a conventional three-level flying capacitor topology. Overall,
the configuration is capable of producing seven distinct voltage
levels, and thus, greatly reduces switching ripple in the com-
pensating currents. The concept of the configuration was intro-
duced in a previous conference publication [8]. Herein, more
detail of the topology and control are presented. Additional
simulation studies are also carried out as well as corresponding
studies using a real-time digital simulator (RTDS). The studies
herein are also conducted on a full motor drive system, whereas
in the previous work, the system was supplying a resistive
load.

The rest of this paper is organized as follows. The active filter
topology is briefly described in Section II. The control algo-
rithm of the active filter is discussed in Section III. Simulation
results are presented in Section IV to evaluate the proposed con-
figuration and control. In addition, the system is implemented
on RTDS hardware to further validate the proposed active fil-
ter, and the results are also presented in Section V. Finally, the
conclusions are given in Section VI.

0885-8993/$25.00 © 2009 IEEE
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Fig. 1. Proposed seven-level active filter topology.

Fig. 2. Ideal tapped reactor model.

II. ACTIVE FILTER TOPOLOGY

The proposed active filter topology is shown in Fig. 1. It con-
sists of an H-bridge configuration made from three-level flying
capacitor branches. Essentially, it is a voltage-source inverter
(VSI) with capacitive energy storage (Cdc) shared by all three
phases. A total of eight switching devices are used in each phase.

A tapped reactor is used to connect the two legs of the H-
bridge. Typically, the reactor is wound to be center tapped,
making the output line-to-ground voltages (vag for example) the
average of the voltages from each side of the H-bridge. Then,
the line-to-ground voltages will have five distinct voltage levels
[9]–[12]. However, with this topology, the tap is set at 1/3. This
results in seven distinct output voltages, and therefore, improves
the power quality. The switching operation is described next,
wherein all seven levels are clearly illustrated.

A. Tapped Reactor Model

Unlike the center-tapped interphase reactor [9]–[12], the re-
actor in the proposed topology has a tap terminal at its one-third
position, as shown in Fig. 2. For the convenience of analysis,
the reactor can be divided into two parts. In Fig. 2, part one,
denoted as L1 , consists of the portion from terminal x1 to the
tap and has a number of turns N1 = N ; part two, denoted as
L2 , consists of the portion from the tap to terminal x2 and has
a number of turns N2 = 2N . Terminals x1 and x2 are defined
as the input terminals while the tap terminal is defined as the
output terminal x.

To derive the relationship between the input voltages and the
output voltage, an ideal model of the tapped reactor is considered
first in which there are no losses and no leakage flux. The
following assumptions are made.

TABLE I
ACTIVE FILTER LINE-TO-GROUND VOLTAGES

1) The core of the reactor is highly permeable in a sense that
it requires vanishingly small magnetomotive force to set
up the flux.

2) The core does not exhibit any eddy current or hysteresis
loss.

3) All the flux is confined in the core, so there is no leakage
flux.

4) The resistance of the reactor is negligible.
Suppose that voltages vx1 and vx2 , with respect to a common

ground, are applied to the input terminals x1 and x2, respec-
tively. For this ideal model, it is straightforward to determine
the voltage between the output terminal x and terminal x2

vxx2 =
(

N2

N1 + N2

)
(vx1 − vx2) =

2
3

(vx1 − vx2) . (1)

The voltage at the output terminal with respect to the common
ground is therefore

vxg = vxx2 + vx2 =
2
3
vx1 +

1
3
vx2 . (2)

In the general analysis presented earlier, x represents a phase,
and the phase may be a, b, or c. Each leg of the H-bridge
has a voltage-clamping capacitor, and the voltages at the two
input terminals of the reactor can be 0, vdc/2, or vdc , where
vdc is the nominal voltage of the capacitor Cdc , as shown in
Fig. 1. For each phase, there are nine different switching states,
corresponding to nine terminal voltage combinations. These
combinations can produce a line-to-ground voltage at the output
terminal that has seven distinct voltage levels. For phase a, these
states are detailed in Table I.

In Table I, sa is the switching state that is defined as being 0
for the lowest possible line-to-ground voltage. The voltages va1

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 11, 2009 at 12:27 from IEEE Xplore.  Restrictions apply.



8 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 1, JANUARY 2009

Fig. 3. Active filter connection to a shipboard power system.

Fig. 4. Active filter control diagram.

and va2 are the line-to-ground voltages applied to the left and
right side of the reactor in Fig. 1, respectively. The voltage vag

is as defined in Fig. 1 and calculated using (2). Note that there
are two redundant states 2′ and 4′ that produce the same voltage
as states 2 and 4, respectively. However, these are not desirable,
and will be ignored, because the voltages applied across the
reactor are twice as high as the other states. The output current
for each phase is split between the two legs of the H-bridge
structure. Ideally, two-thirds of the current will come from x1
and one-third from x2 so that the magnetizing current is zero.
The control given later discusses the regulation of the reactor
currents so as to minimize the magnetizing current.

B. Active Filter Interface

As shown in Fig. 3, the active filter is connected to the power
system via a three-phase inductor Lf . The filtering function is
achieved by injecting a compensating harmonic current into the
point of common coupling of the utility–load interface, which
in this case is the secondary side of the rectifier load trans-
former. The reference harmonic currents are extracted from the
load currents so that the sum of the load currents and the injec-
tion currents has a THD that meets required specifications. The
seven-level inverter can produce an output voltage that contains
much less switching frequency ripple than a conventional two-
level inverter; thus, the generated injection currents are smoother
and the coupling inductor can be reduced.

According to the inverter equations, the line-to-neutral volt-
age vaf depicted in Fig. 3 can be related to the inverter line-to-
ground voltages by [13]

vaf =
2
3
vag − 1

3
vbg − 1

3
vcg . (3)

Having established the model for the proposed active filter, the
following section describes the details of the control.

III. ACTIVE FILTER CONTROL

To effectively compensate the load harmonic currents, the
active filter controller should be designed to meet the following
three goals:

1) extract and inject load harmonic currents;
2) maintain a constant dc capacitor voltage;
3) avoid generating or absorbing reactive power with funda-

mental frequency components.

A. Harmonic Current Extraction

For diode or thyristor rectifier loads, the most common har-
monic currents are of the 5th, 7th, 11th, and 13th order. Although
a high-pass filter can be used to extract these components di-
rectly from the line currents, it is not feasible to obtain high
attenuation at the fundamental frequency due to the high cur-
rent amplitude. The synchronous q–d reference frame controller
developed for shunt active filter systems is used to generate the
reference compensating current [2]. As shown in Fig. 4, the mea-
sured load phase currents (iaL , ibL , and icL) are first transformed
into the synchronous reference frame to obtain iqL and idL. The
synchronous reference frame phase angle can be obtained by
processing the measured system voltage with a phase-locked
loop circuit or algorithm. Low-pass filters are then used to ex-
tract the dc components, which correspond to the fundamental
frequency components of the load currents. The dc component
is removed by a simple subtraction of the filtered components
(̄iqL and īdL) and the transformed components (iqL and idL).

B. DC Capacitor Voltage Control

For the active filter to operate effectively, it is important to
maintain the dc capacitor voltage at a constant value. Since the
active filter topology is essentially identical to that of an active

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 11, 2009 at 12:27 from IEEE Xplore.  Restrictions apply.
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rectifier, similar control strategies for the active rectifier are
applicable.

The dc capacitor voltage is directly affected by the real power
transferred across the active filter. To keep the voltage con-
stant, ideally, no real power should be transferred. However,
due to losses in switching devices and other components, a small
amount of real power is needed. In the synchronous reference
frame with the q-axis aligned with the voltage at the point of
common coupling, the real power transferred can be expressed
as

P =
3
2
vqsiqf (4)

which means that by adjusting the q-axis filter current, the real
power can be effectively controlled. The capacitor voltage reg-
ulation is then handled by a simple proportional-integral (PI)
control adding to the q-axis filter current, as shown in Fig. 4.

C. Reactive Power Control

In most cases, a unity power factor for fundamental frequency
components is required at the active filter terminals. Since the
reactive power can be expressed as

Q =
3
2
vqsidf (5)

this goal can be achieved by keeping the average d-axis current
at zero, as shown in Fig. 4. The combined control of dc capacitor
voltage and reactive power uniquely determines the fundamental
frequency component of the active filter output current. This
current is then superimposed onto the commanded harmonic
currents, and the commanded filter currents i∗af , i∗bf , and i∗cf are
obtained by the reverse transformation, as shown in Fig. 4.

D. Harmonic Current Regulator

A current regulator is needed to generate the commanded
compensation current. Generally, a hysteresis control provides
fast response and is suitable for nonsinusoidal current track-
ing. However, it suffers from some serious disadvantages such
as variable switching frequency and phase interaction prob-
lems [1]. In addition, to fully take advantage of the benefits of a
multilevel converter, a current regulator that uses a voltage-
source pulsewidth modulation (PWM) is desirable. Several
frequency-selective harmonic current regulators were proposed
in [14]–[17] that achieve zero steady-state error for the dom-
inant harmonics. Nonetheless, they all have to target specific
frequencies and require a significant amount of computation
time.

In this paper, a predictive current regulator is implemented to
track the harmonic currents, which has the advantages of simple
structure and less computational requirement. Given the mea-
sured system voltages and filter inductor currents, the required
phase a filter voltage can be calculated based on the known
value of the filter inductance

v∗
af = v̂as +

(̂i∗af − iaf )Lf

∆t
(6)

Fig. 5. Seven-level voltage-source modulation.

where ∆t is the controller switching period, v̂as is the pre-
dicted source voltage and can be calculated through linear
extrapolation

v̂as = vas(t) + 1.5∆t [vas(t) − vas(t − ∆t)] (7)

and î∗af is the predicted reference harmonic current

î∗af = i∗af (t) + 2∆t [i∗af (t) − i∗af (t − ∆t)]. (8)

For accurate current tracking, the prediction takes into account
the controller delay due to data acquisition and calculation.
Better performance has been achieved when a second-order
prediction method is used.

As can be seen, the predictive control effectively turns the
commanded currents into commanded voltages suitable for a
voltage-source modulator. These commanded voltages are then
expressed as PWM duty cycles by normalizing them to the dc
voltage and giving them an appropriate range. For phase a, the
duty cycle can be expressed as

dam =
(

v∗
af

vdc
+ 0.5

)
(n − 1) (9)

where n is the number of voltage levels, which for this topology
is n = 7. Similar expressions can be written for phase b and
phase c. The predictive control is shown in Fig. 4 having outputs
to the PWM modulator, which is described next.

E. Multilevel Voltage-Source Modulation

The seven-level voltage-source modulation is accomplished
by comparing the duty cycles with a set of six carrier waveforms.
This is illustrated for phase a in Fig. 5. The resulting switching
state sa is the number of triangle waveforms that the duty cycle
is greater than. Therefore, the switching state has a range of 0–6,
and this is in agreement with Table I.

F. Capacitor Voltage Balancing

After carrying out the modulation, the switching states for
each phase need to be broken out into transistor signals. In
order to have the correct voltage levels, the flying capacitors
must remain charged at exactly vdc/2. This can easily be assured
using the redundancy of the inverter legs.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 11, 2009 at 12:27 from IEEE Xplore.  Restrictions apply.
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TABLE II
FLYING CAPACITOR VOLTAGE BALANCING

For each leg of the H-bridge structure, there are four switches
and a total of four switching states. Two of the switching states
can produce the same vdc/2 output, which provides great flexi-
bility for capacitor charging and discharging. Table II shows the
relationship between switching states, output current direction,
and capacitor charging/discharging, where the left leg of phase
a bridge is used as an example. The designations of the vari-
ables can be found in Fig. 1. The + and − signs for the output
current denote the polarity of the current. The charging status of
the flying capacitor can be + (charging), − (discharging), or 0
(neither charging nor discharging). It can be seen that for state
(s1a , s2a ) = (0, 0) and (1, 1), output current does not flow
through the flying capacitor; therefore, the capacitor voltage
does not change. The two redundant states (1, 0) and (0, 1) pro-
duce the same output voltage vdc/2. Both can be used to charge
or discharge the capacitor, depending on the direction of output
current. For example, if the output current is positive, one can
pick (1, 0) to charge the flying capacitor, or pick (0, 1) to dis-
charge it. This simple decision is made instantaneously online
depending on the state of charge of the flying capacitors.

G. Magnetizing Current Minimization

The current through the reactor consists of two components.
One is the compensating current that flows out of the tap termi-
nal and is shared by the two parts of the reactor. The other is the
magnetizing current that is generated when an average voltage
is applied across the reactor input terminals. The magnetizing
current does not contribute to the filtering function and should
be minimized to reduce current ratings of the switching devices
and avoid reactor saturation. Ideally, the magnetizing current
has a zero average component. In practice, however, the mag-
netization current tends to drift away from zero if uncontrolled
because of the differences in component parameters and con-
troller errors. Therefore, it is necessary to monitor and control
the magnetizing currents of the reactors in each phase so that
their values are within a limited range. Let the magnetizing cur-
rent in phase a be iam , then the following relationship holds if
two-thirds of the filter current is to come from the left side of
the reactor

iam = 2iaf 2 − iaf 1 . (10)

The magnetizing current can be minimized by balancing the
average voltage applied across the tapped reactor. Among the
seven switching states in Table I, the states (va1 = 0, va2 = 0),

(va1 = vdc/2, va2 = vdc/2), and (va1 = vdc , va2 = vdc) have
no effect on the magnetizing current, while the other four states
can either increase or decrease the magnetizing current. Since
states 2′ and 4′ are not used, there is no usable per-phase redun-
dant state. Thus, the magnetizing current of each phase cannot be
adjusted independently. In this paper, a technique similar to the
joint-phase redundant states selection (JRSS) method proposed
in [7] is used to minimize the magnetizing currents. The concept
behind JRSS is that for a three-phase inverter, the line-to-ground
voltages of all phases may be changed simultaneously without
affecting the load voltages since the terms that are common in
all phases will cancel when looking at the line-to-line voltages
or line-to-neutral voltages, as seen by (3).

The magnetizing current minimization procedure is as fol-
lows. At the beginning of each switching period, the magne-
tizing current for each phase is calculated. Suppose the com-
manded voltage levels are si , where i = a, b, c, and 0 ≤ si ≤ 6.
The number of available joint redundant states is

k = min(si) + 6 − max(si). (11)

Each redundant state specifies the three-phase active filter
voltage levels. Based on Table I, the voltage applied across
the reactor for each phase and whether the magnetizing current
increases, decreases, or does not change can be determined. If
the magnetizing inductance Lm is known, the change in the
current (for phase a) can be calculated as

∆iam =
va1 − va2

Lm
∆ t (12)

where va1 and va2 are voltages at the two terminals of the
reactor and ∆t is the duration of the state. The change in current
as predicted by (12) is used along with the measured value of
magnetizing current to predict the value of magnetizing current
at the next controller time step. The switching state that results in
the minimum predicted magnetizing current for all three phases
is selected.

The calculation block representing the JRSS control is shown
at the output of the modulator in Fig. 4. The inputs are taken
as switching states from the modulator, which represent com-
manded voltage levels. The JRSS block performs the calcula-
tions as described earlier and determines a new set of states that
will lead to minimized magnetization currents. As a practical
matter, the flying capacitor voltage regulation is also performed
in this block. The outputs are transistor signals, as labeled in
Fig. 1. It should be pointed out that this block also reads in ana-
log information of the flying capacitor voltages and the reactor
currents to perform this regulation. Therefore, it is a feedback
control that compensates to minimize magnetization current.

IV. SIMULATION RESULTS

Numerical simulations have been conducted in the Advanced
Continuous Simulation Language (ACSL) to validate the pro-
posed topology. The example naval ship power system has a
rated line-to-line voltage of 4.16 kV and a three-phase six-pulse
diode rectifier. A three-phase PWM inverter is connected to
the rectifier dc bus, and supplies power to a permanent-magnet
synchronous motor load. The rated dc capacitor voltage of the

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 11, 2009 at 12:27 from IEEE Xplore.  Restrictions apply.
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Fig. 6. Active filter detailed simulation results.

active filter is 6800 V. The three-phase tapped reactor has a
leakage inductance of Ll = 50 µH, winding resistance r =
0.1 Ω, and mutual inductance LM = 1 H. The active filter in-
terface inductance is Lf = 0.1 mH.

Fig. 6 shows the phase a operation of the active filter with
a rectifier load. As can be seen, the load current iaL contains
a significant amount of harmonics. The active filter produces
multilevel voltages that generate a current iaf to cancel the
harmonic contents. The compensated source current ias contains
much less harmonics than iaL . The magnitudes of the harmonic
spectrum of the load and source currents are shown in Fig. 7. The
THD of the load current is 25.1%, which is reduced to about
4.4% in the compensated source current. The source current
still contains a certain amount of higher frequency components.
However, they are generally not a concern and can easily be
removed by passive filters.

To illustrate the generation of seven voltage levels, Fig. 8(a)
shows the phase a line-to-dc-ground voltages applied at each
end of the tapped reactor. These two voltages are produced
by the flying capacitor legs and have three levels. The phase a
converter-side line-to-neutral output voltage vaf from the ACSL

Fig. 7. Harmonic magnitude in load and source currents.

Fig. 8. Reactor terminal and output voltages.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 11, 2009 at 12:27 from IEEE Xplore.  Restrictions apply.
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Fig. 9. Magnetizing current with and without the balancing algorithm.

simulation is shown in Fig. 8(b). Multiple voltage levels give
the voltage a smooth shape that reduces injection current rip-
ple. Also shown in Fig. 8(b) is the reactor output terminal to dc
ground voltage vag , which has seven distinct levels. Note that
because of joint redundant state selection, common-mode com-
ponents are added to the line-to-ground voltages, which cause
the irregular shape of vag .

The effectiveness of the magnetizing current control is tested
in simulation and illustrated in Fig. 9. The top part of Fig. 9
shows whether the JRSS current balancing algorithm is turned
on or off, and the bottom part shows the magnetizing current in
phase a. Initially, the balancing is ON, and it can be seen that
the magnetizing current is kept within a small range with a very
low dc component. At time t = 0.1 s, the balancing algorithm is
turned off, and the magnetizing current drifts away from zero and
keeps decreasing. In practice, a large magnetizing current can
cause the iron core to saturate and eventually damage the reactor
and switching devices. When the balancing method is turned on
again, the magnetizing current returns to its minimum value.

V. VALIDATION WITH RTDS HARDWARE

To further evaluate the performance of the proposed active
filter, a real-time simulation model for the same system de-
scribed earlier is also implemented. The modeling is based on
RTDS hardware [18], which is a fully digital electromagnetic
transient power system simulator that operates in real time. Be-
cause the solution is in real time, the simulator can be connected
directly to a hardware controller or other devices. Thus, real-
time simulation provides a convenient way for network-level
power system analysis and equipment test. The implementation
of the proposed active power filter model in RTDS hardware
is quite different from simulation design with regular nonreal-
time continuous/discrete simulators. On the one hand, technical
difficulties arise due to hardware limitations. The inherent com-
putational delay (75 µs in the setup) may cause instability for the
close-loop controller, and the issue must be addressed with ap-
propriate choice of control algorithms. The switch model, which
is designed mainly for operation under fundamental frequency

Fig. 10. Active filter RTDS hardware results.

conditions, must be properly configured to work at high switch-
ing frequency and pass harmonic currents. On the other hand,
the parallel structure of the current regulator makes it suitable
to be implemented on the platform, because different harmonic
channels can be processed in parallel by multiple processors.
Fig. 10 shows the waveforms from the RTDS hardware. As can
be seen, these compare well to the detailed simulation results.

VI. CONCLUSION

A new type of power converter has been introduced in this
paper. The converter is based on parallel connection of phase
legs through an interphase reactor. However, the reactor has
an off-center tap at one-third resulting in an increased number
of voltage levels. Specifically, two three-level flying capacitor
phase legs are paralleled in this way to form a seven-level power
converter. The converter is utilized in an active filter application.
The details of the high-level control as well as the switching
control have been presented. The control ensures reactor current
sharing as well as flying capacitor voltage balance. The proposed
active filter has been validated for a naval ship board power
system using detailed simulation and RTDS hardware.
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