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Correlation Between EUT Failure Levels
and ESD Generator Parameters

Jayong Koo, Student Member, IEEE, Qing Cai, Kai Wang, Member, IEEE, John Maas, Senior Member, IEEE,
Takehiro Takahashi, Andrew Martwick, and David Pommerenke, Senior Member, IEEE

Abstract—Some system-level electrostatic discharge (ESD) tests
repeat badly if different ESD generators are used. For improv-
ing repeatability, ESD generator specifications have been changed,
and modified generators have been compared in a worldwide round
robin test. The test showed up to 1 : 3 variations of failure levels.
Multiple parameters that characterize ESD generators have been
measured. This paper correlates the parameters to test result vari-
ations trying to distinguish between important and nonrelevant
parameters. The transient fields show large variations among dif-
ferent ESD generators. A correlation has been observed in many
equipment under tests (EUTs) between failure levels and the spec-
tral content of the voltage induced in a semicircular loop. EUT
resonance enhances the field coupling, and is the dominate failure
mechanism. The regulation on the transient field is expected to
improve the test repeatability.

Index Terms—Correlations, electrostatic discharge (ESD), fail-
ure levels, round robin test.

I. INTRODUCTION

THE OBJECTIVE of system-level electrostatic discharge
(ESD) testing is twofold: ensuring adequate robustness of

electronic systems against real-world ESD and passing a stan-
dardized test, as this is often a legal or company internal require-
ment for selling a product. When passing a legal requirement, an
unambiguous pass/fail determination is required. However, it is
well known that all electromagnetic compatibility (EMC) tests
suffer from reproducibility problems. This is especially true for
ESD testing [1]–[4]. When measuring emissions, a test result
uncertainty can be calculated; however, standardization groups
have only attempted to determine a calibration uncertainty for
ESD testing, and have shied away from attempting to establish
methods for test result uncertainties for ESD testing.

Owing to the large variable nature of natural ESD phenom-
ena, a reference ESD event has been introduced in the standard
IEC 61000-4-2 [5]. This document describes the discharge cur-
rent waveform. In the early 1990s, testing has been moved from
air discharge to contact-mode testing to avoid the effect of arc
length variations in air discharge [6] and improve reproducibil-
ity. In spite of this and other steps taken to improve the repro-
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ducibility of test results, variations as much as a factor of 2 in
passing test voltage are common. Thus, the site-to-site variation
of test results often leads to regulatory problems, and may cause
redesigns for improving product immunity if an equipment un-
der test (EUT) turns out to be especially sensitive to a specific
model of ESD generator used at that test site.

A standard needs to regulate the parameters that determine the
severity of the tests. However, there has been and still is consid-
erable confusion about which parameters determine the severity
of ESD testing. Traditionally, the effort to improve the test re-
peatability has been focused on defining the right discharge cur-
rent [7], [8]. This thought guided the standard formulation in its
early stage, resulting in the four parameters that define the dis-
charge current specification [5]: rise time, peak current, current
at 30 ns, and current at 60 ns. Two reasons may have turned the
focus to the current while paying little attention to the fields. The
current can be measured with high precision [9], and the belief
that the rise time is directly related to the probability of system
failure [10]–[12].

Questioning the parameters that determine the severity of
system-level ESD led to multiple studies having inconsistent
and even partially contradicting results. It was shown in [11]
and [12] that the coupled energy is related to the rise time. The
authors of [3] concluded that the high-frequency components
or the current derivatives dominate simulator severity, while
our own previous study claimed that the voltage induced in a
small loop predicts the severity level for upset-type failures [13].
Many studies have indicated that the transient fields of ESD
strongly influence the EUT response. However, an often met
misunderstanding is that the transient fields of the ESD generator
are determined by the discharge current. If this is the case, a well-
written specification of the discharge current would define the
transient fields.

A simple dipole model [14], [15] often assumes a short line
current that carries the current of a human–metal ESD. Ac-
cording to this model, it can be used to calculate the transient
fields. The limitations of the model have been shown to originate
from omitting the field contributions from the complete geom-
etry, and not taking into account that within the ESD generator,
much shorter rise time currents are present [16].

However, an ESD event by an ESD generator has the fol-
lowing critically different characteristics from the human ESD
model.

1) The ESD energy is stored in a small discrete capacitor.
2) A ground strap is used for the current return path.
3) The pulse shaping network is used to smooth the discharge

current.
It is true that the transient field variation is partially due to

the discharge current variation; however, the differences listed

0018-9375/$25.00 © 2008 IEEE
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Fig. 1. New specification suggested for discharge current waveform. The
width measured at 60% of the first discharge current peak should be 1.5–3 ns.

before also cause other uncertainties in the transient field. There-
fore, even if all ESD generators could have identical discharge
current, the transient fields may be significantly different. Then,
what would be the correct way to represent the field radiation?

It has been known that the transient fields are different among
ESD generators from different manufacturers [2], [6]. The volt-
age induced in a small loop was used as a simple indicator of the
transient field, and a correlation to the failure levels was found
in some limited conditions [17], [18]. However, if the field dis-
tribution is not uniform over the revolution angle [3], [19], [20],
then the transient field coupling to the EUT depends not only on
the manufacturing, but also on the revolution angle that faces the
EUT, which leads to a clear failure level variation with respect
to the revolution angle (see Section II).

In spite of numerous factors that would possibly affect the
severity of ESD generators, TC77B, the technical group in
charge of IEC 64000-4-2, investigated adding another discharge
current specification, as can be seen in Fig. 1. The specification
states that the width is measured at 60% of the first discharge
current peak and should be 1.5–3.5 ns.

A round robin test was initiated to test the effect of
this change on different EUTs at three locations (Europe
Homologation Center (EHC) Tokushima Laboratory, Japan,
Missouri University of Science and Technology, Rolla, and
IBM, Minnesota), using the same ESD generators. Various
EUTs, such as desktop computers, laptop computers, printers,
wireless routers, and projectors, were used. The measurements
were performed in accordance with the standards [5]. The con-
tact mode using direct discharge was used to minimize test
uncertainty. The detailed test methods are described in [4].

The results of the round robin test demonstrated that the reg-
ulation proposed in Fig. 1 hardly improved the test repeatabil-
ity [21]. Consequently, the IEC 77b MT12 ESD standard setting
working group decided not to include this specification in the
IEC 61000-4-2 standard. In addition to the test repeatability
evaluation, we characterized the ESD generators with respect
to their discharge current and fields. These parameters can be
used to study the correlation of the failure levels to the ESD
parameters.

Section II introduces the failure levels and the variations of
various EUTs. Section III presents the measured ESD param-
eters, including the discharge currents and voltages induced in
a semicircular loop. Section IV discusses the frequency selec-

Fig. 2. Normalized failure levels for 14 EUTs while (a) positive voltage dis-
charges and (b) negative voltage discharges were performed using eight ESD
generators. The lowest failure level for each EUT was used for normaliza-
tion. EUT10 (rarely failed up to 10 kV) and EUT13 (indirect discharge) were
excluded.

tive immunity of the EUTs, and the general correlation between
the ESD parameters and the failure levels over all EUTs, and
Section V compares the modified and unmodified ESD
generators.

II. EUT FAILURE LEVELS

The failure levels of desktop and laptop computers, servers,
routers, etc., were determined using the contact mode.

Analyzing a complex set of partially imperfect data requires
a set of assumptions that are discussed in this section. We have
tested the stability of our results and conclusions against these
and other reasonable assumptions, and found them to be consis-
tent with our assumptions.

Some EUTs had multiple test points spaced far from each
other. In this case, we assumed that the coupling path and failure
cause were different, allowing us to regard each new test point
as an independent EUT. A charge voltage of 10 kV was the
maximum for most ESD generators. A few EUTs did not fail up
to 10 kV. In this case, we assumed a failure level of 12 kV.

Each of the recorded failure levels for an EUT using eight
different ESD generators was normalized to the lowest failure
level such that the relative failure level variations could be seen.
Fig. 2 shows the normalized failure level for the positive and
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TABLE I
MEASURED FAILURE LEVELS AT DIFFERENT REVOLUTION

ANGLES OF THE ESD GENERATOR

negative voltages discharge, respectively. The variations were
strongly dependent on the EUT, ranging from 1 : 3 down to
1 : 1.5. The data are sorted such that the EUTs having large
variations in the failure level are shown on the left side.

ESD generators are not bodies of revolution. To observe if a
nonuniform transient field distribution around the ESD genera-
tor causes a failure level variation, the ESD generators were held
at four different angles, while the failure levels of the EUT were
recorded. Table I shows examples of the variations of failure
levels at four different revolution angles of the ESD genera-
tor. A failure level variation of 1 : 1.5 was observed for EUT 4
while discharging with “Generator a.” Rotation was only per-
formed on a very few number of EUTs and only using few ESD
generators, as it was not a part of the round robin test protocol.

The injected current remains unchanged if the generator is
rotated; however, the fields will change. The variation indicates
the importance of the transient fields, and shows that even when
using one generator, there can be repeatability problems.

III. MEASUREMENTS OF ESD PARAMETERS

Five of the ESD generator manufacturers supported the round
robin test by providing ESD generators that meet the proposed
new current requirement specifying the width of the first dis-
charge current. These generators are denoted by capital let-
ters, “Generator A”–“Generator E,” in the measurement results.
Three of these manufacturers also provided their old versions,
which did not meet the new current requirement, “Generator
a”–“Generator c.” “Generator D” and “Generator E” do not
have corresponding old versions because they have already met
the new current specifications. We measured the parameters to
characterize the ESD generators and correlate the parameters
to failure levels. The general measurement methods and results
are introduced in this section. A full-wave ESD generator model
for estimation of discharge current and field coupling is demon-
strated in [22], and is the topic of ongoing research.

A. Discharge Currents

The discharge current from each ESD generator was mea-
sured for 200 ns in accordance with the standards [5]. As shown
in Fig. 3, the measured discharge currents meet the four param-
eters of the discharge current specification in general. However,
the current waveforms after the first peak deviate significantly.
The spectra differ by more than ±6 dB below 2.5 GHz, as can
be seen in [4].

Fig. 3. Discharge currents measured for the round robin test. Eight differ-
ent ESD generators were used. The four parameters of the discharge current
specifications are indicated. The upper right plot shows the first 10 ns.

Fig. 4. Measurement setup for the induced voltages in a semicircular loop.
The ESD generators that were used were rotated around the discharge tip. The
induced loop voltage was measured at four angles.

B. Induced Voltages in a Semicircular Loop

To observe the transient field from the ESD generators dur-
ing discharge, the induced voltages in a small loop have been
measured for 50 ns. The measurement setup is depicted in Fig. 4.

A semicircular loop (28-mm diameter, 0.7-mm wire diam-
eter) was placed on a ground plane (approximately 4 m ×
2.5 m) and connected to an oscilloscope (6 GHz, 20 Gs/s). The
discharge location is 10 cm from the center of the semicircular
loop. A distance of 10 cm was selected as the IEC 61000-4-2
standard requires the same distance for indirect ESD testing.
Full-wave simulations of the voltage induced in a semicircular
loop by an incident plane wave were conducted. The frequency
responses are shown in Fig. 5.

The ground strap, which is approximately 3 m long, was
pulled back at its midpoint. The ESD generators that were used
were rotated around the discharge tip, as can be seen in the right
side of Fig. 4, maintaining the overall shape of the ground strap.
The current of the ESD generator is hardly affected by rotating
it. However, the transient fields are affected as most ESD gener-
ators do not form bodies of revolution. For capturing the effect
of these asymmetries, we recorded the induced loop voltage
for four orientations of the ESD generators. For example, the
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Fig. 5. Frequency responses of the voltage induced in a semicircular loop by
an incident plane wave (E = 377 V/m, H = 1 A/m). Two polarizations were
used in each of FW simulations.

Fig. 6. Set of (a) spectra and (b) time-domain waveforms of measured induced
voltages in a semicircular loop for “Generator a.”

spectra and time-domain waveforms of the measured induced
voltages in a semicircular loop for “Generator a” are shown in
Fig. 6.

Within the spectrum of the induced voltage in a semicircular
loop, one can distinguish two regions. In the lower frequency
ranges, the rotation effects are less seen in the spectrum. In

Fig. 7. (a) Spectra and (b) time-domain waveforms of measured induced
voltages in a semicircular loop for eight ESD generators at 0◦ of revolution
angle.

the higher frequency ranges, we observe strong variations due
to the angle of the rotations. For “Generator a” and a 10-cm
loop distance, the transition occurred at about 700 MHz; other
generators showed transition frequencies between 250 and
800 MHz.

This can be explained as follows. In the lower frequency
ranges, the induced loop voltage is dominated by the fields from
the discharge current that is not affected by rotating the ESD
generator. The higher frequency components are caused by the
relay that initiates the ESD pulse in the contact mode. The volt-
age collapse time in the relay is less than 100 ps. Thus, a pulse
forming network is needed to shape the discharge current into
a standard waveform [17]. The currents flowing on this pulse
forming network, the relay, and the metallic structures in prox-
imity are not symmetric. Therefore, the currents within the ESD
generator will generate nonsymmetric transient fields, while the
discharge current flowing through the discharge tip generates
the symmetric transient field around the ESD generator. This
is valid for the lower frequency range labeled “symmetric ra-
diation” in Fig. 6(a). Fig. 7 shows how strong the spectra and
the time-domain waveforms of the induced voltage vary among
different ESD generators. As expected, the variation is larger in
the high-frequency ranges.

Authorized licensed use limited to: University of Missouri. Downloaded on January 14, 2009 at 17:56 from IEEE Xplore.  Restrictions apply.
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C. Electric Fields

A broadband electric field sensor [23] was placed on the
ground plane at a distance of 0.1 m from the discharge point,
and the transient electric fields were measured over 1 ms. The
frequency response of the electric field sensor from 3 MHz to
2 GHz is constant within 1 dB. The ESD generators were held at
four different angles, the same as was measured for the induced
voltage in the semicircular loop. The transient electric fields
also show a variation over rotation angles, but the variation is
not as strong as that of the voltage induced in a semicircular
loop. The electric field sensor has a flat frequency response
from about 2 MHz to 2 GHz, while the loop emphasizes the
stronger varying high-frequency content. Typical waveforms of
the transient electric field are shown in [17].

IV. CORRELATION ANALYSIS

Multiple parameters describe an ESD event starting from
electrostatic parameters like charge up to the gigahertz spectral
components. Only the parameters that determine the severity
need to be regulated by an ESD standard. However, which pa-
rameters should be regulated? During the round robin, we ob-
served the failure levels for a diverse set of EUTs and recorded
parameters that characterize the ESD generators. It is a logical
step to investigate the correlation between the failure levels and
the parameters. We attempted to extract as much general infor-
mation as possible using a large, but far from perfect dataset.

A. Method

To illustrate the principle, let us assume that an EUT is se-
lectively sensitive to only one ESD parameter and let it be the
peak current. If this EUT is tested using a set of ESD generators
that differ in their peak current, then we would observe a dispro-
portional relationship between the peak current and the failure
level. The correlation analysis searches for a linear relationship
between the severity of an ESD generator and the reciprocal
failure level. We quantify this using the correlation coefficient
(−1 ≤ ρ ≤ 1), where 1 indicates the strongest correlation [24].
See [25] for details about these methods.

In reality, matters are more complex. A weighted combina-
tion of these parameters determines the failure level of an EUT.
However, the weighting factors are EUT-dependent. For exam-
ple, one EUT may not react at all to spectral components higher
than 100 MHz, but another may have a shield that can only
be penetrated by spectral contents higher than 2 GHz. Also,
the parameters are not mutually independent. For example, the
distributed current derivative over all conducting parts of an
ESD generator causes the transient magnetic field. The current
derivative at the tip of the generator contains only a fraction
of the transient field greater than 1 GHz. But this derivative is
certainly a part of those currents that cause the transient field.
Thus, both parameters are related. A similar argument is valid
for other parameters.

B. Extracting ESD Parameters

The underlying disturbance model assumes that an EUT fails
if the peak noise level induced into some circuit exceeds a certain

threshold level. The noise is caused by one or a combination of
many ESD generator parameters. For the correlation analysis,
various peak-to-peak values of ESD parameters were extracted
from the measured data: discharge currents, induced voltages in
a semicircular loop, and electric fields.

Another simplification is that we assume that there are no
cumulative effects. These effects could be of electrical nature,
e.g., heating, or from the lack of charge removal from previous
pulses or software related, like the accumulation of bit errors.

The transient fields will induce noise in the loop- or
monopole-like structures. Based on this and previous publica-
tions [17], the standardization committee introduced the voltage
in a ground-plane-mounted semicircular loop as a way to char-
acterize the transient fields of ESD generators [5]. Besides the
simplicity of the test setup, other arguments for including this
specification had been the availability of the data not only on
ESD generators, but also on the human–metal ESD event, which
forms the event that the standard tries to reproduce. Transient
field magnitudes have also been selected as a parameter. How-
ever, they do not describe the nature of the induction process as
well as the voltage induced in a loop.

The problem of the large variation of ESD test results had
been known prior to the round robin, and it initiated the mainte-
nance work on IEC 61000-4-2 that eventually led to the round
robin testing. If we assume a linear relationship between pa-
rameters and the reciprocal failure levels, it is logical to search
for parameters that differ strongly between ESD generators. For
example, test result variations of 1 : 3 had been observed previ-
ously [4], but the peak currents of different ESD generators that
fulfill the standard vary only by ±10%. Thus, the peak current is
not a suitable parameter to explain the observed variation ratio
of 1 : 3.

Immunity problems often occur over very narrow frequency
ranges. This is due to resonances that enhance the coupling
between the field and the circuits. One might expect that the
resonances will increase the sensitivity of the EUTs at specific
frequencies. Such behavior is known from radiated immunity
testing. Is it possible to see indication of the resonant behavior?
At first glance, this does not seem to be easy as pulse testing was
performed. However, the following is possible: each generator
has different frequency content, and the ranking from strongest
to weakest varies with frequency. If, at a selected frequency, the
ranking of generator spectral content matches the EUT failure
level ranking, then this can be understood as an indication of
frequency-selective behavior. It is even better if not only the
nonquantified ranking matches, but also the variation trends of
parameters and the EUT failure levels correlate with each other.

To search for resonance-enhanced correlation, we created
a set of parameters by bandpass filtering. Four sets of such
parameters were created by sweeping the center frequency
and recording the peak-to-peak values at each: IBP(∗), p-p ,
(di/dt)BP(∗), p-p , VLOOP , BP(∗), p-p , and EBP(∗), p-p .

Fig. 8 explains how measured data were processed to ob-
tain the ESD parameters used in the correlation analysis. Also,
Table II describes the symbols that describe the ESD parameters
and data processing.

Fig. 9 illustrates the dramatic variations of VLOOP , BP(∗), p-p ,
while the center frequency of the bandpass filter is sweeping.
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Fig. 8. ESD parameter trees. The shaded circles indicate unfiltered raw data
and the rectangles indicate the data processing introduced in Table II.

TABLE II
GLOSSARY FOR ESD PARAMETERS USED IN CORRELATION ANALYSIS

At first glance, it may look surprising because the values for
most ESD generators are higher in the high-frequency ranges
(>1.5 GHz) than in the low frequency. Owing to the strong high-
frequency oscillations for the first few nanoseconds of discharg-
ing, the high-frequency peak becomes significant after bandpass
filtering.

C. Frequency-Selective Immunity of EUTs

The correlation between the reciprocal failure levels and
the four sets of bandpass-filtered parameters, IBP(∗), p-p ,
(di/dt)BP(∗), p-p , VLOOP , BP(∗), p-p , and EBP(∗), p-p was inves-
tigated for each EUT. To illustrate the results, the two datasets
were compared and are shown in Fig. 10. The correlation be-
tween the failure levels and VLOOP , BP(630 MHz) is shown in
Fig. 10(a), while Fig. 10(b) shows the noncorrelation between
the failure levels and VLOOP , BP(80 MHz), p-p for EUT2. The
positive voltage discharges were performed for both cases. At
630 MHz, a strong correlation is visible, while there is no corre-
lation at 80 MHz between the failure level and the induced loop

Fig. 9. Peak-to-peak values of bandpass-filtered induced voltage in a semi-
circular loop VLOOP , BP(∗) , p -p using eight different ESD generators. See
Table II for ESD parameter symbols.

Fig. 10. Example of (a) correlation and (b) noncorrelation between ESD
parameter and failure level.

voltage. This indicates that a resonance within EUT2 strongly
influences the robustness of the EUT.

Most EUTs show the similar correlations at different frequen-
cies. Cases of correlation (correlation coefficient > 0.7) are sum-
marized in Table III, where the center frequencies that had the
largest correlation coefficient are shown. IBP(∗), p-p is not shown
in the table because it is directly correlated to (di/dt)BP(∗), p-p .
The example just discussed is shown in Fig. 10(a) and is marked
by a “∗” in the Table III.

The rows in the table are sorted such that the center frequen-
cies for VLOOP , BP(∗), p-p are in ascending order. In general,
VLOOP , BP(∗), p-p shows the correlations in a wide frequency
range, while either (di/dt)BP(∗), p-p or EBP(∗), p-p shows
correlations around the frequencies where VLOOP , BP(∗), p-p
correlates.

The data in Table III point at a frequency-selective behavior
of the EUT response. This is further supported by experiences
in radiated immunity testing and the plausible argument, where
resonances enhance the coupling between the field and the
circuit. If we accept that resonances increase the variation of
the sensitivity of the EUTs, then we can use this to explain one
of the most surprising results of the round robin test: no ESD
generator was the most severe on most of the EUTs, nor the least
severe. This question is relevant for many reasons, not in the
least that members of the standard committee often ask about the
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TABLE III
EUTS WHOSE FAILURE LEVELS SHOW CORRELATIONS

(CORRELATION COEFFICIENT > 0.7) TO BANDPASSED ESD
PARAMETERS AT SPECIFIC CENTER FREQUENCIES

performance of commercial ESD generators. We had observed
that the spectral density of, for example, the induced loop volt-
age varies strongly over frequency. A generator that is strong at
some frequencies may show weak fields at other frequencies.
The order of severity is a function of frequency and the pa-
rameter observed. Thus, one EUT may be very sensitive to one
generator, because the resonance and the range of strong fields
match. However, it may not react strongly to another generator
that has strong fields, but not in the range of the resonance.

Do we have proof? No, a test that uses pulses of ringing nar-
rowband signals while observing the failure level as a function
of frequency might provide proof. However, such an investiga-
tion was not part of the round robin test. For now, we have to
settle for the plausible explanation that it is strongly supported
by data.

D. Limit of the Correlation Analysis

Correlation does not prove a cause-and-effect relationship.
However, the correlations are supported by a plausible phys-
ical model (e.g., resonances), allowing for cautious conclu-
sions regarding the cause-and-effect relationships. Being able
to perform experiments that monitor internal voltages and cur-

rents, and varying only one parameter may be able to prove the
relationships.

V. CONCLUSION

The system-level ESD round robin test, conducted at three
laboratories, comparing eight generators, showed test result
variations of up to 1 : 3 with 1 : 2 being common. No ESD gen-
erator was the most severe over all of the EUTs, and no one
generator was the least severe.

ESD generator parameters have been correlated to upset lev-
els. Correlation between the spectral content of the ESD genera-
tor parameters and upset levels indicated resonant behavior: The
narrowband spectral content of the voltage induced in a semicir-
cle loop correlated well with upset levels at selected frequencies
for many EUTs.

The data indicate that the resonance-enhanced field coupling
is the dominate failure mechanism. The transient fields of ESD
generators strongly contribute to the repeatability problem of
system-level ESD testing. Better test repeatability will only
be achieved by properly controlling the transient field during
discharge.
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