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Prediction of effective permittivity of diphasic dielectrics using an
equivalent capacitance model
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1Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla,
Missouri 65409, USA
2Department of Electrical and Computer Engineering, Missouri University of Science and Technology,
Rolla, Missouri 65409, USA

�Received 20 May 2008; accepted 1 July 2008; published online 7 October 2008�

An analytical model based on an equivalent capacitance circuit for expressing a static effective
permittivity of a composite dielectric with complex-shaped inclusions is presented. The dielectric
constant of 0–3 composites is investigated using this model. The geometry of the capacitor
containing a composite dielectric is discretized into partial parallel-plate capacitor elements, and the
effective permittivity of the composite is obtained from the equivalent capacitance of the structure.
First, an individual cell diphasic dielectric �a high-permittivity spherical inclusion enclosed in a
lower permittivity parallelepiped� is considered. The capacitance of this cell is modeled as a
function of an inclusion radius/volume fraction. The proposed approach is extended over a periodic
three-dimensional structure comprised of multiple individual cells. The results of modeling are
compared with results obtained using different effective medium theories, including Maxwell
Garnett, logarithmic, Bruggeman, series, and parallel mixing rules. It is found that the model
predictions are in good agreement with the experimental data. The equivalent capacitance model
may be applied to composites containing inclusions of any geometry and size. Although the method
presented is at static electric field, it can be easily generalized for prediction of frequency-dependent
effective permittivity. © 2008 American Institute of Physics. �DOI: 10.1063/1.2976173�

I. INTRODUCTION

The effective properties of dielectric mixtures have been
investigated for more than 100 years, with the earliest known
reference for prediction of effective dielectric constant of a
mixture being attributed to Poisson.1 Rayleigh calculated the
effective permittivity of a mixture based on spherical or cy-
lindrical inclusions in a rectangular lattice, and his results
provided a connection between the properties of the mixture
and the properties of the inclusions and macroscopic
medium.2 One of the classical and most widely used formu-
lations to calculate effective permittivity of dilute mixtures is
the Maxwell Garnett �MG� theory,3–6 which was first formu-
lated for spherical inclusions.

The Maxwell Garnett theory was also extended for ellip-
soidal inclusions �spheroids, cylinders, and disks�.3 The
theory is also applicable for inclusions of any arbitrary ellip-
soidal shape �spheroids, cylinders, and disks� through intro-
duction of depolarization factors.6,7 However, an arbitrary
inclusion shape cannot be accurately accounted for, other
than by approximation by the closest ellipsoidal shape.8

There have been numerous other models developed to
predict the effective permittivity of composites. To account
for nonellipsoidal shapes, Weiner9 proposed form factors for
inclusions with cylindrical and lamellar shapes. Rushman
and Striven10 used these form factors to explain the impact of
porosity upon the dielectric constant of barium titanate �BT�.

Experimental evidence for the Weiner9 mixing rule and its
applicability to porous dielectrics was confirmed by
Kingery11 in 1960.

Bruggeman’s12 effective medium theory �EMT� is better
suited for denser composites than the MG rule. However,
EMT does not allow for correlation between the inclusions,
i.e., it assumes that each inclusion is surrounded by the same
effective medium.13

The empirically derived logarithmic mixing rule is also
used for description of effective properties of composites.14

In many cases it appears to fit experimental data; however in
some cases it may be fortuitous, as pointed out by Payne.15

This paper is focused on the development of a simple
analytical model to predict the effective permittivity of a
dielectric composite that is valid for any volume fraction of
inclusions, and can be applied to inclusions of any shape.
The model presented herein is based on the discretization of
a dielectric body of any shape into simple parallel-plate par-
tial capacitor elements. By using this approach, actual inclu-
sion shapes can be accounted for. The effective permittivity
is then calculated based on the capacitance of the appropriate
equivalent circuit.

The specific example of this approach presented in this
paper is a geometrically isotropic �spherical� inclusion of
higher permittivity in a host dielectric of lower permittivity.
The host dielectric is a parallelepiped, in particular, a cube.
This structure is called “an individual cell” �or just “a cell”�.
The capacitance of a cell is modeled as a function of the
radius or volume fraction of the inclusion. The approach is
subsequently extended over a periodic three-dimensional
�3D� structure with multiple individual cells. This is analo-a�Electronic mail: patil.sandeep7@gmail.com.
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gous to the extensively studied epoxy /BaTiO3 systems, for
which substantial experimental data are available.16–22 Re-
cently, 0–3 high-permittivity polymer-based composites have
been increasingly investigated for both comparatively low-
energy embedded capacitor technology16–21 and high-energy
density applications for pulsed power capacitors.22

Results of the equivalent capacitance approach that is
developed here are compared with computations based on
the MG mixing theory, Bruggeman’s12 mixing rule, logarith-
mic mixing rule, and recently reported experimental results.
The mathematical formulation for the equivalent capacitance
model is presented below in Sec. II, results for the model are
demonstrated in Sec. III with comparison to the MG model,
and conclusions regarding the utility of the model are pre-
sented in Sec. IV.

II. MATHEMATICAL FORMULATION

A. One individual capacitor cell

A general diphasic slab with a 3D periodic structure of
inclusions is subdivided into individual cells �cubes�, each
containing one inclusion of a higher permittivity surrounded
by a host material of a lower permittivity. Figure 1 shows the
basic building block of the composite and its 3D translation.
The structure that is modeled as an ordered composite.

First, consider an individual cell with a sphere placed at
the center of the cube. The inclusion size is varied from 0.1
to 0.54 �m within a host phase cube with dimension of
1.1 �m. In the present model, it is assumed that both the
inclusion and host are linear isotropic and homogeneous di-
electric materials.

A homogeneous static electric field is applied along the
vertical dimension of the cell. Then, any cell is an individual
capacitor with inhomogeneous contents, and it can be dis-
cretized into parallel and series parallel-plate partial capaci-
tors with capacitances given by

Cp =
�0�pAp

dp
, �1�

where �0=8.854�10−12 F /m is the vacuum permittivity, �p

is the relative permittivity of a dielectric in a partial capaci-
tor, Ap is an area of the partial capacitor plates, and dp is the
thickness of the partial capacitor. The resultant capacitance
of a whole cell can be calculated using an appropriate
equivalent circuit model.

Figure 2 shows how the discretization process is imple-
mented for a basic cubic building block with a spherical

inclusion. This figure also shows a planar projection of the
3D view. The individual cell is divided into partial capacitors
�numbered 1–7�, and the corner capacitors around the sphere
labeled as Cd. An equivalent circuit for this structure is
shown in Fig. 3. Below, the explicit formulas for calculating
these partial capacitances are given. C1 and C2 are the ca-
pacitances on the left and the right sides of the inclusion. If
the structure is symmetrical, C1 and C2 are identical and

FIG. 1. �Color online� Basic building block of a composite sphere enclosed
in a cube and its 3D translation in the x, y, and z directions.

FIG. 2. �Color online� 3D view of discretized diphasic dielectric body and
2D planar view of discretized diphasic dielectric body showing discretiza-
tion pathway for corner shape and inclusion sphere.

FIG. 3. Diphasic dielectric represented by an equivalent circuit.
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linearly decrease as the radius of the inclusion increases.
These capacitances may be calculated according to

C1 = C2 =
�0�h�ac/2 − r�bc

dc
, �2�

where �h is the relative permittivity of the host material, ac

bc, and dc are the length, width, and height of the individual
cell �for the particular case of a cube, ac=bc=dc�, and r is the
radius of the inclusion. The partial capacitances C3 and C4

are associated with the elements located on the top and the
bottom of the inclusion, and their values are calculated as

C3 = C4 =
2�0�h�2bcr�

dc − 2r
. �3�

The partial capacitors C6 and C7 are not seen in this
planar view—they are located in front and behind the sphere,
but can be seen in a 3D view �Fig. 2�. Their values are
calculated as

C6 = C7 =
�0�h�bc − 2r�

2
. �4�

Figure 2 also shows the discretization approach utilized
for the corner shape and inclusion sphere. The capacitance of
the corner capacitor elements is calculated using elemental
slices parallel to the cell’s electrode planes.

These partial capacitors are connected in series, and the
integration over the space of the corners is then used to
evaluate the total capacitance of these volumes �see the deri-
vation in Appendix A�. The total capacitance for all four
corner elements—two bottom and two top �i=1, . . . ,4�—is

Cd =
�0�hr�

2

1

1

� 4

�
− 1

arctan� 1

� 4

�
− 1�

. �5�

To calculate the capacitance of the high-permittivity
sphere, it is convenient to cut it into thin parallel slices and
consider the series connection of these elements, correspond-
ing to the slices. As shown in Appendix B, the integration
procedure yields the capacitance of the quarters of the dielec-
tric sphere C5i

�i=1, . . . ,4�, which is the same as for the total
sphere,

C5 = C5i
=

�0�i�r

2�
0

�/2 d�

cos���

. �6�

To assure convergence of the integral in the denominator,
zero in the integration was substituted by 10−7. Since the
capacitor elements C5, C6, C7, and Cd are all in parallel �see
Fig. 2�, and they are in series with C3 and C4, the equivalent
capacitance for the central region of the cube is

Ceq1 =
1

1

C3
+

1

C4
+

1

C5 + C6 + C7 + Cd

. �7�

This capacitance Ceq1, as shown in Fig. 2, in its turn, is
parallel with the left and right capacitors C1 and C2, and
therefore, the total equivalent capacitance is

Ccell = C1 + C2 + Ceq1. �8�

Then, assuming that a homogeneous dielectric fills the space
between the cell capacitor plates, the effective permittivity
can be calculated from the expression for total capacitance
Ccell of the cell as

�eff� =
Ccelldc

�0acbc
. �9�

The effective permittivity ��eff� � captures the shape of the
inclusion, and there are no restrictions on the inclusion size.
In general, the shape of an inclusion can be arbitrary, al-
though different integration schemes are required. For ex-
ample, ellipsoidal, tetrahedral, and other straight-line geom-
etries would be relatively straightforward, while arbitrary
curvilinear shapes would require special discretization
schemes.

B. N3 individual capacitor cells

The equivalent capacitance model may be extended for
the case of multiple inclusions. Consider a case when there
are N inclusions in the form of spheres along any of three
dimensions of the total capacitor. This means that there are
N3 elemental capacitor cells in the structure under consider-
ation. The capacitor cells in vertical branches are connected
in series, while all the branches are connected in parallel, as
shown in Fig. 4. The capacitance in any branch is

Cbranch =
Ccell

N
. �10�

Because there are N2 vertical branches, the total capacitance
is

C� =
Ccell

N
N2 = NCcell. �11�

where the capacitance Ccell is calculated as in Sec. II A. If the
dimensions of the total capacitor are a, b, and d, then the

FIG. 4. Discretization pathway for N3 capacitor cells.
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dimensions of an individual cell are, respectively,

ac = a/N ,

bc = b/N ,

dc = d/N . �12�

Then, the effective permittivity of an inhomogeneous dielec-
tric inside the total capacitor can be calculated as

�eff� =
C�d

ab�0
. �13�

The effective permittivity of an inhomogeneous dielec-
tric obtained using this method may be compared with the
MG mixing rule results. The simplest formulation is for a
mixture of a host material with relative permittivity �h and
spherical inclusions with relative permittivity �s, as given
by3,4,9

�eff MG 	 �h +
3fs�h��s − �h�/��s + 2�h�
1 − fs��s − �h�/��s + 2�h�

, �14�

where fs=VS /V� is the volume fraction of spherical inclu-
sions in the total mixture and Vs is the volume of inclusion
and V� is the total volume of the composite.

It is also informative to compare the equivalent capaci-
tance model with the formula for the logarithmic mixing
rule, given by

�eff logarithmic 	 Vh log �h + Vi log �i, �15�

and to the formula for the Bruggeman12 mixing rule, given
by

�i − �eff�

�i − �h
=

1 − Vi

�3 �h/�eff

. �16�

Here, Vh and �h are the volume fraction and permittivity of
the host phase, and Vi and �i are the volume fraction and
permittivity of the inclusion phase, respectively.

III. RESULTS AND DISCUSSION

The first calculation is for the capacitance of a cube con-
taining one spherical inclusion placed in the center of the
cube. The inclusion is a high-permittivity dielectric, for ex-
ample, BT, with relative permittivity assumed to be �i

=1900. The cube surrounding the BT sphere is a low-
permittivity phase, for example, with relative permittivity
�h=4 �polyamides, epoxy, etc�. The cube has the following
dimension: ac=bc=dc=1.1 �m. This size is chosen to imi-
tate a real structure of a polymer ceramic dielectric. The
radius of the sphere is varied, and, the volume fraction of the
inclusion is also varied. For this capacitor structure, the
maximum inclusion volume fraction is approximately
52.3%. The electric field is applied in the vertical direction,
as dictated by the equivalent capacitance model outlined
above. The capacitance of this structure is calculated accord-
ing to the formulas presented in Sec. II A. The analytical
software MAPLE 10 was used to carry out the computations
presented below.

C1-C2 : The capacitance of elements C1 and C2 are equal

since both capacitors have the same low permittivity �h, the
same area, and the same thickness. The capacitance data for
both capacitors C1 and C2 as a function of the radius of the
inclusion is plotted in Fig. 5�a�. Capacitances C1 and C2

show a linear decrease as the inclusion radius increases. This
is an expected result since with increasing inclusion radius,
there is a linear decrease in the area of the capacitor plates,
while its thickness remains constant.

C3-C4 : The capacitances of capacitors C3 and C4 are
also equal. These partial capacitors located on top and bot-
tom of the spherical inclusion have the same area and thick-
ness. The capacitance data for both capacitors C3 and C4 as a
function of radius of the inclusion is plotted in Fig. 5�b�. It is
seen that when the inclusion radius is small �r�0.2 �m�,
there is a minimal increase in capacitance ��0.01–0.1�
�10−14 F�. This is because the area of the capacitor “plates”
remains small �area�0.4 �m2�, while the thickness of the
dielectric remains relatively high �d	0.6 �m�.

After the radius becomes approximately 1
3 of the cell

dimension, the area of the capacitor increases, the thickness
concurrently decreases, and there is a rapid increase in ca-
pacitance as 
r3. It is observed that beyond the inclusion
radius of 0.53 �m, there is a rapid increase in the capaci-
tances of C3 and C4. When inclusions start touching the top
and bottom of the host phase cube, the corresponding capaci-
tances go to infinity. In computations, it is assumed that the
thickness of the dielectric layers for C3 and C4 is at least 1%

FIG. 5. �Color online� Magnitude of capacitances of capacitor elements C1,
C2, C3, and C4 as a function of inclusion radius �r�.
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of the inclusion radius. Therefore, this model is applicable
until the inclusion radii are about 0.5445 �m.

Cd : The capacitance of the corner elements depend on
the shape of the inclusion. There is a linear increase in this
capacitance with inclusion radius, as shown in Fig. 6�a�. This
capacitance Cd becomes significant when the radius of the
inclusion increases.

C5 : The capacitor C5 is constituted of the high-
permittivity phase. The capacitance data for capacitor C5 as a
function of inclusion radius are plotted in Fig. 6�b�. There is
a linear increase in C5 as the radius of the inclusion in-
creases, which is an expected result.

C6-C7 : The capacitances C6 and C7 located in front and
back of the inclusion show a linear decrease in the capaci-
tance with increasing inclusion radius, similar to the behav-
ior of C1 and C2.

Figure 7�a� shows that capacitance C6 �and C7 as well�
decreases as a function of inclusion radius. This is because
the area of the corresponding capacitor plates decreases lin-
early as the inclusion radius increases.

C� : The total equivalent capacitance for the diphasic
composite as a function of inclusion radius is plotted in Fig.
7�b�, and it shows a trend similar to that for the partial ca-
pacitances C3 and C4 since at larger inclusion radii �r

	0.4 �m� these two capacitances dominate.
The effective permittivity of the composite, calculated

through the total capacitance, is illustrated in Fig. 8. Accord-
ing to the equivalent capacitance model, the predicted effec-
tive permittivity for the inclusion volume fraction range of

FIG. 6. Magnitude of capacitances of capacitor elements Cd and C5 as a
function of inclusion radius �r�.

FIG. 7. Magnitude of capacitances of capacitor elements C6, C7, and C� as
a function of inclusion radius �r�.

FIG. 8. Effective permittivity of composite predicted by equivalent capaci-
tance model as a function of inclusion volume fraction for N=1 inclusions
and its comparison to predictions of the MG mixing theory, the Bruggeman
�Ref. 12� mixing rule, and logarithmic mixing rule.
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0%–35% increases from 4 to 15. The predicted permittivity
for inclusion volume fraction variation from 35% to 52%
increases from 15 to 80. When the radius of the spherical
inclusions reaches approximately 1

3 of the cell dimension, the
rate of the effective permittivity increase becomes greater.
The calculated maximum permittivity is around 80 for the
volume fraction of approximately 52% and the dielectric
contrast �ratio of permittivity of inclusion phase to permittiv-
ity of host� of 300.

Figure 8 also shows the effective permittivity as a func-
tion of inclusion radius for the same composite calculated
using the MG mixing rule, logarithmic rule, and
Bruggeman12 formulation. The trend shown by the equiva-
lent circuit capacitance model is similar to that for the other
mixing rules. However the slope of the dependence equiva-
lent capacitor model becomes steeper as the inclusion radius
approaches its limiting point �r�0.54 �m�. The equivalent
capacitance model results lie between the logarithmic rule,
which overestimates the effective permittivity, and the
Bruggeman model predictions.

The equivalent capacitance model was also tested for
multiple inclusions as opposed the single inclusion case re-
ported above. A composite system with the same host cube
dimensions but with 1000 high-permittivity inclusions is
considered. The total capacitor dimensions are the same as in
the previous example with one spherical BT inclusion in host
�a=b=d=1.1 �m�. In the equivalent capacitance model, the
total structure contains 1000 individual cells.

The maximum radius of each inclusion is ten times
smaller than that in the previous single cell example. In this
particular case, the inclusion size is reduced, and it varies
from 10 nm to a maximum of 54 nm, as opposed to the
earlier case when the single inclusion size varied from 0.1 to
0.54 �m. This structure is an ordered nanoscale composite.
It has been verified that the predictions of the equivalent
capacitance model for the multiple inclusion case remain
identical to the single inclusion case. The model suggests
consistent results for analogous volume fraction, no matter
how many inclusions of the same shape are present. The
results are independent of inclusion size, but they capture
inclusion shape.

In a parallelepiped with a homogeneous static electric
field applied along one of its dimensions, there is a continu-
ous linear variation of the electrostatic potential along this
direction.23 That is why cutting the structure into parallel-
plane slices and applying rules for calculating equivalent se-
ries and parallel capacitances allows for taking into account
electric field present within this slices. The model satisfies all
boundary conditions for electric field and potential between
the partial capacitor elements. The accuracy of these compu-
tations depends on how fine the discretization is, and the
discretization is defined by the shape of inclusions.

The equivalent capacitance model is validated by com-
parison with experimental data for two different diphasic di-
electric systems, both of which contain BT in a polymeric
host �i.e., similar dielectric contrast and volume fractions to
those studied�. It should be pointed out that the permittivity
of BT powder is highly sensitive to the grain size24–28 It has
been reported that coarse-grained BT �20–50 �m� shows

�r=1500–2000 at room temperature, whereas the permittiv-
ity for fine-grained BT �
1 �m� is 3500–4000. As the grain
size decreases below 1 �m, the permittivity will most likely
be around 950–1200.

The first system experimentally investigated by Chiang
and Popielarz29 contains cyanoresin as a host phase ��h

=21� and BT with grain size less than 2 �m as the inclusion
phase. The exact data on inclusion permittivity have not been
reported,29 so the BT permittivity is assumed to be approxi-
mately �i=3800, in accordance with the permittivity of BT
with grain size less than 2 �m. In this case, the dielectric
contrast is 180. The volume fraction of the inclusion phase in
the equivalent circuit model is varied between 0 and
52 vol %. Figure 9�a� shows the experimental effective per-
mittivity as a function of the inclusion volume fraction for
this system, as well as the dependencies calculated based on
different models.

The second experimental system,30 which the equivalent
capacitance model is compared, contains polypropylene as a
host phase ��h=2.2�, and BT as an inclusion phase ��i

=3800�. In this case, the dielectric contrast is 
1700. Using

FIG. 9. �Color online� Effective permittivity of the diphasic composite as
predicted by the equivalent capacitance model and its comparison to experi-
mental data with host phase permittivities of 21 and 2.2.
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these parameters, the effective permittivity as a function of
the inclusion volume fraction is shown in Fig. 9�b�.

The computations based on the equivalent capacitance
model agree with the experimental data. The first set of ex-
perimental data for inclusion volume fraction less than 40%
has the discrepancy of less than 15% �data of Ref. 29, seen in
Fig. 9�a��. As seen Fig. 9�b�, for the 40% inclusion volume
fraction the maximum discrepancy does not exceed 25%.

The equivalent capacitance model agrees satisfactorily
with experimental data. The equivalent capacitance model
also agrees well with the Bruggeman12 predictions, espe-
cially for the first case of the lower dielectric contrast. The
equivalent capacitance model provides a better fit to the ex-
perimental results than the MG and logarithmic mixing rules.
The discrepancy between experimental data and the model
prediction can arise from numerous factors. Some of the rea-
sons are the following. The equivalent capacitance model has
been developed for an ordered system, while the real-world
composites have inclusions randomly dispersed in the host
phase. Although the reported experimental systems are for
0–3 composites, the actual inclusion shape in these compos-
ite might not be exactly spherical.

An equivalent capacitance model has also been applied
to model diphasic structures, in which the inclusion volume
fraction is higher than that in the previously considered cases
�Vf �90%�. The results of modeling using the equivalent ca-
pacitance model have been compared with the results of two
known mixing rules: series and parallel mixing.1 These two
models were used by Payne1 to study the effective permittiv-
ity of real-world composites, such as liquid phase sintered
BT. The composites in these models are represented as lay-
ered structures, either series or parallel, depending on the
ratio of permittivities of phases. If the inclusion phase has a
significantly higher permittivity than the host �dielectric con-
trast 	10�, a series mixing rule may be used to predict the
effective permittivity of the composite due to the local elec-
tric field behavior. If the inclusion phase has a lower permit-
tivity than the host, a parallel mixing rule may be used.

Figure 10�a� shows a comparison of the predicted effec-
tive permittivity of a dielectric composite as a function of

inclusion volume fraction for the series mixing rule and
equivalent capacitance model. The system modeled in this
case is a diphasic mixture of titania ceramics ��1=100� con-
taining intergranular boundary phase of aluminosilicate ��2

=8�. The second system considered is a diphasic mixture of
TiO2 ��1=100� and Mg2TiO4 ��2=22�. This system is mod-
eled using the parallel mixing rule, which is also compared
to the equivalent capacitance model in Fig. 10�b�. The pre-
dictions of the equivalent capacitance model match the series
and parallel mixing rules for the appropriate composite struc-
tures.

The series and parallel mixing rules represent limiting
cases of the more general equivalent capacitance model. This
implies that the equivalent capacitance model may be used to
describe effective permittivity of a wide range of diphasic
dielectric microstructures.

To further validate the basic fundamental idea of equiva-
lent capacitance model, predictions for effective permittivity
have been tested based on the direction of discretization. It is
found that effective permittivity predictions are independent
of the direction of discretization �Appendix C�. The equiva-
lent capacitance model can also account for the inclusion
orientation and high aspect ratio inclusions. A demonstrative
example is shown in Appendix D.

In this publication, equivalent capacitance model is pro-
posed for ordered composites. The similarities and differ-
ences between the macroscopic behavior of ordered and ran-
dom composites are ongoing areas of research. It is
imperative that future studies include simulations of random
inclusion geometries. These studies could be achieved by
consideration of a 3D array of cubes representing the host
phase. By using probability theory, it is possible to allocate a
particular probability of cells filled with inclusions as op-
posed to cells that are empty. Thus, a random composite
could be analytically created and modeled. The equivalent
capacitance/impedance model could then be applied for
evaluating the effective properties of the composite and com-
pared with ordered systems and real-world systems.

The study of dielectric composites has been, unfortu-
nately, divided between theorists and experimentalists. There
is a need for a unified approach toward examination of com-
posite electrical properties. Many investigators continue to
apply effective medium theories and other analytical models
without being cognizant of the fact that the relevance of
these models, fitted to one data set, may not be applicable to
other material or microstructural systems. This issue is com-
plicated by the fact that the permittivity of the inclusion par-
ticle is a function of particle size, and this is often not mea-
sured, or is unknown. This results in the use of permittivity
values that best fit the results. Theorists on the other hand
continue to compare their mixing rule approaches with other
models and bounds and not with experimental results. A joint
approach needs to be adopted that would look at the follow-
ing issues:

•measurement of inclusion particle size distribution,
•measurement of slurry properties and, thereby, deduction
of inclusion phase permittivity,
•impact of dispersant on composite polarization response,

FIG. 10. �Color online� Comparison of effective permittivity predictions of
series and parallel mixing rule with equivalent capacitance model.
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particularly at the interface between the particle and host
phase, and
•incorporation of these data into mixing models for both
ordered and random systems to predict effective
properties.

At this point, it is imperative to be able to objectively
analyze the equivalent capacitance model and be able to
identify its strengths and limitations. A key feature of this
model is its independence of the inclusion size limitations
associated with traditional mixing theories and the ability to
uniformly apply this mixing theory to any composite dielec-
tric architecture �0–3, 2–2, 1–3, and 3–3�. The equivalent
capacitance/impedance model developed has also been ex-
tended to complex geometries �high aspect ratio inclusions�
and high volume fractions of high phase permittivity sys-
tems. The advantage of equivalent capacitance model is that
it is a unique approach to take into account shape character-
istics of the inclusion. It avoids reliance on approximating
the shape to give approximate shape factors. This results in
accurate accounting for the shape of inclusion. Although this
aspect is its strength, it also necessitates developing algo-
rithms for complex shapes. This would take this mixing
method from realm of being an analytical tool toward nu-
merical methods, which was not the intention of this research
work from the outset.

It is also important to acknowledge that the equivalent
capacitance model does not take into account interfacial po-
larization, and therefore, comparing model predictions with
experimental results in which interfacial contributions are
present might not be the best approach to validate the model.
Hence, a dual approach of comparing model predictions with
experimental data and also with other mixing theory has
been adopted.

IV. CONCLUSIONS

An equivalent capacitance model to estimate the static
effective permittivity of a composite mixture based on dis-
cretizing a dielectric body into partial capacitor elements was
presented. The model was demonstrated for a system consist-
ing of high-permittivity spherical inclusion�s� in a cube of a
lower permittivity phase �e.g., a 0–3 composite�, as well as
for a periodic system of such individual cells. The predic-
tions of the equivalent capacitance model agree well with
experimental data obtained from the literature. The results of
computations show that the classical MG and equivalent ca-
pacitance models diverge at inclusion volume fractions
greater than approximately 10% since the MG model is valid
for only dilute mixtures. The present model based on dis-
cretization of the dielectric volume has no inherent restric-
tions on inclusion volume fraction, size, or shape, and is
applicable to any structure subjected to an applied homoge-
neous static electric field.

Effective permittivity predictions by the equivalent ca-
pacitance model match the limiting case series and parallel
mixing rules. This implies that the equivalent capacitance
model is applicable to a wide range of composite microstruc-
tures. Extension of the equivalent capacitance model to pre-
dict frequency-dispersive relative permittivity of composites

has also been developed by including loss in the model, as-
signing partial resistances along with the partial capacitances
�RC circuits�. This extension of the model is described in a
separate paper. The equivalent capacitance model may also
be extended to the case of randomly dispersed inclusions.
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APPENDIX A: CALCULATION OF THE CORNER
CAPACITANCE

Consider the corner capacitor elements, as shown in Fig.
11. Their dimensions are characterized by parameters b and
d. b=2r is equal to the diameter of the sphere, as the cube
dimension in which the inclusion sphere is enclosed. d is the
thickness of the plates. The angle � is measured from the
horizontal direction, and d� is an increment.

FIG. 11. �Color online� 3D views of the corner capacitor element and ver-
tically cut section of inclusion sphere and corners detailing the discretization
process for calculating the corner capacitance value.
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The area of the corner capacitors can be calculated using
3D visualization, as illustrated in Figs. 11 and 12. The area
of the discretized corner plate can be calculated from Fig. 12.
Thus, an expression for the area of the discretized corner
capacitor plate may be written as

S = 2r2 −
�r2 cos2 �

2
. �A1�

From the triangle � EDO, the length ED is

l�ED� = sin�d�� . �A2�

As the angle d� is very small,

l�ED� � rd� . �A3�

From the triangle � ECD, the incremental thickness dh of
any discretized plate can be found as

dh = l�EC� = r cos �d� . �A4�

The incremental capacitance of every corner plate is calcu-
lated as follows:

dCi =

�0�h�2r2 −
�r2 cos2 �

2


r cos �d�
. �A5�

All the discretized corner capacitors are arranged in series
and therefore the equivalent capacitance of the corner ele-
ments is given by the following expression:

1

Cd
=

1

C1
+

1

C2
+ − − − +

1

Cn
=

1

�i=1

n 1

Ci

=
1

�
0

�/2 1

dCi

.

�A6�

Therefore, the corner capacitance is calculated by the expres-
sion shown in Eq. �A6�,

Cd =
1

� 1

dCi

=
1

2�
0

�/2 d sin �

�4 − ���0�hr + ��0�hr sin2 �

.

�A7�

By substituting ���0�hr sin �=X and A2=�0�hr�4
−�� /���0�hr results in the expression below,

Cd =
1

2�
0

�/2 dX

A2 + X2

=
�0�hr�

2
·

1

1

� 4

�
− 1

arctan� 1

� 4

�
− 1�

. �A8�

APPENDIX B: CALCULATION OF THE CAPACITANCE
OF DIELECTRIC SPHERE

A dielectric sphere inside a parallel-plate capacitor with
voltage applied to its top and bottom plates is discretized by
horizontal slices of the sphere, as shown in Fig. 13. Let us
consider just a quarter of the sphere shown in Fig. 13.

The distance AC, which is the radius of the slice, is
labeled as qi, and the incremental distance is

�qi = qi+1 − qi. �B1�

Angle �AOF=�, and the increment of the angle
�AOB=d�. From �AOB, it is seen that

sin d� =
l�AB�
l�AO�

. �B2�

Since �AOB=d� is very small,

l�AB� = r sin�d�� � rd� . �B3�

�AOF and �CAO are equal, as they are internal alternate
angles, and

�CAO + � OAE = 90 ° ⇒ � OAE = �90 ° − �� . �B4�

Then,

�CAO + � EAB = 90 ° . �B5�

By substituting �OAE of Eq. �B4� into Eq. �B5�, one can get

�EAB = � . �B6�

From �AEB, one can find the thickness of the individual
discretized plate d,

FIG. 12. �Color online� Sectional front and top views of the inclusion sphere
and corner elements to explain mathematics of the discretization process.

FIG. 13. Vertically cut section of inclusion sphere detailing the discretiza-
tion process for calculating the capacitance value of inclusion dielectric
sphere.

074108-9 Patil et al. J. Appl. Phys. 104, 074108 �2008�

Downloaded 03 Dec 2008 to 131.151.26.23. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



cos � =
l�AE�
l�AB�

. �B7�

Therefore, the thickness of the discretized capacitor is given
by

d = r cos �d� . �B8�

Lengths OH and AC are

l�AC� = l�OH� = qi. �B9�

From the triangle �OEH, it may be determined that

qi = l�OH� = r cos � . �B10�

Only half area of the discretized plate is taken into account
as the sphere is divided into four quarters. The area of the
discretized capacitor plates is given by

area = ��r cos ��2. �B11�

The capacitance of the discretized plates can be calculated as

Ci =
�0�i��r cos ��2

2Rd� cos �
. �B12�

The inverse value is

1

Ci
=

2d�

�0�i�r cos �
. �B13�

The total capacitance of the quarter of the sphere is calcu-
lated as a series capacitance, so

1

C1/4
=

2

�r�0�i
�

0

�/2 d�

cos �
. �B14�

Finally,

C1/4 =
�r�0�i

2�
0

�/2 d�

cos �

. �B15�

This capacitance C1/4 is the capacitance of the quarter of the
sphere, but it is also a total capacitance of the whole dielec-
tric sphere since two left hand capacitances are in series, two
right-hand capacitances are also in series, and they are con-
nected together in parallel,

C5 = C1/4. �B16�

APPENDIX C: DIRECTION OF DISCRETIZATION
The equivalent capacitance model relies on its ability to

discretize a diphasic composite body to predict the effective
properties of composite. In order to validate the equivalent
capacitance model, demonstrating that the model predictions
are independent of the direction of the discretization is re-
quired. Two discretization pathways were identified to test
the equivalent capacitance model. The first strategy is a hori-
zontal discretization pathway and the second is a vertical
discretization approach. Two-dimensional views of these dis-
cretization schemes are presented in Fig. 14. As anticipated
based on physical principles, it was found that the predic-
tions of effective permittivity for both cases of horizontal as
well vertical discretizations were similar. However, the inte-

gration schemes employed for the calculation of the corner
capacitances lead to minor discrepancies at low inclusion
volume fractions.

The effective permittivity predictions for a system of
host phase permittivity of 4 and an inclusion phase permit-
tivity of 1900 as a function of inclusion volume fraction are
shown in Fig. 15. The primary condition that needs to be
satisfied for predictions of the equivalent capacitance model
to be independent of the discretization approach is that the
permittivity of each phase is isotropic, as illustrated in the
following equation:

��x,y,z� = �x�x� · �y�y� · �z�z� . �C1�

APPENDIX D: ORIENTATION DEPENDENCE OF
PERMITTIVITY

Many experimental studies have been done regarding the
impact of high aspect ratio of inclusions on the effective
permittivity.31 It is also important to verify that the equiva-
lent capacitance model can account for orientation depen-
dence, as for the case of 1–3 composites. An inclusion with
an aspect ratio of 3:1 was assumed to be present in the host
phase oriented in the vertical direction, and then the inclu-
sion orientation was in the horizontal direction. An enhance-
ment in permittivity is expected for the vertically oriented
inclusion or for the case of spherical inclusions that are
aligned with the applied electric field, as illustrated in Fig.
16. This figure, which presents predictions of the equivalent
circuit model, illustrates that the model can capture particle

FIG. 14. �Color online� Horizontal and vertical schemes of discretizations.

FIG. 15. �Color online� Equivalent capacitance model predictions for effec-
tive permittivity as a function of inclusion volume fraction for both horizon-
tal and vertical discretization approaches.
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orientation effects. This capability of the model illustrates
one of the benefits of the equivalent capacitance approach
that has been developed compared to simple mixing rule
methods. These methods are typically limited to predictions
of volume fraction effects and are incapable of predicting
particle orientation effects.
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