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A Lower Bound for the Error-Variance of 
Maximum-Likelihood Delay Estimates of 

Discontinuous Pulse Waveforms 

Kurt L. Kosbar, Member, IEEE, and Andreas Polydoros, 
Member, IEEE 

Abstract-A new lower bound is developed for the error variance of 
maximum-likelihood time-delay estimation when the received signal is a 
square pulse, corrupted by additive white Gaussian noise. The bound is 
generated by combining concepts previously developed for a special 
class of stochastic processes, induced by the signal model. For moderate 
signal to noise ratios, the new bound is significantly tighter than previ- 
ously known ones. 

Index Terms-Maximum-likelihood, time-delay estimation, discontin- 
uous signals. 

I. INTRODUCTION 

In numerous applications it is necessary to use wide-bandwidth 
signals to achieve system goals. Two wideband signals that are 
relatively easy to generate are periodic pulse trains and pseudonoise 
(PN) sequences, both modulated by square pulses. These signalling 
formats are used in navigation systems [ 11, Direct-sequence spread- 
spectrum systems [2], and numerous radar applications [3]. To 
operate properly, the receivers in these systems must derive an 
estimate of the time epoch of such a deterministic, discontinuous 
signal after it has been corrupted by a noisy channel. The purpose of 
this correspondence is to develop a new lower bound that limits the 
error variance of the unbiased maximum-likelihood (ML) time-delay 
estimate for systems where a square-pulse signal is a useful model- 
ing abstraction. The result is also a valid lower bound on the mean 
square estimation error of biased estimates. 

Numerous lower bounds on the error variance of time-delay 
estimates have previously been developed [4]-[ 131. These bounds 
can be divided into two classes, based on the continuity of the 
transmitted waveform. Since the physical signals encountered in 
practice are continuous, it is tempting to employ the continuous-sig- 
nal theory and disregard the discontinuous theory as a mathematical 
curiosity that, in the strict sense, is inapplicable. The shortcoming 
with this approach is that the continuous-signal bounds (such as the 
CramCr-Rao bound) can be very loose for wide-bandwidth signals. 
This was demonstrated by Barton and Ward [14], when they exam- 
ined a sequence of bandlimited square pulses. The CramCr-Rao 
bound [4, 51 became trivial as the root mean-square bandwidth 
increased to infinity. This implies that either the CramCr-Rao bound 
is extremely loose in this case, or else the delay-estimation problem 
is singular for discontinuous signals. Previous work has shown 
[4]-[13] that this is not a singular problem by developing nontrivial 
bounds for the discontinuous case. So, even though the discontinu- 
ous-signal bounds do not apply in the strict sense, they can provide 
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a much more reasonable approximation to the true behavior of 
wideband systems than their continuous counterparts. 

In this correspondence, we develop a procedure for identifying a 
tight lower bound on the error variance of the unbiased ML 
time-delay estimate of a square pulse that has passed undistorted 
through an additive white Gaussian noise (AWGN) channel. This is 
done by constructing an appropriate function, whose variance is 
warranted to be less than that of the aforementioned estimator for all 
signal-to-noise ratios (SNR). The procedure is fairly general, in that 
it can incorporate various partial statistics that are available for the 
underlying stochastic process. Here, it is specifically applied to 
available knowledge pertaining to Gaussian processes whose mean 
and autocorrelation functions are triangular. 

Section I1 discusses previously developed bounds that can be 
applied to this problem. It also reviews a related (and popular) 
procedure that approximates, but does not bound, the performance 
of ML estimators. The new bound is developed in Section 111. Since 
it was not possible to express the new bound in closed form, 
examples of numerical evaluations are presented in Section IV, 
where we also confirm the tightness of the bound by Monte Carlo 
simulations. As a particular application, we look at the optimization 
of the pulse-width for a given SNR. A brief appendix summarizes 
the necessary probability density functions (pdf) used in the calcula- 
tions. 

11. PREVIOUS BOUNDS AND APPROXIMATIONS 

Since there has been a considerable amount of research in the 
field of delay estimation, it is useful to briefly survey this work 
before proceeding with the development of the new bound. For 
example, it is well known [14], [I51 that when pulse-type signals are 
transmitted, there is an SNR threshold where the performance 
characteristics of a ML delay-estimator change abruptly. This is 
because at high SNR the estimator will seldom make errors larger 
than the width of the transmitted pulse. Under these conditions, the 
performance of the estimator is strongly influenced by the shape of 
the autocorrelation function, p( T), of the transmitted waveform in 
the neighborhood of the origin, 7 = 0. However, at low SNR, the 
ML estimator will frequently make errors which are larger than the 
pulse width. Then, the shape of the autocorrelation function about 
the origin is not as critical as its width with respect to the total 
uncertainty range. A tight bound or accurate approximation of the 
error variance of the ML estimate must account for both types of 
errors if it is to be useful over a wide range of SNR. One such 
approximation procedure was described by Van Trees [15, pt. I, p. 
2821. The practical importance of such approximations and bounds 
was demonstrated in a recent application to the ranging problem for 
receivers that are subject to significant acceleration and “jerk” 
1161. 

The approximation described in [ 151 applies to continuous, 
pulse-type waveforms. The autocorrelation function of these wave- 
forms must be continuous, and possess a continuous first derivative. 
This method cannot be applied to discontinuous signals, such as a 
square pulse or PN sequence, since their autocorrelation functions 
are triangular, and lack a continuous first derivative. Also, from a 
mathematical standpoint, this procedure results in an approxima- 
tion of the error variance of the ML delay-estimate. In contrast, the 
work of Section I11 provides a strict lower bound on the error 
variance of the unbiased ML delay-estimate for signals with triangu- 
lar autocorrelation functions. Despite these differences, a close 
examination of the approximating procedure of [ 151 can help clarify 
the development of the new bound. 

0018-9448/92$03.00 0 1992 IEEE 
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As previously mentioned, there are two types of estimation 
errors; small errors, those less than the pulse width, and interval 
errors, those greater than the pulse width. Van Trees expressed the 
total error variance, var ( T ) ,  as 

var (?) = Pr (small error) var (7 1 small error) 

+ Pr (interval error) var (7" I interval error), (1) 

where 7" is the difference between the true time epoch of the 
received signal and the estimate generated by the receiver. For 
continuous signals, the first conditional variance in (1) was approxi- 
mated by the CramCr-Rao bound and the second by the variance of 
a uniform distribution. However, as pointed out in the Introduction, 
the Cram&-Rao bound is trivial for the discontinuous signal used in 
Section 111. A second difficulty with (1) concerns the determination 
of Pr (interval error). In (151, this quantity was approximated by 
formulating the delay estimation problem as an M a r y  hypothesis- 
testing problem, where M is the number of orthogonal pulses that 
can be placed in the uncertainty region. This procedure will produce 
an estimate of the probability of an interval error, but is not 
guaranteed to be a lower or upper bound on the true value. This is 
not critical at very low or very high SNR, where the quantity is 
essentially 1 or 0, respectively. However, it is unclear how accurate 
this approximation will be at moderate SNR. As will be shown 
later, this is a particularly critical region when one desires to 
optimize the pulse width for minimum variance at a fixed SNR. The 
bound developed, in Section 111, is valid and reasonably tight at all 
SNR, including moderate values where both types of errors are 
common. 

Numerous other lower bounds have been developed for the error 
variance of the (assumed unbiased) ML delay-estimate. Some of 
these bounds (41-(131 can be applied when the transmitted signal is 
a square pulse of width A :  

At a sufficiently high SNR all of these bounds have the same form, 
namely, 

( 3 )  

where No is the single-sided power spectral density of the AWGN 
and 

is the energy received. The value of the constant Cnorm varies as a 
function of the underlying assumptions made in the development of 
the particular bound. A summary of these values is presented in 
Table I.  As shown in Fig. 1, these bounds diverge at low SNR. This 
graph is for the particular case where there is one pulse of width A 
in the observation interval T ,  with A = T / 3 3 .  The Terent'yev 
bound is tight at high SNR; however it becomes extremely loose at 
low SNR. At moderate SNR there is a substantial difference be- 
tween the greatest lower bound and the simulation results. A facet 
of these bounds that is not evident in the figure, is that all bounds 
monotonically decrease with decreasing pulse width. In contrast, the 
new bound, derived in Section 111, has the following attributes: a) it 
is considerably tighter than present bounds at moderate SNR, b) it 

Uniform Dismbution 

1 \ \  
1 Terent'vev " \\ PBound i 

\ \  I Ibragimov I,, 
Khas'minsku 

10 -6 
Swerling 

10." ' ' \ I\' 

Emor Variance of 
Monte Carlo 

Simulation Results 

0 M.L Estimate 

M.M.S. Estimate 

-10 -5 0 5 IO 15 20 
E/No (dB) 

Fig. 1. Known bounds for a square phase of width T / 3 3  and simulation 
results. 

TABLE I 
BOUND COEFFICIENTS FOR SQUARE PULSES 

Bound CD 

Swerling [7] 0.125 
Ziv/Zakai [8] 0.405 
Manasse [IO] 0.500 

Chazan/Zakai/Ziv [ 1 I]  0.750 
Ibragimov/Khas'minski [ 121 1.250 

Terent'yev [ 131 1.625 

converges to the tightest lower bound at high SNR, and c) it 
suggests that there exists a nonzero pulse width that will minimize 
the variance at any fixed SNR. I; fig 1 

As an aid in determining the tightness of the various bounds, 
lengthy Monte Carlo simulations were performed on a digital com- 
puter. Both ML and minimum mean-square (MMS) estimates, with 
the associated error variances, were calculated. The results of these 
simulations are shown in Fig. 1. As one would expect, the MMS 
estimate is superior at all SNR; however the ML estimate is within 
0.5 dB at all measured points. In the strict sense, the bound derived 
in the next section applies only to the error variance of the ML 
estimate. However the simulation results suggest that the bound is 
also useful as an approximation of the MMS estimator performance. 

111. THE NEW BOUND 

Maximum-likelihood estimation is performed by locating the 
maximum value of the likelihood function A(T) .  When an AWGN 
channel model is used, it is easily shown, (see, for instance [15, 
section 4.2 ( lo l ) ] )  that for open-loop (or batch) estimation 

2 
l n A [ ~ ]  = - / T ' 2  

No -7-12 

( 4 )  

where r ( t )  is the received waveform, T is the unknown delay, 
s(t - 7) is the transmitted pulse delayed by 7 seconds, and T is the 
observation interval - T / 2  5 t I T / 2 .  In practical applications, it 
is often reasonable to assume that the second integral on the 
right-hand side of ( 4 )  is constant for all T. By exploiting the 
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monotonicity of the logarithmic operator, it is possible to find the 
ML estimate, 7ML, from the property 

where 

The function y(7), a linear transformation of the Gaussian random 
process r( Z ) ,  is itself Gaussian. The mean and covariance of y (  7 )  

are 

where 

is the signal energy and 

1 T / 2  
p ( 7 )  = E /  s ( t ) s ( t  - 7) dt 

- T/2 

is the signal autocorrelation function. So, the ML delay-estimation 
problem is equivalent to finding the location of the maximum of a 
Gaussian stochastic process. Unfortunately, the process is colored, 
nonzero-mean and nonstationary, so it is difficult to determine the 
pdf of the random variable (r.v.) 7ML. 

The principal idea presented here is to integrate bounds originally 
developed for similar or other problems [12], [13], [17]-[20] by a 
certain procedure, the first step of which is to carefully partition the 
uncertainty region as follows: For all partitions A , ,  A , ,  . . . , A N  
such that 

N 

U A ;  = [o, 7-1 
i= 1 

it is possible to rewrite (5) as 

While this is true for any N ,  in this analysis we deliberately choose 
N = 3. To simplify the notation in the subsequent discussion, the 
variables A , ,  A , ,  and A ,  will be replaced by A ,  B ,  and C, 
respectively. Thus, the ML estimate must satisfy 

The specific partition chosen here is 

(9) 

and 

depicted in Fig. 2. Let us now define the r.v. x w  as the peak value 
of y (  7 )  in region W ,  x as the location 
of this maximum: ~ ( 7 ~ )  = x w .  Then, (9) is equivalent to 

A max ,E y (  7 ) ,  and 7 

7ML = 7 w  iff x w  2 x y  tl V E  { A ,  B ,  C} . (10) 

Some of the known joint statistics for the r.v.s x A ,  x B ,  x c ,  rA,  
7 B ,  7c are summarized, in reference form, in Table 11. 

In principle, knowledge of the 6-dimensional joint pdf of these 
r.v.'s, along with equations (9) and (lo), would lead to the determi- 
nation of the pdf of the ML estimation error, fML(7). Unfortu- 
nately, such complete statistical information is not currently avail- 
able. However, it is possible to bound the variance of fML(7) by 
the following procedure: Let us consider a collection of conditions 
that fML(  7 )  should necessarily satisfy. For example, two obvious 
conditions are fML(7) 2 0 and 

m 

since fML(7) is a pdf. We will assume that the true delay is zero; 
hence, the symmetry of the problem makes it possible to construct 
an unbiased ML estimator with a symmetric error pdf in I 7 I 5 
T/2. In that case, a third condition is 

Additional conditions will be identified next. Regarding the assump- 
tion on unbiasedness, it is well known [8] that, for batch estimation, 
there exists a bias that is a function of the true value of the delay. 
This bias will increase the second moment of the estimation error of 
the true ML estimator. This will effect the tightness, but not the 
validity of the lower bound generated below. 

The aforementioned collection of conditions define a space G of 
real functions G(7) that satisfy them. Let gJ7)  denote that mem- 
ber of G which possesses the minimum second moment (identical to 
its variance) 

over all functions in G. By the way G is identified, fML(7) E G; 
thus, the second moment of g m ( 7 )  will lower bound the error 
variance of the unbiased ML estimate. Clearly, the more restrictions 
that can be identified regarding fML(7), the smaller the size of G, 
and, hence, the tighter the bound. Such restrictions come about 
from a combination of the established facts of Table 11, along with 
equation (lo), as we indicate next. 

To start with, g ( 7 )  E G should be pdf-like and zero-mean, ex- 
actly as the three obvious conditions dictate. The first nontrivial 
necessary conditions placed on the set G are created as follows: The 
probability that 7ML is in some infinitesimally small interval (Y C A 
is bounded by 
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-Ti?. -A -M2 0 M2 A T/2 

4 I t 

C B A B  C 

Fig. 2 .  Partitioning of the observation interval. 

TABLE I1 
PARTIAL STATISTICS OF THE PROCESS y(7)  FOR PARTITION OF FIG. 2* 

Known Probability Density Function Reference 

f,,(X) Bar-David [ 181 
f x a u s (  x) Bar-David [17] 
f,,(T) Terent'yev [13] 

fXB,JX '  7) Shepp W I  
* Some of the references given in this table have typographical errors, or 

miscalculations. This analysis uses the form of these results presented in the 
Appendix. 

This leads to the condition 

0 5 f,,, (7) I f T A  (7) in the region 7 E A .  (12) 

Similar reasoning for region B will produce the condition 

0 s f M , ( 7 )  I f,,(7) intheregion T E B .  (13) 

Note that the pdf's frA(7) and frB(7) can be evaluated using the 
results of [I31 and 1201 respectively. Thus, the conditions (12) and 
(13) must also be satisfied by all g ( 7 )  E G. 

The subsequent conditions that we create apply to the distribution 
of the probability mass between regions. We show shortly that it is 
possible to find a lower bound, Pk,  on the value of the quantity Pc, 
defined as 

In addition, we note that y ( 7 )  is a zero-mean stationary stochastic 
process in region C, hence, fTC(7) will be uniformly distributed. 
The symmetry of the problem in this region also guarantees that xc 
and rc are independent r.v.'s. Thus, we can restrict G to the set of 
functions that have at least Pk of their mass in region C, and also 
have this mass uniformly distributed over the region A /2 5 I 7 I < 
T/2. It follows that the minimum-variance function g m ( r )  must 
satisfy 

The value of P& can be determined by considering a subset C of 
C. Obviously the peak value in region C must equal or exceed the 

peak value in region C', xc 2 xc,, so 

We now choose C' = U;, Di, where Di are segments of length 
2A, which are separated by A from each other and from the 
combined region A U B.  Fig. 3 illustrates this for 7 > 0. In this 
case, M is the largest integer greater than, or equal to, ( T  - 
2A)/3A. This construction divides y ( 7 )  into M statistically inde- 
pendent segments in C,which are also independent from the seg- 
ment A U B.  Thus, {xD,} are independent identically distributed 
(i.i.d.) r.v.'s, as are {7D,}. We can then proceed and determine P& 
from (16) as follows: 

where Fxw( x)  is the cumulative probability distribution function of 
x w .  It is possible to numerically evaluate P& by using Bar-David's 
1171 results'. The remaining (1 - P,") of the probability mass of 
gm(7)  will be in region A U B.  

Let us now investigate conditions that apply to the distribution of 
the probability mass in region A U B.  We would like to restrict G 
by finding an upper limit on the amount of probability mass that can 
be in region A .  It is possible to identify an upper bound PA; such 
that 

This is done by the following argument: for all a ,  it is true that 

P R [  xA > xB] 5 Pr [ xA > a] + Pr [xB < a ]  

= 1 - ( P r [ x , > a ]  - P r [ x , > a ] )  

I 1 - max (Pr [ xB > a] - Pr [ xA > a]) 
01 

P A t B .  (19) 

Again, the probabilities Pr 1 xB > a] = 1 - Fx,( a)  and Pr xA > 
a]  = 1 - Fx,(a) can be evaluated numerically by using the results 
of Bar-David [18] and Shepp [20]. Thus, G can be restricted to the 
space of functions that have no more than 

of their mass in region A .  It follows after some thought that the 

' The rationale for choosing the length of the Di's to be 2 A  is to conform 

'Any function g(7)  EG with mass in region A less than PA" will 
with the available results in [ 111. 

necessarily have a larger variance than g,(7). 
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A U B  C _ _  
4 - L  

0 A 2A 3A 4A TI2 

Fig. 3. Segmentation of region C.  

minimum-variance function g m ( 7 )  E G must satisfy2 2 

We have now arrived at the final point: We wish to determine the 
function gm(7)  with the smallest second moment in the region 
A U B (it has already been determined in region C by (17)), 
subject to the inequality constraints (12) and (13), and the equality 
(21). This can be solved using linear-programming techniques, and 
is equivalent to the relaxation of integer constraints on the knapsack 
problem [21]. Looking first at region A ,  it is relatively straightfor- 
ward to find the solution as 

where the limit a is found from 

lufTA(7) d7 = -E‘,”. 1 

2 

If P,“ < (1 - P,“), then there will be P,” of the probability mass 
in region A ,  P,“ of the mass in region C, and the remaining 
(1 - P,” - P,“) of the mass will be in region B. Using reasoning 
similar to that used in region A ,  it is possible to show that 

where the limit b is determined from 

L::.( 7 )  d7 = n a x  0, - (1 - P,” - P,“) [ :  

(24) 

. (25) 

Note that, depending on the sign of (1 - P,” - P,“), the integral in 
(25) may have to be set equal to zero; this can be satisfied by setting 
b = A/2. In conclusion, the sought function gm(7)  will have the 
form 

I O ,  

with the constants and functions defined in equations (17), (19), 
(20), (22)-(25) and Table 11. 

IV. NUMERICAL RESULTS AND DISCUSSION 

Unfortunately, it was not possible to find a simpler form for the 
new bound. However, it is possible to evaluate it through the use of 
numerical integration. Note that some of the references used in the 
development of the new bound contained minor errors. Corrected 
versions of the critical equations appear in the Appendix. The 
analysis that leads to these results is presented in greater detail in 
[22]. A sampling of numerical results is presented in Fig. 1, Fig. 4 ,  
and Fig. 5. TKe tightness of the new bound was verified through the 
use of Monte Carlo simulations, as demonstrated in Fig. 1. Note 
that the new bound is considerably tighter than previous bounds at 
moderate SNR. It also has the advantage of converging to the 
greatest lower bound at high SNR. Although no assumptions were 
made concerning low or high SNR regions, note that there is clearly 
a threshold where the estimator performance changes abruptly. 

Fig. 4 shows the new bound for a wide range of pulse widths A .  
The minimum variance obtainable (for any pulse width) is also 
included in this graph. Note that the error variance has been 
normalized with respect to the observation time. If a highly accurate 
estimate is required, the observation time may be very long with 
respect to the pulse width. Although this analysis is based on a 
batch-estimation approach, it can also be used to approximate the 
performance of closed-loop systems with a commensurately narrow 
equivalent bandwidth. In this case, the observation time is related to 
the time constant of the loop, which again may be many orders of 
magnitude larger than the pulse width. At a fixed SNR, there exists 
a nonzero pulse width that produces the minimum lower bound. 
This is consistent with previous observations [15, p. 2801. How- 
ever, some of the previous work in this area has required the SNR 
to be either very high or very low and did not attempt to predict the 
performance in the threshold region. Other work has produced 
bounds that are valid at all SNR [8], [11]-[13]; however, these 
bounds are all monotonically decreasing with decreasing pulse 
width, thus failing to indicate that there may exist an optimal 
pulse-width which will minimize the error variance. The bound 
developed here has the advantage that it is valid at all SNR’s and 
suggests that at every SNR there exists such an optimal, nonzero 
pulse width. This is shown more clearly in Fig. 5. Here, curves are 
parameterized by the channel SNR. For any fixed value of SNR, the 
ratio T/A can be varied to obtain a minimum value of the lower 
bound. As long as the bound is reasonably tight, this optimal ratio 
will produce the lowest normalized error variance E [ ( ? /  T)2]  for a 
ML receiver. For example, if the system has an SNR of 16 dB, then 
the optimal pulse will be approximately 0.003 of the observation 
time. This can also find practical use in choosing pulse widths or 
chip rates in spread-spectrum navigation and communication sys- 
tems. 

V. APPENDIX 

Some of the references used in this work have typographical 
errors or miscalculations. The version of these results that were 
used in this analysis of Section I11 are summarized next. A more 
extensive discussion of these changes appears in [22]. 

In [17], (24) has two typographical errors. The corrected version 
is 

= G 2 ( b , ) G ( b ,  - A , )  - 2A,14(b,)G(b,)  
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I/ I”, - ’Oo0 

5 IO 15 20 
E/No (dB) 

Fig. 4. Evaluation of the new bound. 

This analysis also used (3.13) of [18]. The right-hand side of 
(3.13) used in Section I11 is 

arctan 2- ‘ I 2  1 
1 + exp ( - 2 b ( b  - c)) - 2exp ( -  -(b2 - cz) j ]  = [  2 

+ 2 V ( f i 1 2 b - c l , ~ 1 2 b - c , )  

+ s g n ( 2 b - c ) [ + ( f i l z b - c , )  -11 

- e x p ( - - ( ~ - - C ? ) i  1 

2 

10-10’ ’ ” ” ’ *  ’ ” ” ’ -  ’ ’ ’ ’ , . . ‘  

102 10 lo4 

Observation Time I Pulse Width ( T I  A ) 

Optimization of pulse width at fixed SNR 

b - 2 c ( ,  g ( 2 b  - .I) 

A minor typographical error in [13] caused its (20) to be in error. 
The corrected version of this equation is 

for T > 0. The term for r < 0 is correct as originally published. 
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Tobit Maximum-Likelihood Estimation for 
Stochastic Time Series Affected by 

Receiver Saturation 

John B.  Hampshire, 11, Student Member, IEEE, and 
John W .  Strohbehn, Senior Member, IEEE 

Abstract-In many fields of engineering and scientific research, ran- 
dom processes with infinite dynamic range must be measured by systems 
with finite dynamic range. This paradox leads to receiver saturation, 
which has a profound biasing effect on first- (and higher) order statisti- 
cal estimates derived from time series sampled by the receiver. General 
expressions are derived for the bias and mean-squared error of the nth 
noncentral moment estimator for a random variable (RV) with an 
arbitrary probability density function (PDF), obtained by sampling a 
stationary random process with a saturating receiver. Research results 
from the field of econometrics lead to the development of general 
expressions for a maximum-likelihood parameter estimator that remains 
efficient under conditions of receiver saturation. The so-called “Tobit 
model” is derived in detail for the Rayleigh PDF. Results of the Tobit 
model’s performance under simulated conditions of receiver saturation 
are presented for the Rayleigh, Rice-Nakagami, Lognormal, and Nak- 
agami-M PDF’s (all associated with the two-dimensional random walk 
implicit in the scattering of acoustic, ultrasonic, radio-frequency (RF), 
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and optical transmissions). It is shown that when the (standard) maxi- 
mum-likelihood estimator is efficient for the RV with unlimited dynamic 
range, the Tobit estimator is asymptotically efficient for the RV with 
dynamic range that has been limited by a saturating receiver. Tobit 
estimators are shown to be robust for the RF scattering PDF’s under 
both standard and nonstandard assumptions. Under identical condi- 
tions, method-of-moment estimators and standard maximum-likelihood 
estimators employing sample moment estimates display high mean- 
squared error. 

Index Terms-Censoring, efficiency, maximum-likelihood estimation, 
receiver saturation, Tobit model, truncation. 

I. INTRODUCTION 

Numerous scientific and engineering disciplines deal with the 
sampling of random processes that can be modeled as stationary 
processes with probability density. Often the sample functions ob- 
tained from these random processes have substantial dynamic range, 
which exceeds the dynamic range of the data acquisition instrumen- 
tation (hereafter referred to as the receiver). Stochastic processes 
stemming from RF, microwave, laser, acoustic, and ultrasonic 
transmission/scattering phenomena exemplify such random signals. 
Receivers with finite dynamic range used to measure these processes 
distort the measured signal. Receivers employing logarithmic ana- 
log-to-digital (A/D) converters substantially reduce-but do not 
eliminate-the distorting effects of saturation; furthermore, many 
acquisition systems are restricted to the use of linear converters for 
overriding economic or system integration considerations. 

Receiver saturation can take the form of truncation (whereby all 
data exceeding the receiver’s dynamic range are immeasurable, and 
“lost”) or  censoring (whereby all data exceeding the receiver’s 
dynamic range are “counted” but not measured specifically). Sam- 
ple moment estimates of received data are commonly used as the 
basis for both Maximum-Likelihood and Method-of-Moments pa- 
rameter estimation techniques for hypothetical probability density 
functions (PDF’s) against which sample data are compared. Re- 
ceiver saturation affects these moment estimates and all conclusions 
drawn from them. The general expressions for the biasing effects of 
censoring and truncation on the sample moment estimators for a 
random variable (RV) with arbitrary PDF are substantial-even for 
relatively small amounts of saturation. 

The Tobit (Tobin Probit) model is adapted from the field of 
econometrics as a maximum-likelihood estimator of PDF parame- 
ters for data that have been censored or truncated. A general 
expression for the Tobit estimator is presented. It is shown that 
when the (standard) maximum-likelihood estimator is efficient for 
the RV with unlimited dynamic range, the unbiased Tobit estimator 
is efficient for the censored/truncated RV. The model is proffered in 
detail for the Rayleigh PDF; its efficiency is confirmed, independent 
of the degree of truncation/censoring. Results from the application 
of Tobit estimation to simulated data with Rayleigh, Lognormal, 
Rice-Nakagami, and Nakagami-M PDF’s are shown to exhibit 
very low mean-squared error as well. Finally, the limitations and 
computational complexities of the Tobit estimator are discussed. 
The reader who seeks detailed derivations of the following formulae 
should refer to Appendix 1 of [l] for the general Tobit model, and 
Appendixes 2-5 of [l] for PDF-specific Tobit models. 

11. MOTIVATION 

The motivation for this work stems from the authors’ investiga- 
tion of the effects of acute heart disease on the ultrasonic scattering 
properties of canine and human myocardium (heart muscle tissue). 
Establishing a link between the scattering properties of myocardium 
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