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FOR THE PAST TWO DECADES, digital design has

focused primarily on synchronous, clocked architectures.

However, because clock rates have significantly

increased while feature size has decreased, clock skew

has become a major problem. To achieve acceptable

skew, high-performance chips must dedicate increasing-

ly larger portions of their area to clock drivers, thus dissi-

pating increasingly higher power, especially at the clock

edge, when switching is most prevalent.

As this trend continues, the clock is becoming more

difficult to manage, causing renewed interest in

asynchronous digital design. Researchers have demon-

strated that correct-by-construction asynchronous para-

digms, particularly null convention logic (NCL), require

less power, generate less noise, produce less electro-

magnetic interference, and allow easier reuse of com-

ponents than their synchronous counterparts, without

compromising performance.1 Furthermore, we expect

these paradigms to allow much greater flexibility in the

design of complex circuits such as SoCs. Because these

circuits are delay insensitive, they should drastically

reduce the effort required to ensure correct operation

under all timing scenarios, compared to equivalent syn-

chronous designs. Also, the self-timed nature of correct-

by-construction SoCs should allow designers to reuse

previously designed and verified func-

tional blocks in subsequent designs,

without significant modifications or

retiming effort within a reused function-

al block. Such SoCs might also provide

simpler interfacing between the digital

core and nontraditional functional

blocks.

One of the first tasks necessary to help

integrate NCL into the semiconductor

design industry is to develop and characterize the key

components of a reusable-design library. Of funda-

mental importance are arithmetic circuits, including the

multipliers we describe in this article and the ALUs we

described elsewhere.2 Here, we present 4-bit × 4-bit

unsigned multipliers that we designed using the delay-

insensitive NCL paradigm. They represent bit-serial, iter-

ative, and fully parallel multiplication architectures. The

figures depicting each multiplier component are avail-

able at http://www.ece.umr.edu/~smithsco.

NCL overview
NCL is a self-timed logic paradigm in which control is

inherent in each datum. NCL follows the so-called weak

conditions of Seitz’s delay-insensitive signaling scheme.3

Like other delay-insensitive logic methods, the NCL par-

adigm assumes that forks in wires are isochronic.4

Various aspects of the paradigm, including the NULL

(or spacer) logic state from which NCL derives its name,

have origins in Muller’s work on speed-independent cir-

cuits in the 1950s and 1960s.5

Delay insensitivity
NCL uses symbolic completeness of expression to

achieve delay-insensitive behavior. A symbolically com-
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plete expression depends only on the relationships of the

symbols present in the expression without reference to

their time of evaluation.6 In particular, dual- and quad-

rail signals or other mutually exclusive assertion groups

(MEAGs) can incorporate data and control information

into one mixed-signal path to eliminate time reference.

For NCL and other circuits to be purely delay insensitive,

assuming isochronic wire forks, they must meet the input-

completeness and observability criteria.6 Furthermore,

when circuits use the bitwise completion strategy with

selective input-incomplete components, they must also

meet the completion-completeness criterion.6

Most multirail delay-insensitive systems,3,4,7 including

NCL systems, have at least two register stages, one at

both the input and the output. Two adjacent register

stages interact through request and acknowledge lines

Ki and Ko to prevent the current DATA wavefront from

overwriting the previous DATA wavefront by ensuring

that the two are always separated by a NULL wavefront.

Logic gates
NCL differs from other delay-insensitive paradigms,3,7

which use only one type of state-holding gate, the C-ele-

ment.5 A C-element behaves as follows: When all inputs

assume the same value, the output assumes this value;

otherwise, the output does not change. On the other

hand, all NCL gates are state holding. NCL uses thresh-

old gates as its basic logic elements.8 The primary type

of threshold gate is the THmn gate (1 ≤ m ≤ n). THmn

gates have n inputs. At least m of the n inputs must be

asserted before the output becomes asserted. Because

NCL threshold gates are designed with hysteresis, all

asserted inputs must be deasserted before the output is

deasserted. Hysteresis ensures a complete transition of

inputs back to NULL before asserting the output associ-

ated with the next wavefront of input data. NCL thresh-

old gates may also include a reset input to initialize the

output. Circuit diagrams designate resettable gates by

either a D or an N appearing inside the gate along with

the gate’s threshold. D denotes the gate as being reset

to logic 1; N, to logic 0.

Previous work
Researchers have proposed two approaches to

designing self-timed multipliers.9,10 However, neither of

these multipliers is delay insensitive, so changing fabri-

cation processes requires that the multipliers undergo

extensive timing analysis. Hence, they are not directly

comparable to the delay-insensitive NCL designs pre-

sented here. On the other hand, a 4-bit × 4-bit, delay-

insensitive, 3D, pipelined array multiplier11 is directly

comparable to our designs.

Bit-serial multiplier
Figure 1 shows the logic diagram of the 4-bit × 4-bit

serial multiplier we developed using the NCL paradigm.

This circuit, like all NCL systems, contains a complete

request-acknowledge interface. The multiplier consists

of input-complete NCL AND functions, a half adder, and

full adders.12 Other components include a multiplicand

interface, a multiplier interface, a sequencer, and dual-

rail registers and their associated completion compo-

nents.12

Initially asserting the Reset signal returns the multi-

plier components to their initial values. The circuit pro-

duces the first partial product from the 4-bit parallel

multiplicand input and the multiplier’s least-significant

bit, which is generated by the input-complete NCL AND

functions. The circuit then passes these partial-product

bits to the adders, which initially add the first partial

product to the reset value of DATA0, to produce a com-

bined product along with the least-significant bit of the

product output. Then, the circuit produces the next

three partial products, using the multiplicand along with

each more-significant multiplier bit, and adds them to

the combined product, thus generating one additional

product bit each cycle. At this time, the multiplicand

and multiplier interfaces produce four additional par-

tial products of DATA0, to produce the four most-sig-

nificant bits of the product. Once the multiplier has

produced eight product bits, the inputs to the adders

are again DATA0 because of the four DATA0 partial

products, and the next multiplication is ready to begin.

This architecture has three registers in the feedback

loop so that each adder can feed its sum back to its

respective bit position, as required.7 Two registers

between adders store the initial DATA0 combined prod-

uct and provide the necessary handshaking that allows

the combined product to shift to the right each cycle.

Finally, there is a register between each AND function

and its corresponding adder. Although these registers

are not essential, they increase throughput 75% by

allowing partial-product generation to take place more

independently of the addition circuitry.

Multiplicand interface
The multiplicand interface circuitry initially requests

the 4-bit parallel multiplicand MD used to produce the

first partial product. It then feeds back this multiplicand

three more times to produce the remaining three par-
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tial products, and four more times after that to produce

the four DATA0 partial products, as described earlier.

The multiplicand interface consists of

� an embedded select register, comprised of TH33n

and TH22n gates, to select between the external

input and the internal feedback;

� a set of TH12 gates to combine the external and inter-

nal paths;

� a set of inverting TH14 gates to generate the com-

pletion signal; and

� two additional register stages to complete the three-

register feedback loop.

Sequencer outputs SMDI and SMDF make the selec-

tion between the internal and external wavefronts. SMDI

and SMDF are mutually exclusive, thus preventing simul-

taneous selection of the internal and external wave-
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fronts. The multiplicand interface is input-complete with

respect to the feedback path; thus, it requires feedback

data even when the external input is being selected.

Multiplier interface
The multiplier interface circuitry first requests the

four multiplier bits (MR), from the least to the most sig-

nificant, to produce the four partial products. It then

requests internal generation of DATA0 to produce the

four DATA0 partial products, as described earlier.

The multiplier interface consists of

� an embedded select register, comprised of TH33n

and TH22n gates, to select between the external

input and a generated DATA0;

� a TH12 gate to combine the external and DATA0

paths; and

� an inverting TH13 gate to generate the completion

signal.

Sequencer outputs SMRI and SMRF perform the selec-

tion between the internal and DATA0 wavefronts. SMRI

and SMRF are mutually exclusive, thus preventing simul-

taneous selection of the internal and DATA0 wavefronts.

Sequencer
The sequencer is controlled by completion signals

CMD and CMR from the multiplicand and multiplier

interface circuits. Sequencer outputs SMDI, SMDF, SMRI,

and SMRF select between the wavefronts for both the

multiplicand and multiplier interface circuits. This

sequencer is a 16-stage, single-rail, ring structure with

seven tokens and two bubbles. A token is a DATA wave-

front with a corresponding NULL wavefront. A bubble is

either a DATA or a NULL wavefront occupying more

than one neighboring stage. When Ki becomes a request

for DATA (rfd), the DATA wavefront moves through the

two NULL bubbles ahead of it, creating two DATA bub-

bles in its wake. Likewise, when Ki becomes a request

for NULL (rfn), the NULL wavefront moves through the

two DATA bubbles ahead of it, creating two NULL bub-

bles in its wake. The DATA/NULL wavefront restricts the

forward propagation of the NULL/DATA wavefront for

each change of Ki, limiting the forward propagation to

only the two bubbles. The cycle for the four outputs is

SMDI = 1000000000000000,

SMDF = 0010101010101010,

SMRI = 1010101000000000, and

SMRF = 0000000010101010.

Iterative multiplier
The iterative multiplier’s interface is the same as that

of the bit-serial multiplier, except for the product, which

is an 8-bit parallel output instead of a serial one. Figure 2

shows the logic diagram of the 4 × 4 iterative multiplier. It

consists of a multiplicand interface, input-complete NCL

AND functions, shift circuitry, a carry-save adder, selec-

tion circuitry, an input sequencer, an output sequencer,

a ripple-carry adder, and registers with associated com-

pletion components. The registration stage between the

AND functions and the shift circuitry is not essential, but

it increases throughput 26% by allowing partial-product

generation to take place more independently of the shift

circuitry.

Initially asserting the Reset signal returns the multi-

plier’s components to their initial values. The circuit pro-

duces the first partial product from the 4-bit parallel

multiplicand input and the multiplier’s least-significant

bit, which is generated by the NCL AND functions. The

circuit then passes these partial-product bits to the shift

circuitry, which does not shift the first partial product.

The first partial product is then input to the carry-save

adder, which adds the partial product to the reset value

of DATA0 to produce a row of carries and a row of sums.

These pass through the selection circuitry, which feeds

them back to the carry-save adder for the next iteration.

Subsequently, the circuit produces the next three

partial products, using the multiplicand along with each

more-significant multiplier bit. The shift circuitry shifts

the three partial products left one additional bit posi-

tion in each iteration, and the carry-save adder sums

them. Then, the carry-save adder passes the carry and

sum rows to the 10-bit register in the output circuitry,

while the selection circuitry sends a DATA0 wavefront

to the feedback loop, reinitializing it for the next multi-

plication. Finally, the ripple-carry adder combines the

carry and sum rows from the 10-bit register to produce

the 8-bit parallel product.

Multiplicand interface
The iterative multiplier’s multiplicand interface is the

same as that used in the bit-serial multiplier, but it is con-

trolled differently. In the bit-serial multiplier, the multi-

plicand interface circuitry initially inputs the multiplicand

and then feeds it back seven times to produce four par-

tial products, followed by four DATA0 partial products.

In contrast, the iterative multiplier’s multiplicand inter-

face circuitry inputs the multiplicand and then feeds it

back three times to produce four partial products before

inputting the next multiplicand.
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Shift circuitry
The shift circuitry con-

sists of two levels of logic

that generate a 7-bit par-

tial product consisting of

DATA0 and the 4-bit par-

tial product generated by

the AND functions. The

shift circuitry shifts the

generated partial product

left one additional bit

position in each iteration.

The input sequencer con-

trols the shifting.

Carry-save adder
The carry-save adder

consists of a specialized

circuit that passes the

least-significant bit of the

first partial product to the

selection circuitry, a half

adder, full adders, and a

specialized circuit that

passes the most-significant

bit of the last, or fourth,

partial product to the

selection circuitry. The

specialized LSB circuit

replaces a half adder,

allowing its use in the sec-

ond bit position and

reducing the number of

gates required. This is pos-

sible because the least-sig-

nificant bit of the 7-bit

partial product input can

only be logic 1 for the first

partial product; therefore,

this bit will always be

logic 0 for the remaining

three partial products.

Likewise, the special-

ized MSB circuit replaces

a full adder to reduce the

number of gates required.

This is possible because

the most-significant bit of

the 7-bit partial product

input can only be logic 1
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for the last, or fourth, partial product. Therefore, this bit

will always be logic 0 for the first three partial products,

and the carry-save addition of the first three partial prod-

ucts will never result in a carry into this bit position.

Both specialized circuits are complete with respect to

all their inputs, and together they require four fewer

gates and 98 fewer transistors. The carry-save adder

sends its outputs to both the selection circuitry and the

10-bit register in the output circuitry.

Selection circuitry
The iterative multiplier’s selection circuitry consists

of one level of logic controlled by the output sequencer;

its output feeds back to the carry-save adder. For the first

three iterations, the sum row and carry row simply pass

through the circuit. In the fourth iteration, the circuit gen-

erates a DATA0 wavefront. The circuit is complete with

respect to all sum and carry bits for the first three itera-

tions. It is complete only with respect to the carry-save

adder output, Co(3:2), for the fourth iteration. These bits

are always logic 0 for this iteration and are therefore not

required in the subsequent ripple-carry addition.

Input sequencer
The iterative multiplier’s input sequencer has a sim-

ilar structure to that of the bit-serial multiplier’s

sequencer. However, the iterative multiplier’s input

sequencer is an 8-stage, single-rail ring structure with

three tokens and two bubbles, and it has different out-

puts. This sequencer is controlled by its Ki input; it con-

trols the multiplicand interface with its SMDI and SMDF

outputs and the shift circuitry with its S0, S1, S2, and S3

outputs, which together form a quad-rail signal. The

cycle for these six outputs is

SMDI = 10000000,

SMDF = 00101010,

S0 = 10000000,

S1 = 00100000,

S2 = 00001000, and

S3 = 00000010.

Output sequencer
The output sequencer is the same as the input

sequencer, except for its outputs. This sequencer is con-

trolled by its Ki input. It controls the selection circuitry

with its C0 and C1 outputs, and it controls loading of the

10-bit register in the output circuitry and associated

completion with its S0 and S1 outputs. As a result of using

S0 as an extra input to the input completion component

for this register, the multiplier lets DATA inputs pass to

the ripple-carry adder only when S0 is asserted in the

fourth iteration, in which they are added to produce the

final product output. The cycle for the four outputs is

C0 = 10101000,

C1 = 00000010,

S0 = 00000010, and

S1 = 01010111.

Together, the output sequencer, the TH22 gate, and

the AND gate (in the dotted box in Figure 2) preserve the

multiplier’s delay insensitivity, despite the 10-bit regis-

ter’s accepting DATA only every fourth iteration. With

the initial reset, the 10-bit register is reset to NULL such

that it requests DATA and S1 is reset to logic 1. This asserts

Ki, thus starting the sequencer’s cycle. S0 controls load-

ing of the 10-bit register, and S1 controls masking of the

register’s request signal Ko and mimics the requesting of

DATA/NULL wavefronts for the first three iterations.

S0 is asserted only in cycle 7; therefore, the sum and

carry rows can pass through the 10-bit register only after

the fourth iteration, when the carry-save adder has

added all four partial products. S1 is asserted in cycles

2, 4, and 6 to mimic the requests for DATA and NULL

from the 10-bit register. The AND gate masks the 10-bit

register for the first three iterations because this register

does not receive the DATA wavefronts, which feed back

to the carry-save adder; thus, Ko does not change.

Instead, only the feedback loop controls the output

sequencer and the addition iterations.

S1 is again asserted in cycle 7 to ensure that the 10-

bit register receives the DATA wavefront. This occurs

when Ko becomes an rfn, thus deasserting the AND

gate. S1 remains asserted in cycle 8 to ensure that the

10-bit register receives the NULL wavefront. This

occurs when Ko becomes an rfd, thus asserting the

AND gate and requesting the first iteration of the next

multiplication operation. Next, Ko is once again

masked, because the outputs of the next three itera-

tions do not go to the 10-bit register. Therefore, this

structure retains delay insensitivity in two ways: First, it

ensures that only the feedback loop controls the

sequencer and addition iterations when the interme-

diate results do not go to the output circuitry’s 10-bit

register. Second, it ensures that both the feedback

loop and the 10-bit register control the sequencer and

addition iterations during the fourth iteration when the

carry and sum rows go to the 10-bit register and to the

feedback loop to reset it to DATA0.
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Parallel quad-rail multiplier
Figure 3 shows the logic diagram of a fully parallel,

nonpipelined, 4-bit × 4-bit quad-rail multiplier. Both the

multiplicand input and the parallel multiplier input con-

sist of two quad-rail signals, and the parallel product input

consists of four quad-rail signals. The

request-acknowledge interface includes

Ko to request both the multiplier and the

multiplicand and Ki to acknowledge the

product output. This design consists of

quad-rail multipliers, denoted Q33mul; an

assortment of adders, denoted Q332,

Q322, Q32, Q3D, and Q2D; and four quad-

rail registers at both the input and output,

along with their associated completion

components.

Figure 4 shows a dot diagram of the

quad-rail multiplication operation. It begins with the

parallel generation of all partial products. The multipli-

cation of two quad-rail signals to produce a partial prod-

uct results in two outputs: less-significant signal L and

more-significant signal M. The largest quad-rail × quad-
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rail multiplication is 3 × 3, which results in an output of

9, represented as M = 2, L = 1. M has a range of only 0

through 2, so it is representable by a three-rail MEAG,

instead of a quad-rail signal, thus requiring one fewer

wire. On the other hand, L has the range 0 through 3 and

thus must be represented as a quad-rail signal. The next

three multiplication levels add the partial products in a

Wallace tree fashion. This scheme uses various quad-

rail carry-save adders to take advantage of the reduced

range of the three-rail MEAGs, thus producing the prod-

uct consisting of four quad-rail signals.

This multiplier’s design has a worse-case path delay

of eight gates in the combinational logic and one gate

in the completion logic. For an NCL circuit, we estimate

worse-case throughput as the worst-case data path

delay plus the completion delay, for both the DATA

and NULL wavefronts, which comprise one complete

DATA/NULL cycle. This calculation is equivalent to

twice the sum of the worst-case data path delay and

completion delay. The completion delay is calculated

as Log4 N, where N is the number of dual-rail or quad-

rail signals in a stage’s output register. So in this case,

the completion delay is one and the initial throughput

is (one cycle)/(18 gate delays). However, with a gate-

level pipelining method, we can optimally pipeline it,

using bitwise completion and a maximum stage delay

of three gates.12 In this method, we insert a register

between each level in the dot diagram to increase the

circuit’s throughput from (one cycle)/(18 gate delays)

to (one cycle)/(eight gate delays). If throughput is the

main design concern, however, we should choose the

parallel dual-rail multiplier because it can be pipelined

more finely, with a stage delay of only two gates and a

throughput of (one cycle)/(six gate delays), thus result-

ing in a faster circuit.12

Q33mul
The Q33mul circuitry multiplies two quad-rail sig-

nals, A and B, to produce a two-signal partial product

consisting of the more-significant three-rail MEAG, PPH,

and the less-significant quad-rail signal, PPL. We

ensured that this circuit is input complete by adding

additional terms to the equation for PPL0 such that both

inputs, A and B, are required even when either is logic 0.

The PPL circuitry consists of two levels of logic, and the

PPH circuitry consists of only one level.

Adders
Various quad-rail carry-save adders, which take advan-

tage of the three-rail MEAGs’ reduced range to decrease

gate count and delay, perform the partial-product addi-

tion. A further optimization of the Q3D adder is that it

accounts for the fact that the multiplication of two 4-bit

unsigned numbers results in an 8-bit product; therefore

this adder does not require a carry output. Table 1 lists the

input and output types of the various adders. All adder cir-

cuits discussed here are inherently input complete.

Other multiplier architectures
Two other NCL multiplier architectures are of inter-

est: a fully parallel dual-rail multiplier, and a three-

dimensional pipelined multiplier.

Parallel dual-rail multiplier
The full description and the logic diagram of the fully

parallel, nonpipelined, 4-bit × 4-bit, dual-rail multiplier

using full-word completion appear in another article.12

Both the multiplicand and multiplier consist of four

dual-rail signals, and the product consists of eight dual-

rail signals. This design contains

� NCL AND functions to generate the partial products,

� carry-save adders consisting of half and full adders

to intermediately sum the partial products,

� a ripple-carry adder to produce the final combined

product, and

� eight dual-rail registers at the input and output, along

with their associated completion component, to

provide the necessary handshaking signals.

The multiplier has a worse-case path delay of 10

gates in the combinational logic, but it can be optimal-

ly pipelined using bit-wise completion with a maximum

stage delay of two gates.12 This will increase the circuit’s

throughput from (one cycle)/(24 gate delays) to (one

cycle)/(six gate delays).
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Table 1. I/O specifications for quad-rail adders. Q3

represents a quad-rail signal of range 0 through 3, Q2

represents a three-rail MEAG of range 0 through 2, and D

represents a dual-rail signal of range 0 through 1.

 Output types 

Adder type Input types Carry Sum

Q332add Q3, Q3, Q2 Q2 Q3

Q322add Q3, Q2, Q2 D Q3

Q32add Q3, Q2 D Q3

Q2Dadd Q2, D — Q3

Q3Dadd Q3, D — Q3



Three-dimensional pipelined multiplier
Taubin, Fant, and McCardle developed a dual-rail,

3D, pipelined multiplier to increase throughput by elim-

inating broadcasting and completion trees.11 This archi-

tecture uses gate-level pipelining of Manchester adders,

combined with a 2D cross-pipeline mesh for multipli-

cand and multiplier propagation and partial-product bit

calculation. The structure is like a two-story building

whose second floor sums the partial-product bits gen-

erated by the first floor. The first floor also propagates

the multiplicand bits in the y direction and the multi-

plier bits in the x direction, thus producing the partial-

product bits, which propagate in the z direction. The

second floor consists of Manchester adders connected

in carry-save fashion, which sum the partial-product bits

and propagate the carry bits in the x direction and the

sum bits in the y direction. The completion signals are

local and move in directions opposite those of the data.

Taubin, Fant, and McCardle’s multiplier is a 4-bit ×
4-bit signed multiplier, so we designed an unsigned ver-

sion to compare with the other 4-bit × 4-bit unsigned

multipliers discussed here. Also, Taubin, Fant, and

McCardle’s multiplier uses a different technology

library, further necessitating our redesign.

Simulation results
We simulated the circuits compared here using a 0.5-

micron CMOS process operating at 3.3 V. Table 2 sum-

marizes the characterizations of the various multipliers

in terms of speed, area, and power. Gate count is one

measure of area; however, because NCL gates vary great-

ly in size (from two transistors for an inverter to 26 tran-

sistors for a TH24 gate), transistor count provides a better

means of comparison. Also, because NCL circuits are

delay insensitive, speed is data dependent; therefore, we

used average cycle time, TDD, for comparison. We cal-

culated TDD as the arithmetic mean of the cycle times cor-

responding to all 256 possible pairs of input operands.

Furthermore, we calculat-

ed average power per

operation, PDD, for the non-

pipelined dual-rail and

quad-rail multipliers to

compare their encoding

schemes. We did this by

running a Spice simula-

tion of both designs per-

forming three randomly

selected multiplication

operations, calculating the

total power for these operations (subtracting reset

power), and then dividing the total power by 3.

Note that the average cycle time for the nonpipelined,

parallel, dual-rail multiplier is less than that of the non-

pipelined, parallel, quad-rail multiplier, even though the

worse-case delay is less for the quad-rail version. The rea-

son is that average cycle time is based on average-case

delay, not worse-case delay; and the dual-rail version has

a smaller average-case delay because of the ripple-carry

adder’s average-case logarithmic behavior. Also, the

quad-rail multiplier requires less power per operation

than the dual-rail version because there are half as many

signal transitions per operation for the quad-rail multi-

plier (that is, two dual-rail signals transition for each cor-

responding quad-rail signal transition).

COMPARING THE VARIOUS ARCHITECTURES shows

that when speed is the main design goal, an optimally

pipelined, parallel, dual-rail multiplier is the best choice.

When area is the main concern, a nonpipelined, paral-

lel, dual-rail multiplier is preferable. And, when a design

requires minimal power, a nonpipelined, parallel, quad-

rail multiplier is best. The architecture that best bal-

ances area and speed is the nonpipelined, parallel,

dual-rail multiplier, which requires the least area and

has the highest speed of the nonpipelined designs. The

nonpipelined, quad-rail multiplier best balances speed

and power because it is only slightly slower than the

dual-rail version but requires significantly less power.

Designers would rarely choose the bit-serial and iter-

ative multipliers because they require more area than

the nonpipelined, parallel, dual-rail multiplier and are

much slower. These multipliers have more area than the

fully parallel version because of the extra circuitry need-

ed to ensure delay insensitivity, such as the three-regis-

ter feedback loop(s), the sequencer(s), and the

interface circuit(s). Also, designers would seldom use
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Table 2. Comparison of NCL multipliers.

Multiplier architecture Gate count Transistor count TDD (ns) PDD (nW)

Bit-serial 203 2,598 69.71 —

Iterative 418 5,478 33.05 —

Parallel, quad-rail, nonpipelined 245 3,630 9.92 0.74

Parallel, quad-rail, pipelined 315 4,610 5.92 —

Parallel, dual-rail, nonpipelined 145 2,004 9.21 3.34

Parallel, dual-rail, pipelined 320 4,292 3.84 —

Three-dimensional, pipelined 583 7,004 6.77 —



either the parallel, pipelined, quad-rail multiplier or the

3D, pipelined multiplier because both require more

area than the parallel, pipelined, dual-rail multiplier,

and neither is as fast. The pipelined, quad-rail version is

not as fast as its dual-rail counterpart because the worse-

case delay of its primary components is greater (three

versus two gate delays), and these primary components

cannot themselves be pipelined without violating the

input-completeness criterion. Therefore, the quad-rail

version cannot be as finely pipelined, thus restricting

throughput enhancement.

On the other hand, the 3D, pipelined multiplier takes

more area because it requires substantially more regis-

ters, associated completion components, and larger

adder cells. It is slower because of the increased depen-

dence of the completion signals. However, for substan-

tially larger designs, the pipelined, dual-rail multiplier’s

throughput would decrease because of the extra levels

of logic required in the completion components for par-

tial-product generation. In contrast, throughput would

remain about the same for the 3D, pipelined design

because of its extremely fine-grained, localized com-

pletion strategy. �
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