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Novel Dynamic Representation and Control
of Power Systems With FACTS Devices

Shahab Mehraeen, Student Member, IEEE, S. Jagannathan, Senior Member, IEEE, and Mariesa L. Crow, Fellow, IEEE

Abstract—FACTS devices have been shown to be useful in
damping power system oscillations. However, in large power sys-
tems, the FACTS control design is complex due to the combination
of differential and algebraic equations required to model the
power system. In this paper, a new method to generate a nonlinear
dynamic representation of the power network is introduced to
enable more sophisticated control design. Once the new represen-
tation is obtained, a back stepping methodology for the UPFC is
utilized to mitigate the generator oscillations. Finally, the neural
network approximation property is utilized to relax the need for
knowledge of the power system topology and to approximate
the nonlinear uncertainties. The net result is a power system
representation that can be used for the design of an enhanced
FACTS control scheme. Simulation results are given to validate
the theoretical conjectures.

Index Terms—FACTS, neural networks, nonlinear systems,
power system control.

I. INTRODUCTION

P OWER system stability is defined as the ability of an
electric power system, for a given initial operating con-

dition, to regain a state of operating equilibrium after being
subjected to a physical disturbance [1]. Power system stability
can be improved through the use of dynamic controllers such
as power system stabilizers, excitation systems, and more
recently FACTS devices. To effectively design the controller,
proper modeling of the generators, controller dynamics, and the
network must be utilized. A power system is usually modeled
using a combination of differential and algebraic equations.
The differential equations represent generator angles and
speeds whereas the algebraic equations represent bus active
and reactive power balance relationships. Incorporating the
differential-algebraic equations into the control process is
difficult and is made more complex by the inclusion of FACTS
devices such as the unified power flow controller (UPFC).

Advanced controller design usually requires that a system be
represented by purely differential equations. However, power
systems with embedded FACTS devices typically require the
algebraic transmission network power balance equations to be
included in the system model and it is not straightforward to
develop an algebraic equation free system model representation
for control purposes.
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Several approaches have been analyzed for system wide
FACTS control design. Past work [2]–[6] has proposed to lin-
earize the differential-algebraic equation network and eliminate
the algebraic equations through reduction methods. Then, linear
control methods are applied to the linearized power system.
This approach, however, tacitly assumes that the network
variables remain in the neighborhood of the desired operating
point. In addition, the placement and number of UPFC de-
vices are determined heuristically. By contrast, in [7]–[12] a
single-machine infinite bus model is used to apply nonlinear
control schemes. However, the infinite bus assumption required
for this approach is not valid for large multi-machine systems
when the fault affects the power system.

FACTS devices have been considered in [13]–[16] via uti-
lizing energy functions to develop the controllers and estimate
the critical clearing time. This approach is not practical for con-
troller development because it requires the calculation of the
derivatives of power system bus voltages and angles and re-
quires numerical differentiators or approximations. Nonlinear
control of a multi-machine power system excitation and gov-
ernor control has been proposed using back stepping in [17].
This method holds considerable potential, but does not consider
FACTS devices. FACTS devices can serve many control func-
tions in an electric power system including steady-state power
flow, voltage regulation, and oscillation damping control. Thus,
stabilizing capabilities can be added with the other control ca-
pabilities without any additional cost. This property is exploited
in this work.

In this paper, we propose the following contributions to over-
come the above-mentioned challenges:

1) A new nonlinear dynamical representation of a power net-
work free of algebraic equations with UPFC as a controller
is introduced. This representation is appropriate to model
a nonlinear power network with several FACTS devices.

2) Oscillation damping is achieved using nonlinear control
schemes for UPFCs.

3) A neural network approximation property is utilized to
relax the need for knowledge of the power system topology
and to approximate the nonlinear uncertainties.

Our approach involves first obtaining a nonlinear dynamical
representation using network power balance equations. The ad-
vantage of this approach is that no algebraic equations are in-
volved in the control design while the nonlinear behavior is re-
tained. In the proposed approach, we use the power system clas-
sical model in which the internal voltages of the generators are
held constant in order to develop the control design. However,
the proposed approach can be extended to more complex gen-
erator models without loss of generality. Subsequently, a non-

0885-8950/$26.00 © 2010 IEEE
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linear control scheme is developed to stabilize and damp the os-
cillations resulting from a disturbance such as a three-phase to
ground fault. Finally, we have employed the universal approx-
imation property of neural networks (NN) to approximate the
power system uncertainties and to relax the need for a priori
knowledge of the system uncertainties.

II. POWER SYSTEM DIFFERENTIAL-ALGEBRAIC MODEL

The classical generator representation is often sufficient for
the control development in order to mitigate the inter-area os-
cillations since only the rotor speed deviations are of interest. In
addition, the resistances of power network lines are neglected.
Despite this assumption made for ease of control development,
the proposed control will be validated on a full nonlinear power
system model.

It is more convenient to represent the generator dynamical
equations in the center of inertia (COI) coordinates:

(1)

(2)

where

where is the active load at each bus and is the input
mechanical power. Also, is the rotor angle of the th machine,

is the angular speed, is the center of angle, is the center
of angular speed, represents the reactance of the admittance
matrix, is the th machine internal voltage, is the number
of generators, is the th machine inertia, and

and are the generator bus voltage and phase angle,
respectively. In addition, is the number of non-generator
buses in the power system.

The bus voltages and phase angles of all of the power system
buses are constrained by the following set of algebraic power
balance equations (neglecting resistances)

(3)

where and are the active and reactive loads on the th
bus and for .

III. NEW DYNAMIC REPRESENTATION OF POWER NETWORKS

Equations (1)–(3) form the set of power system differential-
algebraic equations. However, a controller design in a differen-
tial-algebraic environment is difficult to achieve, therefore it is
desirable to substitute the set of (3) with a more appropriate set.

One way to have a pure dynamical system is to take derivative
of (3) to obtain and terms. Thus, we have

(4)

(5)

Solving (4) and (5) for and , we obtain a new set of dynamic
equations as

(6)

where
and

. Also, we define
and .

Assuming and to be functions of and ,
we get

,
and as given in (A3a)–(A4e) in Appendix A.
Once again, it is important to note that this step is for
controller development and is not required for actual
(practical) implementation. The proposed approach is a
complementary way of solving the differential-algebraic
equations where is
obtained by solving and replaced in the differential
equations where is the states of the power
system. Solving the nonlinear algebraic equations
is a huge challenge (if not impossible in large-scale power
systems) which is relaxed in the proposed approach without
losing the nonlinear characteristics of the power system.

IV. UPFC AS A NONLINEAR CONTROLLER

In the proposed effort, the UPFC is chosen as a FACTS de-
vice which acts as a controller to mitigate system oscillations.
The method, however, is applicable to other FACTS devices
since the proposed approach is generic and deals with power
balance equations as well as generator dynamics. As illustrated
in Fig. 1(a), the UPFC shunt transformer is connected to bus

and the series transformer is connected between buses
and . The effect of the UPFC on the power system

can be represented as injected powers to the connecting buses
[18] as shown in Fig. 1(b). This is referred to as the “power in-
jection” model of the UPFC [18].
The injected active and reactive powers are given by

(7)
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where is the voltage produced by the
series transformer and can be assumed to be a function of time.
Thus, the power flow equation at buses and can be
represented as

(8)

where , and and repre-
sent the left-hand side of (3). By taking the derivative of (8), (4)
and (5) must be modified on the buses and . There-
fore, considering (4) at bus , we get

(9a)

and at bus , we get

(9b)

Similarly, terms are also added to the left-hand side of (5) at
buses and to achieve

(10a)

(10b)

By updating matrices , and with the additional
terms, new matrices , and are obtained and given
by (A5a)–(A5d) in Appendix A. Note that matrices and
remain unchanged. Consequently, (6) becomes

(11)

where and vector represents additional
terms in (9) and (10) which are dependent on and . We define

and and obtain (12) at the bottom of the page.
By solving (11) for and , we obtain the set of nonlinear
equations

(13)

where

is introduced as (A6) in Appendix A and satisfies
, and .

Equation (13) is an affine nonlinear system in continuous-
time with control inputs and . Once the control inputs are
defined, the UPFC control parameters and can be obtained
by integrating the control inputs. By Incorporating (1) and (2),
we obtain the system dynamic equations as (14) at the bottom
of the next page. Equation (14) is now in special case of strict
feedback form [as explained after (18)] where backstepping can
be used for the controller design.

Remark 1: In the case of multiple UPFCs in the network,
(7)–(12) are repeated for each pair of UPFC buses and

(12)
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Fig. 1. (a) UPFC connected between two network nodes. (b) Injected powers
to the connected buses.

for all , where is the total number of UPFCs.
Similarly, the corresponding entries of matrices , and

change following the same logic described for (11). More-
over, vector has entries corresponding to each UPFC. Conse-
quently, the resulting differential equation is affine in terms of
all UPFC control inputs which is given by

(15)

where is the number of UPFCs and
. The nonlinear func-

tions are defined in
Appendix A.

V. CONTROLLER DESIGN

The conventional approach to damping oscillations in an in-
terconnected power system is to employ a linear control scheme
[19]. By contrast, we target the stability of the generators in a
nonlinear sense by defining an appropriate Lyapunov function.
In the control development, we restrict our design to the case of
constant loads. Also, we assume that the mechanical power

is slowly changing compared to the other con-
trol variables; thus, . For the purpose of convenience
we define new state variables as

(16)

where is the pre-fault generator angle for .
The selection of renders (2) in the backstepping form as will
be explained. Using (15), we obtain

(17)

where , and are the th elements
of , and , respectively. Also, is the
number of UPFCs and is the UPFC number.

A. Single Generator/Single UPFC Control

To introduce the design concept, we initially design a con-
troller for a single generator/single UPFC power system using
the standard backstepping design method with the control in-
puts and . This approach will be extended to
multiple generators/multiple UPFCs in the next section.

Remark 2: In [15], [18], and [22], it is demonstrated that if the
UPFC injects the maximum series voltage (i.e., constant ), it
can inject the maximum active power; thus, it improves transient
stability. The condition may be applied by noting
that . This in turn results in by
taking derivative from both sides (note that for con-
stant ) which may be considered as an algebraic relationship
between the control inputs and . However, for damping the
after-fault oscillations can be kept high at the beginning (for a
short time) and reduced afterwards in accordance with the state
errors as this helps reduce the electrical stress on the UPFC. Ac-
cording to [18], UPFC injected power can also be controlled by
varying under the constant phase angle . Then, when is
around maximum active power is injected for a given .
This requires that , and thus, .

(14)
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Consequently, in this design we let thereby decreasing
the number of inputs in (17). Then, from (2), (16), and (17), the
new set of state equations can be constructed as

(18)

where

from (17), and for where
. Equation (18) is a special case of strict

feedback form where and are constants instead of
functions of the states.

Assumption 1: The control gain is bounded away from
zero. Without loss of generality it will be assumed that

.
This claim is supported by the fact that due to its continuity

if changes sign, then it must pass through the origin. As
a consequence, (18) encounters a singularity tending to make

infinitely large. By selecting a proper place for the
UPFC and setting appropriate design gains, we can avoid large
control inputs.

Step 1: Introducing and as design constants, we
introduce which results in

(19)

Consequently, by defining we have

(20)

where

(21)

is chosen such that the Lyapunov function
has a negative definite derivative when .

Step 2: Define the new Lyapunov function

(22)

with being a design constant, we can easily show that
guaranteeing

that the states , and asymptotically converge to zero
provided that where

(23)

and from (18)

(24)

where

(25)

Equation (24) along with and (23) provides a solution
for control input in terms of nonlinear functions of states as

(26)

Remark 3: If the assumption made in Remark 2 is not applied
(i.e., ), (26) will revert to

(27)

where from (17), which gives a linear relation-
ship in terms of the control inputs. Then, a second relationship
such as (mentioned in Remark 2) between
and is needed to select them. Since optimal performance of
UPFC is obtained by varying both the injected voltage and
angle , a second relationship between and can play an
important role in achieving the controller.

B. Multiple Generator/Multiple UPFC Control

For the case of multiple generator control, the (24) is replaced
by

(28)

where
,

and . Also, define
, and

. Note that for the multiple UPFC
case is replaced by and the dimensions of change.
Moreover, note that only generators are chosen to be con-
trolled. Since the generators are present in the interconnected
power network, the th generator is forced to be controlled by
the power balance if the remaining speeds are controlled.
Since there are fewer inputs than outputs, it is generally difficult
to find an input that makes the first derivative of the Lyapunov
function candidate negative definite. In other words, because
of the inconsistency that arises due to multiple solutions for a
single the above single generator control method cannot be
employed for multiple generator control. Thus, we propose the
input

(29)

where and are design parameters.
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Definition [Uniformly Ultimately Bounded (UUB)] [20]:
Consider the dynamical system with being
a state vector. Let the initial time be and initial condition
be . Then, the equilibrium point is said to be
UUB if there exists a compact set so that for all

there exists a bound and a time such that
for .

Theorem 1: Consider the dynamical system described by
(19), (20), and (24) which is rewritten as

(30)

with the input given by (29) for . Then the states
are globally uniformly ultimately bounded provided Assump-
tion 1 holds.

Proof: See Appendix B.
Remark 4: Equation (30) needs the term

to be bounded away from
zero. Based on Assumption 1, this can be easily achieved by
selecting a proper and and replacing each with

where is a proper modification factor if
. From (18) this changes to

such that the term
moves from zero in (29).

VI. NEURAL NETWORK CONTROL

Although (29) provides the UPFC control inputs, finding
the analytical and/or numerical nonlinear control inputs in
practice (for fast computing) is a challenging task in large
power systems. Moreover, in order to implement the control
law, a complete knowledge of the total power system dynamics
and topology are needed. However, by using the neural network
approximation property for nonlinear functions with online
learning scheme [20], we are able to approximate the nonlinear
“unknown dynamic” terms in the power system dynamics, thus
relaxing the need for a complete system description as well as
onerous function calculations.

A general function where can be written as
with a neural network (NN)

functional reconstruction error where and
are weight matrices [20]. In our design, input-to-the

hidden-layer weight matrix is selected initially at random and
held fixed during learning. It is demonstrated in [21] that if the
input-to-the-hidden-layer weights, , are chosen initialized ran-
domly and kept constant and if the number of neurons in the
hidden layer is sufficiently large, the NN approximation error

can be made arbitrarily small since the activation function
vector forms a basis.

A. Single Generator/Single UPFC Control

Consider the system (18). Unlike (26), here we assume that
the nonlinear functions and (for ) are not
available. Thus, in order to provide the desired input we em-
ploy the neural network approximation property for nonlinear
functions as where
the term represents the unknown nonlinear

function in the control input with being unknown ideal
weight matrix (where is assumed to be upper bounded
[20]) and is the approximation error in a compact set

. In practice, the actual
weight matrix and approximation error are unknown and
only an estimation of the weight matrix is utilizable, i.e.,

(31)

It is shown in Appendix C that the states are stable
with arbitrarily small upper bounds by selecting the neural net-
work weight update law as [20]

(32)

where is a design constant and is a design constant matrix.

B. Multiple Generator/Multiple UPFC Control

By using the similar approach to single generator neural net-
work controller we define the desired control input for system
(18) as (33)

(33)

where in a compact set [20]
. Then we utilize the estimation of the weight

matrix to obtain

(34)

It is shown in Appendix D that by selecting the weight update
law as

(35)

boundedness of the states with bounds de-
fined in the Appendix is achieved. In general, it is hard to con-
clude stability of the states from bound-
edness of . However, in this problem we have considered

generator to avoid dependency of generators electrical
powers (and ) to each other. For many power system topolo-
gies if the UPFC is placed on the proper bus we may conclude
stability of based on the stability of
as confirmed by simulations. Exceptions may include topolo-
gies with isolated generators. Similar to proof of Theorem 1,
this yields stability of the states and .

Remark 5: We can see from (34) and (35) that the control
and update laws are only functions of generators data and loads.
Although for the controller design is needed, this parameter
can be achieved by knowing the generator operating conditions.
Thus, no prior knowledge of power system topology is needed
for controller design.

VII. SIMULATION RESULTS

For control validation, two power system topologies are con-
sidered. In both examples the simulations are performed using
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Fig. 2. One-generator power system.

Fig. 3. UPFC active power controller.

Fig. 4. Damping effect of the proposed nonlinear controller when compared to
the method with UPFC fixed injected voltage � and variable angle �.

the complete power system model (with line resistances) to eval-
uate the effectiveness of the modeling and design. Also, steam
governor is in action in all simulations. First, the system in
Fig. 2 is chosen where a three-phase fault is injected close to
bus 3 (as depicted in Fig. 2) at s and removed at

s. The infinite bus is simulated by a huge generator
whose angle and speed do not change by the fault. The infi-
nite bus voltage and angle are given as pu and

Rad. The data for generator 1 are given as
pu, and Rad

at . The UPFC is placed on bus 1 between buses 1 and 3
and is activated after fault clearance.

Two scenarios are assumed; the fault is removed without
changing the topology and with removal of one of the lines
between buses 1 and 3 (i.e., the faulted line.) In accordance
with Remark 2, the proposed control is performed via constant
UPFC angle and variable (controlled) UPFC voltage

. The design is performed by using the method introduced in
Section V-A for single generator control where gains are chosen
as , and .
The results from the proposed method are compared with the
case with pu and variable where the controller
examines the slope of the power flow in the line, where the
UPFC series transformer is placed, and switches the output
(shown in Fig. 3) between (which gives maximum UPFC
injected power at constant as explained in Remark
2) correspondingly to prevent increasing or decreasing the flow
of power in the UPFC line, and thus, to prevent the power flow
oscillations. The output is then passed through a first order
filter (with after fine

Fig. 5. UPFC injected power and voltage in the proposed controller when com-
pared to the method with UPFC fixed voltage � and variable angle �.

Fig. 6. The IEEE 14-bus, five-generator power system.

TABLE I
GENERATORS SPECIFICATIONS

tuning), depicted in Fig. 3, to reduce sharp power fluctuations
and to provide the UPFC angle which in turn provides the
total line power (including the injected power by UPFC).

Figs. 4 and 5 show the UPFC damping effect, injected power,
and voltage of the proposed controller for the two scenarios
(original topology and line removal after fault) as compared to
those of the conventional controller through controlling . As
shown in the figures faster damping as well as lower voltage
and injected power are achieved by using the proposed nonlinear
controller. Also, unlike the conventional controller, no signifi-
cant difference in controller performance between the two cases
(original topology and line removal after fault) is observed when
using the proposed controller.

In the second example the IEEE 14-bus, five-generator power
system shown in Fig. 6 is used and subjected to three phase
faults.

The generator data are given in Table I. All the generators
have steam governors and the UPFC control is implemented to
stabilize the power system. The power system loads are consid-
ered as constants. The control objective is to damp the genera-
tors oscillations after the fault is cleared.
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Fig. 7. Generator speeds with and without control; Case 1 with fault on bus 1.

Fig. 8. Generator speeds with and without control; Case 1 with fault on bus 6.

In the system given by Fig. 6, the UPFC is installed on bus 6
between buses 6 and 7 which is found to be an appropriate place-
ment by trial and error, i.e., it can stabilize the power system for
different fault locations. The power system modes are 11.3561,
5.9101, 2.6977, and 2.1026 Hz. A three-phase short circuit fault
is applied to buses 1, 6, and 11 at s and removed
at s. Generators 1 through 4 are chosen for control.
The control inputs and are initially set to zero such that

and the proposed control method is performed
through using variable and . Two cases are con-
sidered for simulations.

Case 1: All power system dynamic states are assumed to be
available for the control design and (29) along with

are used to design the controller. The design gains are
chosen as through through

.
Figs. 7–9 show that significant percentage of oscillation

damping can be achieved for a medium size power network by
using a single UPFC as a controller. Moreover, the nonlinear
controller without changing the controller gains from the
previous case is able to damp the oscillations resulting from
a fault occurring at different locations through satisfactory
control effort as shown in Figs. 10 and 11. Note, however,
that damping performance varies with the fault location. In
particular, Figs. 7–9 illustrate that for faults occurring at the lo-
cations relatively close to the UPFC bus (bus 6), the oscillation
damping is more effective than for the faults occurring far from
UPFC bus. Also, the control effort for the latter case is higher
as shown in Figs. 10 and 11. This is due to different after fault
conditions imposed on the controller.

Fig. 9. Generator speeds with and without control; Case 1 with fault on bus 11.

Fig. 10. Active power flow from bus 6 to 7; Case 1.

Fig. 11. UPFC injected power and series voltage; Case 1.

However, the voltage and line flows do not go back to their
pre-fault values due to bounded stability performance of the
controller. Overall, from these results, the proposed control is
very effective in damping the oscillations even in the presence
of numerous modes and with significant fault (as illustrated in
Figs. 4–9) occurring in the power network. The results from the
proposed controller are then compared with those of the con-
ventional controller explained in the first example with

(after fine tuning) where instead of observing
the line power flow slope, the sign change in angle difference
of the UPFC line buses (i.e., ) is consid-
ered since a stabilizing controller using the power flow deriva-
tive sign was not achieved. Unlike the previous example, the
conventional controller cannot stabilize all generators and only
affects the generator close to UPFC (i.e., Gen5). For the fault on
bus 6, no significant damping effect is introduced by the conven-
tional controller.

Case 2: Power system dynamics are assumed unavailable. By
using (34) and (35) and assuming , the NN
controller is utilized to approximate the unknown system. Ten
neurons are selected for the hidden layer with sigmoid [20] as
activation function and design gains are chosen as

through
, and . The weight esti-

mate is initialized randomly. No offline training is utilized
to tune the weights and no a priori data about the power system
topology is needed for controller design.
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Fig. 12. Generator speeds; Case 2.

Fig. 13. UPFC injected power and series voltage; Case 2.

Figs. 12 and 13 illustrate that the neural network controller
nearly has the same ability to damp the oscillations as the con-
troller in Case 1. This implies that the neural network controller
is able to quickly learn the power system nonlinear dynamics by
only using the network voltages, angles, and speeds as well as
the synthesized input .

VIII. CONCLUSION

We have introduced a general nonlinear dynamical model for
power systems with UPFC as stabilizing controller. This model
is free of algebraic equations, thus conventional nonlinear con-
trol strategies are applicable to stabilize the power system after
fault occurrence. We have addressed a multi-machine control
scheme in which the number of control inputs is less than the
number of outputs. Furthermore, we have utilized neural net-
works approximation property to relax the burdensome non-
linear function calculations and a priori knowledge about the
power system dynamics needed for control design. Our analyt-
ical approach as well as our simulation results shows the effec-
tiveness of our approach.

APPENDIX A

According to (4) and (5) we have

(A1)

(A2)

Entries of matrices ,
and for the case without UPFC are summarized as
follows:

(A3a)

(A3b)

(A3c)
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(A3d)

(A3e)

(A4a)

(A4b)

(A4c)

(A4d)

(A4e)

Modifications on the entries of matrices
, and for the case

with UPFC are summarized in (A5a)–(A5d) at the bottom
of the page. The subscript (old) refers to the original values
(without UPFC) as defined by (A3) and (A4).

The matrix is defined as follows:

(A6)

For the case of multiple UPFCs matrices , and are
changed to , and as described in Remark 1. The
nonlinear functions used in (15) are described as

(A7)

Also, we have

(A8)

where

is the number of UPFCs and
with

corresponds to the th UPFC whose entries are
defined in (A6). Using , we are able to define

(A9)

(A5a)

(A5b)

(A5c)

(A5d)
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APPENDIX B

Proof of Theorem 1: For the case of multiple generator
control, we define the Lyapunov function as

(B1)

where is a design constant. Taking derivative of (B1), we
have

(B2)
Using the following equation:

(B3)

where , makes negative definite.
In order to obtain in the case of multiple generator control

we use (24) and (B3) and obtain

(B4)

The control input (B4) causes the term
converge to zero asymptotically. Consequently, converges
to the bound obtained as follows:

which in turns results in the bound

(B5)

Thus, approaches to the bound presented by (B5) asymptot-
ically.

Next, (30) implies

(B6)

which is a linear input-to-state stable system by proper choice of
the control gains and such that the eigenvalues of the
linear system have negative real parts. Thus, the states and

are bounded following the stability of for .

APPENDIX C

Equation (24) for the th generator in a single-UPFC power
system can be written as

(C1)

where is the vector of the global parameters as defined earlier.
We repeat the back stepping control design mentioned in the
previous section and define the Lyapunov function as

(C2)

which has the derivative as

(C3)

Applying (C1) to (C3) renders the Lyapunov function derivative
provided the control input is selected as

(C4)

The term in
(C4) is the unknown term which must be approximated by a
neural network as

(C5)

where is the approximation error in a compact set
[20] . Since the ideal
weights are not known, the estimated weight matrix is
utilized to approximate as (31). Now, define the Lyapunov
function

(C6)

where and is a design constant matrix. Taking
the derivative of (C6) and applying (31) results in

(C7)

By selecting the neural network weight update law as (32) and
applying (C7) we obtain
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(C8)

is negative if

which yield uniform ultimate boundedness of the states
with bounds defined above. Note that the bound

on can be arbitrarily small by increasing the design gain
. Similar to proof of Theorem 1 boundedness of the states

can be concluded.

APPENDIX D

The Lyapunov function in this case is proposed as

(D1)

where . We define the desired control input for
system (18) as (D2)

(D2)

where . However, the de-
sired control input is a function of unknown dy-
namics and is approximated by a neural network as

. Taking the derivative
of (D1), employing (D2), and choosing the weight update law
as (35), we obtain

((D3))

Similar to (C8) is negative if

which yield uniform ultimate boundedness of with
bounds defined.
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