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Coupling Between Differential Signals and the DC
Power-Bus in Multilayer PCBs

Chen Wang, Member, IEEE, Marco Leone, Member, IEEE, James L. Drewniak, Senior Member, IEEE, and
Antonio Orlandi, Senior Member, IEEE

Abstract—Differential and common-mode transfer impedances
are proposed herein to analyze noise coupled to (from) the dc
power-bus from (to) via transitions in differential signals. Expres-
sions for the two transfer impedances in terms of conventional
single-ended transfer impedances are derived and verified through
measurements, full-wave finite-difference time-domain (FDTD)
simulations and an analytical cavity model. Some properties of the
differential and common-mode transfer impedances are investi-
gated to facilitate engineering design. The impact of signal current
imbalances on power-bus noise and the benefit of differential
signals as compared to single-ended signals are quantified.

Index Terms—Differential signaling, power-bus noise, signal
imbalance, signal integrity, via transition.

I. INTRODUCTION

MULTILAYER printed circuit boards (PCBs) commonly
employ dc power delivery structures that include entire

planes or large area fills to provide current supply and return.
The dc power-bus structure is essentially a parallel-plane wave-
guide [1], [2], and the modes excited within the planes can result
in signal integrity (SI) and electromagnetic interference (EMI)
problems [3]–[5]. Mitigating the dc power-bus noise is critical in
high-speed digital circuit designs. Practical mitigation strategies
include global decoupling [6], local decoupling [7], and em-
bedded capacitance [8], [9]. All of these previous studies focus
on a single via transition through the power delivery planes.

Differential signals are widely used in present high-speed dig-
ital systems due to the rejection of common-mode noise on the
signal, as well as the reduction of the overall EMI level [10]. As
in the case of single-ended signals, via transitions in differential
signals can also excite the parallel planes, resulting in power-bus
noise [11]. Analyses of coupled vias have been reported in the
literature that have focused primarily on signal scattering ef-
fects at the discontinuity [12]–[14]. This paper proposes a sys-
tematic method to quantify noise coupled to and from differen-
tial signals transitioning through parallel planes or area fills in a
multilayer PCB. In Section II, two transfer impedances, namely
differential and common-mode transfer impedances, are intro-

Manuscript received June 3, 2003; revised February 17, 2004.
C. Wang is with the Nvidia Corporation, Santa Clara, CA 95050 USA (e-mail:

chenwang@nvidia.com).
M. Leone is with the Siemens AG, Corporate Technology, Erlangen D-91052,

Germany (e-mail: marco.leone@siemens.com).
J. L. Drewniak is with the 114 Emerson Electric Co. Hall, University of Mis-

souri–Rolla, Rolla, MO 65409 USA (e-mail: drewniak@umr.edu).
A. Orlandi is with the UAq EMC Laboratory, Department of Electrical

Engineering, University of L’Aquila, L’Aquila I-67040, Italy (e-mail: or-
landi@ing.univaq.it).

Digital Object Identifier 10.1109/TADVP.2005.846938

Fig. 1. Typical via transitions of a differential pair in a four-layer board.

duced. Experimental and numerical results are presented in Sec-
tion III, and engineering studies are considered in Section IV.

II. DIFFERENTIAL AND COMMON-MODE

TRANSFER IMPEDANCES

A typical via transition for differential signaling in a four-
layer board is shown in Fig. 1. The currents and flowing
between two conducting planes or area fills can excite the par-
allel-plane structure, thereby developing a noise voltage . In
practice, the planes are often power and ground layer pairs, but
do not necessarily need to be so. Since both and are the
excitations and the system is linear, is the superposition of
the noise voltages due to and , i.e.,

(1)

where is the transfer impedance between the locations of
and , and is the transfer impedance between the locations
of and . From (1), the power-bus noise voltage depends
on both the excitation currents and the power-bus transfer im-
pedances and . With adequate models, signal integrity
tools can be used to calculate the currents and . This paper
investigates the power-bus transfer impedances for differential
signaling, and the effects of imbalances in and on the
power-bus noise.

The power-bus transfer impedances are determined by the
voltage across the planes (resulting from the electromagnetic
field within the power planes) due to the vertical currents on
the vias. In order to focus on the transfer impedances, the dif-
ferential pair on layers one and four can be omitted when the
skin-depth is much smaller than the thickness of the metal layers
so that the current on the top surface of the metal layer is de-
coupled from the current on the bottom surface. The vias can

1521-3323/$20.00 © 2005 IEEE
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Fig. 2. A simplified two-layer structure for studying a noise voltage coupled
to parallel-planes or area fills due to via transitions of differential signals.

Fig. 3. A three-port network representation of a power-bus with differential
feeding.

be replaced with two probes, with the center conductor of each
probe connected to the power plane and the outer conductor con-
nected to the ground plane, as shown in Fig. 2. Since the excita-
tion mechanism of the simplified two-layer structure shown in
Fig. 2 is the same as that of the original one shown in Fig. 1, i.e.,
the electromagnetic field within the power planes is excited by
the vertical currents on the center conductors of the probes or on
the vias, the simplified two-layer structure is equivalent to the
four-layer one from the viewpoint of the induced noise voltage
between the planes. A third probe is located at to obtain
the noise voltage between the planes.

Differential and common-mode currents ( and ), as
opposed to and , are used to facilitate circuit analysis in
a differential system. The differential and common-mode cur-
rents, and , are related to and as [15]

(2)

and (3)

The common-mode current is zero for an ideal differential
system. However, in a practical design, is present due to
various imbalances in the circuit, such as different lengths for
the two traces forming the differential pair, skew in the differ-
ential driver, and mode conversion that occurs at discontinuities.
Both differential- and common-mode currents contribute to the
noise voltage induced between the planes. With reference to the
three-port network representation in Fig. 3, the transfer imped-
ances and due to differential and common-mode
currents, respectively, are defined as

(4)

(5)

Since both and are sources of the induced noise voltage
and the system is linear, superposition holds. Therefore, the
noise voltage between the planes can be expressed in terms
of and as

for (6)

Equation (6) indicates that even in an ideal differential system
where is zero, can still excite the power-bus if is
nonzero. Therefore, a knowledge of and is essential
in designing a low noise power-bus system. In the following,
closed-form expressions are derived for and .

A three-port network representation of a power-bus system
being considered is shown in Fig. 3. The power-bus can be char-
acterized by a three-port impedance matrix as

(7)

where a port is defined by a pair of terminals located on opposite
sides of the planes. The inductive behavior associated with the
probes is assumed to be included in the -parameters. Applying
(4) and (5) to (7), the differential and common-mode transfer
impedances, and , can be expressed as

(8)

and

(9)

where the equivalences and
are used. Equations (8) and (9) show that

and can be expressed in terms of and .

III. EXPERIMENTAL AND NUMERICAL RESULTS

A double-sided rectangular test board with parallel con-
ducting planes was constructed, as shown in Fig. 2, to validate
the expressions for and in (8) and (9). The dimen-
sions of the PCB in the – plane were 15 10 cm, and the
FR-4 dielectric layer was 1.1-mm (45-mil) thick. Three probes
were constructed. The two feeding probes (ports 1 and 2) were
located at (3, 4 cm) and (3, 4.23 cm) in the – plane. The
probes were closely spaced to form a differential feed with a
spacing of 0.23 cm in the direction from center to center.
The third probe (Port 3) was located at (10, 6.9 cm) to measure
the voltage induced on the planes as a result of the currents

and on the probes. All three probes were constructed
using 0.047-in semirigid coaxial cables. The diameter of the
inner conductors of the cables was 0.28 mm (11 mil), and the
diameter of the outer shields was 1.2 mm (47 mil). The outer
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Fig. 4. Differential and common-mode transfer impedances of a 15 � 10
� 0.11 cm test board. (a) Common-mode transfer impedance. (b) Differential
transfer impedance.

shields were soldered to the ground plane of the test board with
a 360 connection, and the center conductors were soldered
to the upper plane. On the other end of the cables, SMA con-
nectors were attached. The SMA connectors were connected
to an ATN-4112A multiport test system, combined with an
HP8720ES network analyzer enabling three-port -parameter
measurements. The -parameters were calculated from the
measured -parameters using [16]

(10)

where is the identity matrix, and is the characteristic im-
pedances assumed to be 50 for all ports. The common-mode
and differential-mode transfer impedances were obtained using
(8) and (9), as shown in Fig. 4(a) and (b). The peaks in both

and correspond to the power-bus resonances. The
first few distinguishable TM modes are identified in Fig. 4.
Employing a cavity model, all matrix elements in (7) can be

calculated analytically for a rectangular parallel-plate area fill
or power-bus as [17]–[20],

(11)

with , ,
, the dielectric loss factor given by ,

the skin depth given by , and the angular reso-
nance frequencies
for mode indexes and . The plane dimensions in the and

directions are denoted as and , respectively, and is the
separation between the planes. From (11), a lumped equivalent
circuit can be developed as shown in Fig. 5 [17], where the
coefficient sinc

sinc denotes the turns ratio of
ideal transformers, considering the location of the port
and the port widths and in the and directions,
respectively. The constant if , and

if .
The port geometry in (11) is assumed to be rectangular. In

this paper, a coaxial feed was approximated as a square port
with the same effective cross-sectional area as that of the cir-
cular feed port [21]. Therefore, the 0.047-in coaxial feed was
approximated as a square port with each side equal to 0.1 cm.
The FR4 material between the ground and power planes was ap-
proximated with a dielectric constant of 4.3 and a loss tangent of
0.02. A conductivity of 5.8 10 S/m (copper) was used for the
ground and power planes. Analytical expressions for the differ-
ential and common-mode transfer impedances of a rectangular
power-bus, and , can be obtained by substituting (11)
into (8) and (9), respectively. The analytical results agree well
with measurements in the frequency range from 100 MHz to
5 GHz, as shown in Fig. 4(a) and (b). Comparing results from
the analytical expressions to those from measurements, the reso-
nances agree within 5% for both and ; the magnitude
of agrees within 3 dB; and the magnitude of agrees
within 5 dB of the measured value. It is more difficult to achieve
agreement for the differential transfer impedance because im-
balances may be introduced in the measurement. In addition,
tolerances in the position of the two feeding probes on the test
board which alter cannot be completely eliminated.

The finite-difference time-domain (FDTD) method was also
employed to obtain the transfer impedances. The algorithm of
perfectly matched layers (PML) was used for the absorbing
boundary conditions [22]. A uniform cell size of 1.5 1.0

0.38 mm was employed such that the thickness of the board
was discretized into three cells. The ground and power planes
were modeled as perfect electric conductors (PEC). A Debye
model was used to account for the loss of the dielectric material
of the PCB, i.e., [23], [24]

(12)

where 8.854 10 F/m, and are the relative
permitivity at zero frequency and at infinite frequency, respec-
tively, and is the relaxation time constant. The FDTD simu-
lation was conducted with 4.3, 4.1, and
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Fig. 5. Lumped equivalent circuit of a multiport power-bus system.

4.19 10 s. The conductivity of the dielectric material was
set to 1.7 10 S/m. The exposed center conductors of
the probe cables from the ground plane to the power plane were
modeled using a thin-wire subcellular algorithm [25]. A 1 M
lumped resistor was introduced at Port 3 between the ground and
power plane to account for the open status of Port 3 for the transfer
impedance calculation. The lumped resistor was modeled using
a subcellular algorithm [26], with the encircling magnetic field
components modified in the same fashion as for the thin-wire al-
gorithm to give it specified cross-sectional dimensions. Two si-
nusoidally modulated Gaussian voltage sources, with a 50 re-
sistance incorporated into the source cell, were employed at ports
1 and 2. As with the thin-wire and resistive loads, the magnetic
field components encircling the source cell were modified to give
the source cell a specified cross-sectional dimension [27]. The
source, the lumped resistor, and the thin-wire dimensions used in
the FDTD modeling were 0.28 mm (11 mil), corresponding to the
diameter of the center conductor of the 0.047-in coaxial cable.

Two simulations were conducted, one with the voltage sources
at ports 1 and 2 of the same magnitude and the same sign to pro-
vide a common-mode excitation, and the other with the voltage
sources of the same magnitude but opposite in sign to provide a
differential excitation. The time history of the currents and
on the thin-wires at ports 1 and 2, and the voltage drop across
the resistor at Port 3 were simulated and recorded. The transfer
impedances and were obtained from FDTD using
definitions (4) and (5), respectively. The dash-dotted curves in
Fig. 4 from the FDTD simulations, agree well with the measure-
ments and the analytical results. The higher peaks at lower fre-
quencies may be because the dielectric loss was not sufficiently
large in the Debye model. The transfer impedances and

from the FDTD simulations were calculated using defi-
nitions (4) and (5), as opposed to (8) and (9), and provides a
further check on (8) and (9).

A four-layer board was also simulated with the FDTD
method to verify that the via transition problem in a four-layer
board can be reduced to the problem of a two-layer board
shown in Fig. 2. Fig. 6 shows the geometry of the four-layer
board with dimensions of 54 33.5 1.1 mm. Layers 1 and
4 are the signal layers, while layers 2 and 3 are the power
and ground layers, serving as reference layers for the signals.

Fig. 6. Geometry of a four-layer board with via transitions in differential lines.
(a) Top view. (b) Side view. Units: mm.

The spacing between the signal layer and its reference layer is
0.18 mm, while the spacing between the power layer and the
ground layer is 0.76 mm. A pair of microstrip differential lines
of length 24.4 mm was routed on layer 1, then transitioned to
layer 4 through a pair of vias for another 24.4 mm, as shown
in Fig. 6. The width and the edge-to-edge distance of the
lines were 0.3 mm. For a substrate with a relative dielectric
constant of 4.3, the resulting differential impedance was
approximately 100 . The dimensions of the via hole were
0.3 0.3 mm, and the dimensions of the via pads on layers
1 and 4 were 0.6 0.6 mm. The edge of the antipad on the
reference layers was 0.69 mm from the closest wall of the
via hole. All dimensions were chosen to approximate current
design parameters. The usual circular via cross section was
approximated as a square cross section in the FDTD model for
convenience. This approximation will not affect the physics of
the excitation of the power-bus due to via transitions.
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Fig. 7. Frequency responses of a four-layer board. (a) Common-mode transfer
impedance. (b) Differential-mode transfer impedance.

A uniform cell size of 0.075 0.075 0.045 mm was em-
ployed in the FDTD modeling, such that the spacing between
the signal layer and its reference layer was discretized into four
cells. Each trace width was also discretized into four cells. Since
the focus here is to understand the physics of the power-bus
noise due to differential via transitions, the dielectric loss is not
critical and it was included in the FDTD modeling by simply
using an effective conductivity [23]. The differential transmis-
sion lines were excited by two voltage sources at the source end.
Each voltage source was a sinusoidally modulated Gaussian
pulse with a 50- internal impedance. Each line was termi-
nated with a lumped resistor of 50 . Algorithms previously
described in the two-layer FDTD simulation example were em-
ployed in the present case for modeling the sources, thin-wires,
and lumped resistors. Two FDTD simulations were conducted,
one with differential excitation and the other with
common-mode excitation . The time history of the
currents flowing through the two vias and the voltage between
the power and ground planes at 41.8 27.4 mm
were recorded. The time-domain signals were converted to the
frequency-domain using a fast Fourier transform (FFT). The
transfer impedances and were calculated using (4)
and (5), and are shown in Fig. 7. The TM mode indexes as-
sociated with the rectangular power-bus resonances are marked
in Fig. 7. The agreement between the results from the four-layer

Fig. 8. Board geometry for engineering studies. Units: cm.

full-wave FDTD modeling using the definitions (4) and (5), and
those from (8) and (9) using (11) is in general good. Therefore,
the power-bus noise voltage due to via transitions in differential
signaling on multilayer boards can be characterized through the
differential and common-mode transfer impedances, which can
be conveniently calculated using (8) and (9).

IV. DESIGN APPLICATIONS

Two transfer impedances, and , were introduced
to characterize the power-bus noise due to via transitions in dif-
ferential signaling in the preceding section. In this section, the
properties of and are studied for design purposes.
All the following studies are based on the geometry shown in
Fig. 8.

A. Influence of via Spacing on and

Equations (8) and (9) represent the general expressions for
and in terms of and . However, from these

expressions, the influence of via spacing is not directly visible.
Fig. 8 shows the general configuration with the two vias at ports
1 and 2, and the observation point at Port 3. The transfer im-
pedances and can be expanded into a Taylor series in
the and directions, with respect to , which is the transfer
impedance associated with Port 0 at the center point be-
tween the two vias (Fig. 8). Assuming that the via spacing

is sufficiently small, the two transfer impedances
can be approximated by the first-order Taylor expansion as

(13)

(14)

Substituting (13) and (14) into the general expressions (8) and
(9), and can be approximated as

(15)

(16)
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Fig. 9. jZ j as a function of via spacing.

Fig. 10. jZ j as a function of via spacing.

Equations (15) and (16) indicate that is approximated by
, which is independent of the spacing , whereas the dif-

ferential transfer impedance is proportional to the via
spacing, expressed by , .

Expressions (8) and (9) together with (11) were employed
to verify the approximations (15) and (16). Referring to Fig. 8,

was set to zero and varied from 0.381 mm to 3.81 mm.
Figs. 9 and 10 show the results for and , respectively,
as a function of the via spacing, . At 1 GHz, corresponding to
a wavelength of 14.5 cm in the dielectric of 4.3, is
nearly constant as varies from 0.381 mm to 3.81 mm, while

increases linearly with . At 10 GHz, corresponding
to a wavelength of 1.45 cm, the approximation in (15) is valid
up to a spacing of 1.5 mm, with regard to an error limit
of 10%. The linear approximation in (16) for holds up
to 1.5 mm. Then, the validity of the approximations (15)
and (16) is limited to a via spacing in the range of a tenth of the
smallest wavelength of interest.

B. Influence of Current Imbalance

The intentional differential current is usually known with
sufficient accuracy from signal integrity analysis in a practical
design, whereas the common-mode current is dominated by
parasitics and by imbalances. The common-mode current
depends on a number of different effects, such as driver-phase

Fig. 11. The total transfer impedance for different current-imbalance factors k.

skew, termination imbalance, signal-path discontinuities and
asymmetries, etc. It is determined by the specific design and is
typically difficult to quantify. To study the influence of signal
imbalance on the power-bus noise produced by differential via
transitions, an imbalance factor is introduced [10].
This factor is known to be at least in the range of a few percent in
a practical design [28]. To assess the impact of signal imbalance
on the noise voltage , a total transfer impedance defined as

(17)

is considered. This general definition requires a knowledge of
the magnitude and phase of . Therefore, an upper bound, in
the sense of a worst-case estimate, is more suitable, i.e.,

(18)
Fig. 11 shows an evaluation of the upper bound (18) of the total
transfer impedance for different values of the imbalance factor

based on the geometry shown in Fig. 8 with
0.381 mm. An imbalance factor of only a few percent adds
considerably to the noise-voltage level on the power-bus. For
practical estimates, can be multiplied by the differen-
tial-mode current to obtain an upper bound of the noise
voltage . As an example, assuming a differential-voltage
amplitude of 1 V and a differential-line characteristic impedance
of 100 , then the is in the range of 10 mA. Assuming
an imbalance factor 10 , which is a representative value
when dealing with imbalances on PCBs [28], is approx-
imately 0 dB from Fig. 11 at the TM resonance at around
480 MHz. This corresponds to a noise voltage 10 mV,
which is a relatively high value. In comparison, for a perfectly
balanced differential signal, the noise voltage at this frequency
would be 20 dB lower.

The noise voltages induced on the parallel planes due to
differential signaling can also be compared to that due to
single-ended routing to quantify the benefits of differen-
tial signaling relative to single-ended signaling. Consider a
single-ended trace with a via transition located at Port 0 (the
center between two differential vias), as shown in Fig. 8. The
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Fig. 12. The upper bound of differential-to-single ratio versus k.

power-bus noise voltage due to the trace current flowing
through a via transition is

(19)

Assuming equal currents , the differential-to-single
ratio of noise voltages can be defined as

(20)

In the above definition, was replaced by , according to
the approximation (15). The upper limit of is then

(21)

An evaluation of (21) is shown in Fig. 12 based on the same
board geometry used to evaluate (18). It is indicated that when
the imbalance ratio exceeds a few percent, the differential to
single-ended ratio is approximately constant over frequency, ne-
glecting the sharp peaks at the parallel-plane resonant frequen-
cies. Referring again to an imbalance factor of 10 , the
noise-voltage reduction due to differential signaling is between
10 and 20 dB. Fig. 12 is useful in comparing power-bus noise
from the differential via transition with a single via transition or
with the delta-I noise due to the switching-noise current through
a supply via for a digital integrated circuit.

Fig. 13. jZ j and jZ j at low frequencies.

C. Low-Frequency Behavior of and

The transfer impedance is capacitive with capacitance
equal to , whereas is inductive, at frequen-
cies much lower than the first resonance, as shown in Fig. 13 for

0.38 mm. Assuming the loss in the low-frequency
range is negligible, the spacing between the two vias is much
smaller than one tenth of the wavelength and

, the impedance can be approximated as (22) at
the bottom of the page Therefore, the associated inductance of

at low frequency can be approximated as

sinc

sinc (23)

The inductive behavior of can be interpreted using the
equivalent circuit in Fig. 5 with the two via ports denoted as Port
1 and Port 2. Injecting two counter directed currents in Port 1
and Port 2 induces two voltage contributions on the circuit with

, representing the mode. Since the excitation of this
mode is independent of the feeding position, i.e., and
in (11) are equal and not a function of , the two voltages
across are also counter directed and cancel. Therefore, the
TM mode, which is responsible for the capacitive behavior at

sinc sinc

sinc sinc (22)
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low frequencies, is eliminated. All other parallel circuits repre-
senting the other modes are inductive, as long as the frequency
is below their resonances. Their excitation depends on feeding
position and they add up to a total impedance that is inductive.

V. CONCLUSION

Differential and common-mode transfer impedances,
and , are proposed to facilitate analysis of dc power-bus
noise that results from via transitions in differential signals.
The properties of and are investigated. When the
spacing between the two vias is less than one tenth of the wave-
length at frequencies of interest, is linearly dependent on
the spacing while remains constant with respect to the
spacing. At frequencies below the first resonance of the power-
bus, behaves as a capacitor while behaves as an in-
ductance. A set of curves with various degrees of imbalances in
the signal currents is generated to estimate the power-bus noise
for practical designs. The benefit of differential signals com-
pared to single-ended signals is also quantified.
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