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Modeling and Analysis of Soft-Test/Repair for
CCD-Based Digital X-Ray Systems

B. Jin, Nohpill Park, Member, IEEE, K. M. George, Minsu Choi, Member, IEEE, and M. B. Yeary, Member, IEEE

Abstract—Modern X-ray imaging systems evolve toward digiti-
zation for reduced cost, faster time-to-diagnosis, and improved di-
agnostic confidence. For the digital X-ray systems, charge coupled
device (CCD) technology is commonly used to detect and digitize
optical X-ray image. This paper presents a novel soft-test/repair
approach to overcome the defective pixel problem in CCD-based
digital X-ray systems through theoretical modeling and anal-
ysis of the test/repair process. There are two possible solutions
to cope with the defective pixel problem in CCDs: one is the
hard-repair approach and another is the proposed soft-test/repair
approach. Hard-repair approach employs a high-yield, expensive
reparable CCD to minimize the impact of hard defects on the
CCD, which occur in the form of noise propagated through A/D
converter to the frame memory. Therefore, less work is needed
to filter and correct the image at the end-user level while it
maybe exceedingly expensive to practice. On the other hand, the
proposed soft-test/repair approach is to detect and tolerate defec-
tive pixels at the digitized image level; thereby, it is inexpensive
to practice and on-line repair can be done for noninterrupted
service. It tests the images to detect the detective pixels and filter
noise at the frame memory level and caches them in a flash
memory in the controller for future repair. The controller cache
keeps accumulating all the noise coordinates and preprocesses
the incoming image data from the A/D converter by repairing
them. The proposed soft-test/repair approach is particularly de-
vised to facilitate hardware level implementation ultimately for
real-time telediagnosis. Parametric simulation results demonstrate
the speed and virtual yield enhancement by using the proposed
approach; thereby highly reliable, yet inexpensive, soft-test/repair
of CCD-based digital X-ray systems can be ultimately realized.

Index Terms—Charge coupled device (CCD), defective pixels,
diagnostic confidence, digital X-ray, repair, telediagnosis, tele-
radiology, testing, virtual yield, yield.

I. INTRODUCTION

M ODERN X-ray imaging systems evolve toward digiti-
zation for reduced imaging cost and higher diagnostic

confidence [15]. To provide faster and efficient processing
and manipulation of image data, digitization of image data is
emerging as a promising alternative technology over conven-
tional analog data-based image processing technology [14];
examples include digital X-ray-based systems such as flat
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panel, computed radiography (CR), and digital radiography
(DR). Digital X-ray technology is rapidly replacing conven-
tional film-based X-ray techniques. Today’sfilmless digital
imaging technologyis emerging as a standard in medical ap-
plications such astelemedicine and teleradiologydue to its
promising perspectives such as cost-effectiveness, improved
lifetime, reliability, and maintainability [10]. For example, mili-
tary medical systems require convenient, real-time and efficient
medical imaging solutions for their stringent mission-critical
purposes [10]. Conventional X-ray films require huge amount
of storage, which is very sensitive and vulnerable to temper-
ature and humidity, and hazardous chemical processing for
X-ray film development, which may also result in toxic en-
vironmental contamination. Furthermore, exposure of patients
to X-ray is limited to certain angular setups, which further
limits the effectiveness of conventional film-based X-ray med-
ical imaging. Therefore, migration to digital X-ray technology
is highly desired.

One of the most critical issues in CCD-based imaging system
such as digital X-ray system is how to detect and repairdark
current (or so-calledblack noise) to assure quality of service
[7], [6]. Generally, digital X-ray system operates an electric
or mechanical shutter for about 1000 ms and sometimes even
for longer than 1 s. During that time period, the dark current
could accumulate in CCD pixels without flushing; the phosphor
cannot properly emit enough light so that the corresponding
analog signal becomes too weak to sensor. As a result, the black
noise can appear on the resulting X-ray image. Therefore, the
dark current should be kept as low as possible by cooling or
choosing a better quality and more expensive CCDs with low
dark current characteristics.

Timely X-ray film read/processing is also one of the most crit-
ical requirements to provide high quality service. Under certain
harsh environments, such as geographical isolation and tactical
emergency, X-ray films should be remotely sent to radiologist
for timely diagnosis. Filmless digital X-ray system can solve
this problem by efficiently transmitting digital X-ray image data
over the network to radiologist virtually in real time. Hence,
filmless digital X-ray systems provide a promising solution, es-
pecially for processing and delivery of time-sensitive medical
cases; still, a few problems have yet to be resolved, such as hard-
ware reliability and slow software level calibration.

Besides the speed factor of X-ray processing, another crit-
ical factor is thereliability of the image for higher diagnostic
confidence. Excessive X-ray exposure possibly damages CCD
pixels and make them defective [5], [13]. Hence, it is required
for digital X-ray systems to be maintained regularly by using
costly and time-consuming software-based image calibration

0018-9456/03$17.00 © 2003 IEEE
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and tuning. Once a defective pixel hit by all means, the pixel
creates a salt-and-pepper noise on target image, since it cannot
receive and sense any photon; therefore, a noticeable darker
noise point than any other image pixels becomes visible [8],
[19]. The reliability is determined either by software or hard-
ware factor. In reality, most CCDs suffer from defective pixels;
therefore performance degradation is also experienced conse-
quentially [19]. High-yield CCDs with less defects help resolve
this problem at excessive cost in conjunction with complex cal-
ibration procedure [2]. The calibration procedure is generally
practiced on software level and off-line for detecting/correcting
defective pixels and performing optical corrections such as
barrel correction. The approach proposed in [19] removes de-
fective pixels on CCDs of a digital camera by periodically
executing new off-line calibrations to update old calibration
results under a new exposure. However, conventional off-line
software-level calibration may create an excessive delay on
digital X-ray image processing, which may not be acceptable
under stringent processing constraints of today’s digital X-ray
applications.

There also have been a few works proposed to build a reliable
CCD-based digital signal processing system from hardware’s
standpoint in [1], [4], [8], [9]. Digital camera uses high resolu-
tion color CCDs. In [8], it was proposed that defects on color
CCDs can be detected and repaired such that a defective CCD
pixel can be detected by checking which color has been cor-
rupted among the three colors (i.e., red, green, and blue) and re-
pair the pixel by replacing with a spare CCD pixel provided. The
approaches relying on spare rows and columns of CCD pixels
and, hence, are impractical to implement since it imposes addi-
tional cost to the already expensive CCDs [9], [8]. In [1], [4], a
self correcting hardware design was presented, in which, unlike
the global replacement of defective CCD pixels, spare pixels can
replace defective or dead pixels located only on locally neigh-
boring rows or columns. Since each CCD pixel is a sensing de-
vice with its predetermined image position to receive a photon
from, replacement of a CCD pixel with a spare pixel will result
in an irrelevant image data reception afterall; thus, serious post
image reconstruction must be done.

Cost- and performance-effective testing and repair of CCD
pixel defects are critical and essential requirements to realize
high quality digital X-ray systems. Currently, the capacity of
black and white CCDs for a digital X-ray has reached larger
than 6 megapixels resulting in geometric increase in processing
speed requirement, even with a simple filtering algorithm. For
effective and efficient processing of huge amount of digital
X-ray image pixel data, digital X-ray systems require ultra-high
speed data processing with low noise rate.

The main objective of this paper is to propose a new cost
and performance-effective approach to detect and repair CCD
hardware pixel defects by proposing a novel yet effective
theoretical model for yield and repair rate. Unlike the legacy
hard-repair approaches, the proposed repair approach mainly
depends on post-processing of the digitized X-ray image data in
a real-time processing environment implemented on a field pro-
grammable gate array (FPGA). Performance characteristics of
the proposed CCD soft-repair approach and benefits from im-
plementation of the proposed hardware-oriented approach will

be also investigated through extensive parametric simulations.
Note that the proposed work is not to develop new filtering
or calibration algorithms, but to propose a hardware-oriented
image quality enhancement approach with respect to speed and
hardware reliability-driven quality of service. For implemen-
tation purpose, any off-the-shelf image processing algorithms
can be employed and realized on hardware level. An ultimate
implementation plan would be on single chip-level fabrication
[i.e., system-on-chip (SoC)] to utilize the performance benefits
of SoC technology. Fast run-time dynamic filtering of digital
image data on SoC-level is the ultimate goal of the proposed
approach.

This paper is organized as follows. In Section II, previous
works are reviewed, and basic principles of the proposed ap-
proach are introduced. In Section III, the proposed soft-testing
and repair process is evaluated. In Section IV, a parametric anal-
ysis with respect to CCDs yield and soft-repair rate is provided.
Conclusions and discussions are presented in Section V.

II. REVIEW AND PRELIMINARIES

A typical digital X-ray system is shown in Fig. 1. The op-
tical block captures the light generated by phosphor which emits
light when it receives X-ray. The CCD image sensor contains
numerous pixels and each of which senses photons using elec-
tronic well. CCDs convert accumulated photons in the electronic
well to a corresponding voltage. Then, an analog amplifier, such
as OP-amp, amplifies the signals before it directs the signals to
A/D converter for digitization. Thereafter, the sensed image data
is propagated all the way to the frame memory through the A/D
converter under the coordination of the controller. The size of
the frame memory is determined by the required digital image
quality. For example, if a 1-Mega pixel CCD is used, 2-Mbyte
RAM is needed for the frame memory when gray-scale color
depth of 16 bits is required (i.e., M pixel, each
pixel needs 16 bit (2 Byte), therefore, 2-Mbytes needs for 1 M
pixel).

Unfortunately, CCDs are not free from hardware defects. Im-
perfect fabrication and improper processing may induce defects
(referred to ashard defects) on the photo-sensitive pixels and
supporting system components in CCDs. In [4], the main causes
of CCD hard defects are categorized as follows:

1) failure of row/column pixels (either line or readout/con-
trol transistors/circuit);

2) failure of row select/reset shift register;
3) failure of column sense amplifiers;
4) failure of A/D converter;
5) failure of buffers;
6) failure of read-out/reset transistors on each photo-diode.
In practice, all the defects of the above mentioned types affect

the quality of the raw image data on the frame memory, since
the hard defects that propagated all the way from the CCD to the
frame memory through the A/D converter as shown in Fig. 1.
The effect of a hard-defect observed on the frame memory is
referred to assoft defect. Notably, a soft defective pixel on the
frame memory usually shows an abnormal value compared to its
neighboring pixel values. Without loss of generality, one-on-one
correspondence between a hard-defect on the CCD and a soft
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Fig. 1. Block diagram of a digital X-ray CCD system.

defect on the frame memory can be assumed, unless other com-
ponent failures than CCD failures are taken into account. In this
context, it is feasible to test and repair (i.e., soft-testing/repair)
CCD hard defects on soft memory-mapped level in the form of
soft defects on the frame memory. This paper only deals with
permanentCCD hard defects.

The A/D converter reads analog image data (i.e., voltage)
and convert it to corresponding digital values onto the frame
memory storage. In reality, CCDs may contain the mega-scale
number of pixels, and they may be either bad or defective (e.g.,
dead) pixels. In safety-, mission-, and deadline-critical applica-
tions, defective pixels may result in devastating consequences.
However, defective CCD pixels cannot be effectively replaced
by using traditional approach which relies on redundant de-
fect-free pixels, because each CCD pixel can sense only the
image pixel on its exact and unique physical position. Therefore,
reliability and quality enhancement efforts should be practiced
on some other level such as A/D converter or frame memory
[19]. Once the raw image data is stored in the frame memory,
it is more efficient to manipulate the image data in digital form
since post data processing techniques such as calibration, fil-
tering, and image processing algorithms can be applied. A few
image processing algorithms have been proposed for the dig-
itized images with defective pixels. In the proposed soft-repair
process of the pixels with soft-test, 33 average filter (or 3 3
mean filter) is considered. A nonvolatile flash memory is em-
ployed in the proposed approach to cache and cumulate defect
locations, referred to asnoise history data map. By using the
noise history data map stored in the flash memory, the repair
process for soft-defect pixels hit on the frame memory can be
implemented in a few different ways such as hardware, software,
or firmware-level. In the proposed system, SoC-based hardware
implementation is considered for the performance benefits of
the SoC technology. the proposed approach can be effectively
extended.

The main idea of the proposed approach is to capture and
detect noises (i.e., soft defects) hit on the frame memory
in digital X-ray system, which have been propagated all the
way from CCDs (i.e., hard defects) through A/D converter to
frame memory as shown in Fig. 1. A run-time writable flash
memory is also used to store and keep track of up-to-date
and cumulativenoise history data map, which is used to
pre-process incoming image data to enable skipping testing
and repairing previously identified noise pixel positions. The

proposed soft-testing and repair approach can be performed in
a dynamic manner, since the proposed approach dynamically
updates the pixel noise map on flash memory cache, while
conventional software-level calibration or filtering approaches
can be categorized as static. Thus, the dynamic pixel noise
map in the flash memory can be constructed in an acceptable
amount of execution time referred to aspixel noise saturation
time. Having the proposed approach implemented on hardware,
especially the whole system implemented on a single chip, the
critical issues, such as processing speed and yield of CCDs
as a measure of the reliability of the hardware structure of
digital X-ray system as addressed before, can be effectively
circumvented. The improvements due to the proposed hardware
implemented soft-repair approach is referred to asvirtual CCD
yield enhancementand it can be implemented at a minimal
hardware cost of flash memory caching without costly extra
calibration procedures.

III. PROPOSEDSOFT-TEST/REPAIR PROCESS

Notations:
Number of defective pixels at theth test/repair
cycle.
Total number of soft defects hit on the frame
memory.
Number of stuck high pixels.
Number of stuck low pixels.
Number of insensitive pixels.
Number of defective pixels.
Number of repaired pixels.
Number of tested pixels.
Insensitivity ratio.

th pixel under test and repair.
Decrease ratio of the number of defects after each
repair cycle.
Number of repaired pixels during theth repair
cycle.
Repair ratio.
Test time.
Repair time.
Time for repairing a defective pixel.
Window (i.e., time for test and repair).
Hard yield.
Virtual yield.
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Fig. 2. Flowchart of the calibration CCD system.

A general calibration process in digital X-ray systems con-
sidered in this paper is shown in Fig. 2.

Based on the reference calibration process shown in Fig. 2,
the main characteristics of the proposed soft-repair process are
summarized as follows.

1) The hard defects on the pixels on CCDs is assumed to
follow the Poisson distribution (i.e., ). Note that clus-
tered defects are not considered in this paper.

2) It is assumed that only CCDs contain defective pixels (i.e.,
dead pixels or hard defects), and all other components
(i.e., the A/D converter, the frame memory and the flash
memory), are assumed to be defect-free.

3) Without loss of generality, it is also assumed that the de-
fective pixels are propagated from the CCD to the frame
memory (i.e., soft defects) through the A/D converter.

In this paper, a simple mean filter as a criterion is used as
shown in Fig. 3.

The proposed soft-test equation is given as follows:

(1)

where are the surrounding pixels of the tested
pixel . The constant C is the threshold for determining
whether it is defective or not in testing (e.g., 10%). This means
the average value and the tested pixel value have almost same
value. If (1) holds, then the tested pixel is diagnosed as normal,
otherwise it is a defective pixel. It indicates that the tested pixel
is too bright or too dark compared to its neighboring pixels.
Actually, only a defective pixel cannot be too much bright or
dark than their neighboring pixels because of the Gaussian effect
(i.e., each nine pixel contains each other’s shading information).

After testing and repair process completed, the controller up-
dates the noise history data map in the cache (i.e., nonvolatile
memory such as flash memory or EPROM). The proposed

Fig. 3. Example of 3� 3 Filter.

noise history data map caching technique allows for at-speed
repair with minimal overhead as shown in soft-test/repair cy-
cles in Fig. 4.

Equation (1) may not effectively take into account some de-
fective pixels if they are adjacent to pixels of similar gray-scale
colors. Since different input images are to be stored and pro-
cessed in the frame memory at each test cycle successively, the
defective pixels, in general, can be detected within a certain
finite number of test/repair cycles.

There are generally three possible failure modes such as low
sensitivity, stuck low, and stuck high [9]. On the frame memory,
defective pixels are relatively brighter or darker to result in rel-
atively larger or smaller digitized data words compared to its
neighboring pixels, which can be used for testing purpose.

Each pixel on the frame memory can be cached in two bits of
flash memory. The states of caching a pixel on the flash memory
can be defined as follows.

1) 00 state: low sensitivity (i.e., ).
Something covered part on photodiode, leakage in the

photodiode, poor transfer characteristic of the transistor,
etc.
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Fig. 4. Flowchart of the proposed caching CCD system.

2) 01 state: stuck low (i.e., ).
Photodiode shorted, gate to photodiode path cut, tran-

sistor stuck off.
3) 10 state: stuck high (i.e., ).

Photodiode always charged because of the malfunction
of flushing circuit, transistor stuck on.

4) 11 state: normal pixel.
The corelation between each type of defective pixels and the

total number of defective pixels, i.e., , can be defined as
follows:

(2)

The detection approaches and threshold equations for different
type of defective pixel can be shown as follows:

1) 00 state: low sensitive pixels can be detected by the fol-
lowing equation:

(3)

where %. 10% means 10% of the maximum dig-
ital value converted from A/D converter (e.g., in the case
of the 16-bit A/D converter, the 10% is ). This
means that a low sensitive pixel displays out of the range
of the average value over 10% tolerance. This constant
value depends on the characteristic of system. If (3) holds,
then the pixel can be categorized as a low sensitive pixel.

2) 01 state: the stuck low pixels can be detected by the fol-
lowing two equations:

(4)

(5)

where and are 50% and 10%, respectively.
This means that the stuck low pixels displays near zero
range yet the average value displays more than 50% of the
range. The constant value could be changed smaller value
for tight detection. Basically, this constant value depends
on the characteristic of system. If both (4) and (5) hold,
the pixel can be categorized as a stuck low pixel.

3) 10 state: the stuck high pixels can be detected by the fol-
lowing equation:

(6)

(7)

where the reference and are 50% and 90%,
respectively. The constant value can be varied from the
give value depending on the system and quality level. If
both (6) and (7) hold, then the pixel can be tested as a
stuck high pixel.

Stuck low and stuck high pixels (i.e., State 01 and 10) can be
repaired by replacing the defective pixel values by using the
following equation. Since a defective pixel does not have any
repair information, the defective pixel value is to be replaced by
the average value of its neighboring pixel values

(8)

Note that the repair for a defective pixel defect of the
state 00 depends on how much the pixel is insensitive. Thus,
the following equation can be used to take into account the
insensitivity

(9)

where is the insensitivity ratio of the defective
pixel under test. The insensitivity ratio p can be defined as fol-
lowing equation:

where the denominator is the reference value.
The proposed CCD soft-testing/repair process scans for the

soft defects on the frame memory for a certain amount of time
(i.e., referred to as ). The proposed soft-test/repair process
repeats as many times as the total number of pixels within a
temporal window of the process [i.e., within time in (10)].
The pixels on the frame memory detected as soft defects are
repaired, and then the locations are cached and accumulated in



1718 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 52, NO. 6, DECEMBER 2003

the flash memory. The time for each test/repair process cycle is
referred to aswindow and can be expressed as follows:

(10)

where is the time for testing and detecting the defective
pixels and is the time for repairing defective pixels.
Within a certain number of test/repair cycles, all pixels will be
tested (and repaired, if needed). If the system capacity allows,
it can test and repair all pixels in one cycle (i.e., if is long
enough to test and repair all pixels captured and stored on the
frame memory).

The image data is stored in the frame memory, pixel by pixel.
is the number of defective pixels propagated from the CCD

at the th test/repair cycle, and can be calculated as follows:

(11)

where is the total number of soft defects hit on the frame
memory and is the decrease rate of after each repair
cycle. Since is the total number of defective pixels, the fol-
lowing equation can be derived as well:

(12)

where is the number of repaired pixels which are detected
by the soft-test and is a constant assumed to be a known
characteristic of the CCD. On the other hand, is the number
of pixels that can be tested within the test time , and
is the window size (i.e., ). Also, the number of
defective pixels (i.e., ) can be expressed as follows:

(13)

Therefore, the can be expressed by dividing by
, as follows:

(14)

where is the repair time for a defective pixel and
is the number of repaired pixels that can be repaired

within . From (13) and (14), the repair ratio [i.e.,
] can be expressed as follows:

(15)

(16)

The decrease ratio can be defined as follows:

(17)

Then, the number of repaired pixels aftercycles, of the
CCD system can be given as follows:

(18)

(19)

(20)

Also, (20) can be derived from (11) and (12). By definition of
normalization, can be formulated as follows:

(21)

(22)

(23)

From (17) and (16), the repair rate can be calculated as follows:

(24)

(25)

Therefore, the virtual yield is given by

(26)

(27)

where is the CCD hard yeld, and is the soft-test coverage
(i.e., the rate of detecting defective pixels out of the total number
of actual defective pixels). Therefore, from (16) and (17), the
overall virtual yield can be re-expressed as follows:

(28)

(29)

IV. PARAMETRIC ANALYSIS

In this section, the effect of the proposed soft-test/repair
process on the virtual yield of CCDs will be evaluated through
numerical simulations based on derived in the previous
section.

CCDs of 6 Mega pixels (2 K 3 K) are assumed in
this simulation. Three CCDs containing 10%, 7%, and 3%
defected pixels are considered, respectively (i.e., 10% is

). From (23), the repair rates are calculated
as shown in Figs. 5, 7, and 9. % %, and

% CCDs are used for Figs. 5, 7, and 9, respectively.
Also, the CCDs of % %, and % are
used for Figs. 6, 8, and 10, respectively, based on (27). Note
that three CCDs with 90%, 93%, and 97% hard yields are also
considered for the purpose of comparison.

For the simulation, we assumed that the large window size is
given by the time to scan and fix defective pixels for 30% of total
pixel (i.e., 2048 3072). In the same way, the medium window
size is given for 20% and the small window size is given for
10%.

A very high yield(i.e., 99.5%) CCD is adopted for the pur-
pose of comparison in Fig. 6, 8, and 10. Note that the conven-
tional method uses a defective pixel map on PC or workstation
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Fig. 5. Repair rate (hard-yield 90%).

Fig. 6. Virtual yield (hard-yield 90%).

Fig. 7. Repair rate (hard-yield 93%).

not in hardware level. So, we compare proposed soft-test repair
approach with very high yield (99.5%) without repair.

By comparing the results of Figs. 5–10, the following obser-
vations can be drawn.

1) The proposed soft-test/repair approach is beginning to
outperform the conventional calibration approach after a
certain number of test/repair cycles in terms of virtual

Fig. 8. Virtual yield (hard-yield 93%).

Fig. 9. Repair rate (hard-yield 97%).

Fig. 10. Virtual yield (hard-yield 97%).

yield. In Fig. 9, the repair rate approaches 100% at
with large window size. Therefore, just a a certain number
of initial image shots are needed to repair the defective
pixels building a complete noise history data map on the
cache. Thereafter, it will be just a matter of preprocessing
incoming image data with reference to the complete noise
history data map on the cache. In Fig. 5, the convergence
to 100% is delayed to with large window size.
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The increase rate of the repair rate is determined by
based on (23).

2) The proposed approach achieves high virtual yield after a
certain point compared to the conventional approach re-
gardless of the hard-yield and expensive CCDs being used
in the conventional approach, as shown in Figs. 6, 8, and
10 in which the CCDs have % %,
and %, respectively. In Fig. 6, the virtual yield
of the proposed repair process with small window size
is starting to exceed the repair rate of high yield with
large window at . After the number of repair cy-
cles exceeds , the virtual yield converges to 100%.
It is higher than the high yield CCD (i.e., 99.5%) and im-
proved by 10%. This is very significant virtual yield en-
hancement by all means, which is very desirable in high
resolution digital X-ray systems.

3) In Figs. 5, 7, and 9, the hard yield affects the repair
rate. All the yields approach up to 100% regardless of the
low initial hard yields. However, this does not mean that
any low hard yield such as % can virtually be
enhanced to 100%. CCDs may or may not have reparable
defects (i.e., not clustered defects). Actually, the criterion
of acceptable image depends on the requirement of the
system such as the resolution of system [i.e., line per mil-
limeter (lpm) or dot per inch (dpi)], since some systems
cannot tolerate clustered defective pixels. However, most
medical systems use the binning mode (i.e., combining
the pixel by hardware or software) for gathering more
photons and increasing the image quality.

4) In Figs. 5, 7, and 9, the increase rate of the repair rate
is shown and it depends on the window size. The higher
hard-yield CCD quickly approaches 100% repair rate.
However, even the small window size can achieve 100%
repair rate just in a few more repair cycles. From this
result, even if new defective pixels hit, the repair rate
can achieve 100% by using the proposed soft-test/repair
process. In practice, a CCD price depends on its grade
which is determined by the number of defective pixels.
Therefore, this approach can reduce the cost of products
while increasing the image quality.

5) The resulting virtual yields are shown in Figs. 6, 8, and
10, based on (27). The hard yields determine the initial
virtual yields. After a certain number of repair cycles, all
the virtual yields converge to 100%.

From the results and findings shown so far, it can be con-
cluded that the hard defects which mapped on the frame memory
can be effectively repaired by the proposed soft-test/repair
approach. Also, the repair rates and the virtual yields approach
100% in a small number of repair cycles. Furthermore, the
proposed approach can enhance the repair rate as high as up
to 100%, even though new defective pixels hit due to physical
shocks or exposing to excessive X-ray.

V. CONCLUSION

This paper has presented a soft-test/repair approach for
CCD-based digital X-ray systems through sound establishment

of a novel theoretical modeling and analysis of the proposed
test/repair procedure. It has been revealed that the yield of
the CCD is one of the most critical components affecting
the quality of service (QoS) of a digital X-ray system. There
are two possible solutions to cope with the defective pixel
problem in CCDs; one is the hard-repair approach and another
is the proposed soft-repair approach. The proposed soft-repair
approach is to circumvent defective pixels at the digitized
image level; thereby, it is inexpensive to practice and on-line
repair can be done for noninterrupted service. It tests the
images to find the defective pixels and filter the defects at
the frame memory level, and caches them in a flash memory
in the controller for future use. The controller cache keeps
accumulating all the noise coordinates, and preprocesses the
incoming image data from the A/D converter by repairing
them. The algorithms can be implemented on hardware level
(i.e., on the controller) to speed up the process. Unlike the
calibration approaches shown in [8], [19], the proposed approach
stores the noise history map dynamically on hardware level
and always keeps the up-to-date data within proper window
size. Numerical simulations have revealed that the proposed
soft/hard approach using the proposed soft-testing and repair
process will outperform the conventional hard approach after
a certain break-even point in terms of virtual yield, thereby,
ultimately realizing high QoS of digital X-ray systems.
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