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Abstract 

In this paper we highlight a clustering algorithm for the purpose of identifying sleep and wake periods directly from 
actigraphy signals. The paper makes use of statistical Principal Component Analysis to identify periods of rest and 
activity. The aim of the proposed methodology is to develop a quick and efficient method to determine the sleep 
duration of an individual. In addition, a robust method that can identify sleep periods in the accelerometer data when 
duration, time of day varies by individual. A selected group of 10 individual’s sensor data consisting of actigraphy 
from an accelerometer (3-axis), near body temperature, and lux sensors from a single GENEActiv watch worn on 
the non-dominant hand. The actigraphy of each individual was collected 24 hours a day for a period spanning 80 
days. We highlight that a simple data preprocessing stage followed with a 2 phase clustering method provides results 
that align with previously validated methodologies.  
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1. Introduction 

“Sleep is the single most effective thing you can do to reset your brain and body1”  Scientifically, sufficient 
sleep has emerged as a critical variable is our health and well-being. Inadequate sleep, erodes mental and physical 
well-being whilst often exacerbating health problems2- from obesity3, depression4, diabetes5,  and cardiovascular 
incidents6, 7 to Alzheimer’s8 and cancer9.   Moreover, sleep problems may go undetected or unaddressed for years.  
One study documented an average of 7.3 years from the onset of obvious indicators of sleep apnea to diagnosis (range 
1 month to 40 years)10.  Sleep apnea may affect 20% of the population11, increasing the risk of stroke11, diabetes12,
obesity11, car accidents13, and mortality14.  In addition, a workforce with inadequate sleep is less efficient, costly, and 
less productive15. In professions that require high accuracy and safety levels, sleeplessness can have detrimental 
consequences. For example, an estimated 810,000 sleep-related collisions per year resulting in 1,400 fatalities at a 
cost of $16 billion dollars in the United States alone16. Hence, the premise that a well-rested individual will be more 
productive, safer, and healthier comes with a plethora of benefits, in cost reductions from healthcare insurance, to less 
accidents/increased safety, and higher levels of productivity. To improve their health and performance, people need 
to understand their unique sleep and wake patterns and how they are evolving over a lifetime or in specific situations.  
To address this problem, wearable sensing devices have been developed that produce informative data in a passive, 
non-intrusive manner.  Wearables spread sleep awareness beyond clinicians and researchers to include the millions of 
users who rely on health applications to track their physical activity and unique sleep patterns 9.  The modern wearable 
devices are now embedded with a multitude of sensors which include but not limited to: ambient light sensors, 
accelerometers (three axis), skin temperature sensor, and ambient temperature sensors. The most common package 
for such a wearable device is often a watch that is worn in the non-dominant arm of the individual under study, who 
wears the device and collects all activity through such a sensor package during a period of days or weeks. These types 
of studies are often referred to as an actigraph or actigraphy study, which are considered a cost effective opportunity 
to conduct longitudinal, naturalistic studies of the sleep-wake system. It is this knowledge that is leading to the growth 
in the development of devices associated with sleep health, such as wearable sensing devices.  

The analysis of actigraphy has been extensively studied over the last three decades. Since the seminal works of Cole 
et al.17 and Sadeh et al.18, 19 in the 1990s, the goal to automate the classification of sleep and wake periods directly 
from an accelerometer signal has been pursued and continues to gain interest within the research and industry 
communities. A recent review on the approaches to convert activity data to sleep/wakefulness patterns can be found 
in20.  Despite the inherent interest, there is not a single algorithm that can be applied to extract meaning from the 
enormous amounts of data generated every day with wearable technologies.  To address this problem, we employed a 
paired clustering approach to determine periods of ‘rest’ and ‘activity’.  For the purposes of ‘proof of concept,’ of the 
10 individuals two were directly compared. This comparison of  the ‘rest’ period duration was done on these two 
individual for 29 days using our proposed methodology and the ActiGraph algorithm that has been previously 
validated21.   

1.1. Data Details 

Activity data were collected on 10 individuals for 80 continuous days. Each individual wore the GENEActiv-
Sleep22 watch 24 hours a day, with the exception of charging time. Charging time was done once a month and often 
resulted in only a gap of 2-6 hours without data. The data was collected at a fidelity of 10Hz and was down sampled 
to supply averages of acceleration, lux, and temperature. The watch collected the following datum for each minute: 
time stamp; mean x, mean y, mean z axis acceleration; mean lux; sum vector magnitudes (SVM); x axis, y axis, and 
z axis standard deviation; and peak lux. The SVM is calculated internally, by employing the following the 
equation,  where are the mean x, mean y and mean z actigraphy counts 
and 1(g) is subtracted. That is, (g) corresponds to a unit of gravity. Therefore, when the accelerometer is static and the 
earth’s gravitation pull is the only acceleration, the result of this will be zero. The data is supplied as a binary file that 
can be downloaded from the watch. This binary file is then converted into a comma separated file (*.csv) by using the 
supplied software from GENEActiv. Each line of the csv file summarizes one minute of sensor readings.   
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2. Methodology 

The rest versus active period recognition methodology is comprised of two main steps: data pre-processing 
and clustering. In the pre-processing step the raw actigraphy data collected is transformed into a form more amenable 
to clustering. Then based on the characteristics of the data the most appropriate clustering tool is applied to generate 
two clusters. These the two main clusters are to identify the part of the actigraphy time series, which is a rest period 
and similarly identify the period of activity. In the pre-processing step it is necessary to determine if the actigraphy 
count time-series is in a form that would lend itself to the application of well know and established clustering 
techniques and tools. In Figure 1, an individual’s 24 hours actigraphy SVM is illustrated (1440 minutes). There is a 
period of low activity from minute 450-1000 (roughly 9.1hours), which can be deemed a rest period. However, there 
is a large number of observations during periods of activity that have low actigraphy counts, this is common as low 
movement does not necessarily mean that an individual is at full rest. In Figure 2, a histogram illustrates that the 
actigraphy signal is highly skewed with low actigraphy counts being far more common.  

Figure 1: An entire day's actigraphy counts for one 
individual (SVM) 

Figure 2: SVM histogram across all individuals for one 
day.  

The data contains all sensor data, acceleration, lux, temperature and all will be combined through the use of Principal 
Components (PCs). Thus, since the acceleration data is skewed it is necessary to standardize the data. Thus, the 
accelerometer, temperature, and lux data were scaled and centered.  "Centered" subtracts the mean while "scaled" 
divides by the standard deviation. This is necessary as we seek to incorporate the information from all sensors. In the 
context of PC Analysis (PCA), the longer the tail the more its influence. The primary justification for transforming 
our data is due to the range of values are significantly different from one sensor to another. Moreover, if the 
relationships between the variables analysed are not linear, the values of correlation coefficients can be lower. Thus, 
it is sometimes useful to transform the original variables prior to the Principal Component Analysis to "linearize" 
these relationships. A common approach is the use of the Box-Cox transformation, which is in the family of power 
transformations indexed with parameter, , which is estimated from the data directly. The variance is changing with 
time, therefore; the process is nonstationary. After applying Box-Cox with a particular value of lambda the process 
should look stationary. Specifically, sensor readings are centered about their respective means and divided by their 
respective standard deviations. Next, the Principal Component Analysis (PCA), which will be used to concisely 
represent the data, is applied. After this application the PCA scores are determined. These PCA score are filtered using 
a two sided moving average, which will require the moving window length to be determined empirically. The 
successful completion of the moving average filtering completes the data pre-processing step and can now be 
clustered. In the clustering step, the k-means clustering technique is carried out. First, an optimal number of clusters 
is determined by applying k-means clustering for many values of . The premise that an individual rests for a certain 
portion of a 24 hour period. The 10 participants were asked to determine they duration of rest in a 24 hour period for 
the duration of the study. Imperially, the group reported a mean of 5.7 hours of daily sleep with a standard deviation 
of 2.7.  The cluster closest to containing 5.7 hours of all sensor readings is deemed to be the 'rest' cluster. Duration of 
rest can then be determined by counting how many sensor readings fall into the rest cluster. 
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3. Results 

  All of the computation and applications were carried in the R package 3.3.3. The pre-processing step yielded a � �
0.2 for the Box Cox transformation. The 24 hr (12pm to 12pm) time series were filtered using a 30 minute two sided 
moving average. Then centering, scaling, and a power transformation was applied. From a scree analysis only two 
principal components are needed to represent the all sensor readings, that is, more than 95% of variation in the data 
was contained by two PCs, which was determined via a scree plot. Next, the application of the k-means algorithm was 
applied on the two principal component scores. Figure 3 depicts the sample of PCA scores. It can be easily seen that 
when plotting the two scores they result in a non-convex set. Moreover, k-means can be paired with another algorithm 
to describe non-convex clusters23. In this case the k-means algorithm was paired with another algorithm, hierarchal 
clustering, to determine better clusters. Figure 5 shows the k means initialization, k=6 and was reduced to k=3.  
Through the employment of the gap statistic, we determined our data is best clustered into three groups. It should be 
noted that a single linkage hierarchal can be directly applied to the data. The purpose of the k means is to take 
advantage of the k mean capability to deal with large sets. Simply, the goal is to iteratively determine the tightest 
clusters, that is, we repeatedly pick the two clusters that are closest together and merge them. It is important in this 
scenario that we use the “single-link” method, in which the distance between two clusters is defined by the distance 
between the two closest data points we can find, one from each cluster. Figure 4 illustrates the clustering for a single 
day’s actigraphy for one individual after the paired clustering was carried out.  Next, the ‘rest’ cluster must be 
identified. On average, humans are asleep for one third of their lives. Because of this, the cluster closest to containing 
one third of all sensor readings is deemed to be the ‘sleep’ or ‘rest’ cluster. This results in the identification of a ‘rest’ 
cluster which was found to be cluster 2 in Figure 4 and is shown in days’ time series for one individual in Figure 6.  
Figure 6 illustrates the rest period (cluster 2) in black and the active clusters (cluster 1 and 2) data as red in colour. 
Duration of sleep can then be determined by counting how many sensor readings fall into the sleep/rest cluster.  

3.1. Validation of Rest Duration Periods 

Through the employment of the proposed methodology, a ‘rest’ duration period can be determined for each 24 hour 
period. However, often the validation of any algorithm that seeks to score sleep/wake states is often validated through 
the collecting actigraphy as well as electroencephalogram (EEG)24 simultaneously on the same individual during the 
same period of time. This form of validation is common and has been employed in various studies25-28.  Here we 
validate by comparing our duration to a known validated algorithm produced by GENEActiv, which has been 
rigorously validated in 29 and 21.  Thus, the validation consisted of taking 29 days for two individuals chosen at random 
from the 10 participants and a continuous period of 29 days randomly chosen and duration was determined for ‘rest’ 
every 24 hour period (12pm -12pm). The GENEActiv duration was determined using their software and algorithm 
and the duration value was then derived using our proposed methodology.  The results are illustrated in Figure 7 and 
Figure 8. While the duration values statistically differed according to the ANOVA both having P-value of 0.00000, 
the difference was on average 44 minutes and at its maximum difference were only observed to be 80 minutes apart. 
Our methodology generally underestimated the duration of the rest period in comparison to the GENEActiv 
Algorithm.   

4. Conclusions 

This highly automated sleep recognition methodology is very useful because it is tailored to each individual subject 
and set of sensors. Furthermore, its use of PCA allows it to holistically analyze all sensor information as opposed to 
only using acceleration. Furthermore, the results showed that although the duration by the proposed algorithm was 
generally lower than that of GENEActiv, the use of such a simple algorithm can provide quick and effective results. 
Future works should focus on the validation of the clustering algorithm using EEG data. Furthermore, an exploration 
of other clusters should be done as they may highlight periods prior to the ‘rest’ state.  Overall our proposed 
clustering approach can be used across individual and devices with minimal computational cost. The combination of 
k means with single link clustering turned out to be a robust method for actigraphy. It is less sensitive to 
initialization, and less sensitive to the choice of parameters making it more robust across individual variability in 
activity and rest. K means does the brunt of the work and then once completed the more expensive hierarchical 
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method is applied to reap its benefits.  

Figure 3: Pre-processed data PCA score sample Figure 4: Optimal Clustering 3 for one individual 

Figure 5: Six group clustering Figure 6: Rest (black) plotted with active (red) periods 
during a single day. 

Figure 7: ANOVA result for first sample. Figure 8: ANOVA result for second sample 
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