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Indirect Adaptive Control for Synchronous Generator:
Comparison of MLP/RBF Neural Networks Approach

With Lyapunov Stability Analysis
Jung-Wook Park, Member, IEEE, Ronald G. Harley, Fellow, IEEE, and

Ganesh K. Venayagamoorthy, Senior Member, IEEE

Abstract—This paper compares two indirect adaptive neu-
rocontrollers, namely a multilayer perceptron neurocontroller
(MLPNC) and a radial basis function neurocontroller (RBFNC)
to control a synchronous generator. The different damping and
transient performances of two neurocontrollers are compared
with those of conventional linear controllers, and analyzed based
on the Lyapunov direct method.

Index Terms—Indirect adaptive control, Lyapunov transient
stability analysis, multilayer perceptron neural network (MLPN),
on-line training, radial basis function neural network (RBFN),
synchronous generator.

I. INTRODUCTION

SYNCHRONOUS generator in a power system is a non-
linear, fast acting, multi-input multi-output (MIMO) device

[1], [2]. Conventional linear controllers (CONVC) for the syn-
chronous generator consist of an automatic voltage regulator
(AVR) to maintain constant terminal voltage, and a speed gov-
ernor to maintain constant power and constant speed at some set
point. They are designed to control, in some optimal fashion, the
generator around one particular operating point; and because of
nonlinearities, at any other point the generator’s damping per-
formance is degraded. Artificial neural networks (NNs) offer an
alternative as intelligent nonlinear adaptive controllers, called
neurocontrollers.

Researchers have until now used two different types of neural
networks for the neurocontrollers of generators, namely, a mul-
tilayer perceptron neural network (MLPN) [3]–[7] or a radial
basis function neural network (RBFN) [8]–[12] both in single
and multimachine power system studies. Proponents of each
type of neural network (NN) have claimed advantages for their
choice of NN, without comparing the performance of the other
type for the same study. The applications of NNs in the power
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Fig. 1. Plant model used for control of a synchronous generator connected to
an infinite bus.

industry are expanding, and at this stage there is no authorita-
tive fair comparison between the MLPN and the RBFN based
neurocontrollers.

This paper extends the previous work of the authors [6],
[12] and makes a new contribution by directly comparing the
two continually on-line trained neurocontrollers (MLPNC and
RBFNC) (in the application of the indirect adaptive control
to a synchronous generator) and analyzing different transient
stability performances of the neurocontrollers based on the
Lyapunov direct method.

II. INDIRECT ADAPTIVE NEUROCONTROL

USING BACKPROPAGATION

A. Plant Modeling

In Fig. 1, the synchronous generator, turbine, exciter and
transmission system connected to an infinite bus form the plant
(dotted block in Fig. 1) that has to be controlled. Nonlinear
equations are used to describe the dynamics of the plant
in order to generate the data for the NN controllers and
identifiers.

In the plant, and are the real and reactive power at
the generator terminals, respectively. is the transmission line
impedance, is the mechanical input power to the generator,

is the generator field voltage, is the infinite bus voltage,
is the generator speed deviation, is the terminal voltage,

1045-9227/04$20.00 © 2004 IEEE
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Fig. 2. Structure of the overall system for the indirect adaptive control using
a neuroidentifier and neurocontroller.

is the reference exciter voltage, and is the turbine input
power. The switches and in Fig. 1 determine the type
of controllers to be used: namely the neurocontroller (RBFNC
or MLPNC), or the CONVC consisting of governor and AVR.
More detailed explanations are given in [6] and [12]. The exciter
and turbine models used in Fig. 1 are typical [1] of those on large
turbogenerators. Block diagrams and parameters of the CONVC
are given in [6].

B. Indirect Adaptive Control

The structure of the overall system for the indirect adaptive
neurocontrol [6], [12] of the plant, using the neurocontroller
(RBFNC/MLPNC) and neuroidentifier (RBFNI/MLPNI), is
shown in Fig. 2.

The MLPN and RBFN structures and their associated
equations (used in Fig. 2 for the neuroidentifier and neu-
rocontroller) are given in [5] and [12]. The plant input
vector, and the plant output vector, in Fig. 2 are

and
for the on-line training with deviation signals. The neu-
roidentifier’s output, , where

. More de-
tailed explanations (especially for the following two issues)
for the indirect adaptive control strategy are given in [6]:

• design of the desired response predictor;
• on-line training process in two phases (precontrol phase

and postcontrol phase) for the neuroidentifier and neu-
rocontroller.

Then, the estimated control signals1 (shown in Fig. 2)
through the neuroidentifier are

1The partial derivatives are computed through the neuroidentifier using the
backpropagation algorithm [13], instead of the plant, to derive estimates of the
dynamic derivatives of the instantaneous total least square error energy J (k+
1) = [E (k + 1)] =2 (see Fig. 2) between the identifier’s output and the
predictor’s output at time k + 1, with respect to the input vector u(k) at time
k. This method (based on the backpropagation algorithm) gives a direct method
to compare the performances of the RBFN and MLPN because the computation
of û(k) requires calculating the different network Jacobians for the two NNs
(MLPN and RBFN) during the real-time control of the plant [12].

expressed as follows (step-by-step derivations for (1) and (2)
are given in [12]):

(1)

(2)

where

• and denote the output layer and hidden layer, respec-
tively;

• is the index of a particular neuron in a layer, and is
the number of neurons in the hidden layer;

• is the regression vector as the activity of the neuron,
and is the weights of neural networks;

• is the th center (of RBF unit) in the hidden layer of
the RBFN (refer to [5] and [12]);

• The functions and are
and , respectively.

C. Lyapunov Transient Stability Analysis

The stability analysis of the neurocontrollers provides the in-
formation whether the controllers can allow the generator to be
operated closer to its stability limit during steady state by im-
proved damping transient performance.

Consider the following a single-machine connected to an infi-
nite bus (SMIB) power system model. The candidate Lyapunov
function (positive-definite around the equilibrium point) as a
type of energy function and its time derivative [14], are given
as follows.

(3)

(4)

where

• The subscripts , and refer to “kinetic,” “potential,”
and “field,” respectively;

• , and are the inertia coefficient, mechanical
power, and electrical power, respectively;

• is the q-axis component of transient induced armature
voltage;

• A “hat” above of a symbol corresponds to the postfault
equilibrium point;
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• , where ,
and and are the synchronous and transient d-axis
generator reactance, respectively. is an element of the
transfer admittance matrix;

• is the damping coefficient, and is the excitation
voltage;

• is the open circuit armature transient time constant,
and is the q-axis component of steady state induced
armature voltage;

• .
Consequently, in (4) is more negative when the term

on the right-hand side is more positive, therefore,
the system can return the faster to the initial equilibrium point.
In other words, any given control improves (in the Lyapunov
sense) the transient stability of the system if it maximizes
in magnitude the negative value of at each instant of the
transient state. With equations that defines
the postfault steady-state synchronous emf, the following
equations can be expressed [14]:

(5)

where is the d-axis armature reaction reactance, and is
the field current. Finally, in (4) can be modified as follows:

(6)

where is the increment in the field current, and is directly
determined by (which is a controlled output from the neu-
rocontrollers) with a proportional factor . In other words, the
neurocontrollers (MLPNC/RBFNC) generate the control vector

that follows the estimated control
signal in (1) and (2), thereby, affecting directly.
To compare the magnitude of in (1) and (2), the notation
is used to indicate “order of magnitude” for a function based on
Definition 1.

Definition 1 (Order of Magnitude): Let and be
real-valued functions. The function is as if
there is a constant (independent of ) such that

(7)

for all in a neighborhood of or, to put it another way, if

(8)

First, the term in (1) and (2) has
the same at the start of the transient condition because

for MLPNI and RBFNI are same. The of the
other terms in (1) and (2) at the start of the transient condition
is as follows:

• and
,

Fig. 3. Step changes in reference voltage of exciter (P = 1 pu,
Q = 0:234 pu): Rotor angle (�).

•
and

Consequently, the order of magnitude of for the RBFNC
is bigger than that for the MLPNC. This effect makes in (4)
to be more negative for the RBFNC than for the MLPNC, re-
sulting in the better damping and faster transient responses of
the RBFNC for the synchronous generator to return to its initial
equilibrium point after a disturbance (shown in the next section).

III. CASE STUDIES IN TIME-DOMAIN SIMULATION

The damping and transient performances of the neurocon-
trollers are now evaluated by two different types of disturbances,
namely a % step change in the exciter and a three phase short
circuit at the infinite bus.

A. % Step Changes in the Reference Voltage of the Exciter

First, the plant is operating in a steady-state condition (
pu, pu). At s, a step increase in the ref-

erence voltage of the exciter is applied, resulting in a 5%
step increase from the nominal value of the terminal voltage. At

s, the change in is removed, and the system returns
to the initial steady-state condition. The rotor angle and ter-
minal voltage of the generator are indicators of how well
the controllers are able to damp the system after this disturbance.

The results in Figs. 3 and 4 show that the neurocontrollers
improve the transient system damping compared to CONVC
and AVR PSS (AVR combined with power system stabilizer
(PSS): the block diagram of the PSS is shown in [15], and the
selection of parameters for the PSS was made by investigating
the desired steady state and transient performances depending
on its objectives) in Fig. 1, and also that the RBFNC outperforms
the MLPNC, i.e., the overshoot is less, and the desired point is
reached faster.
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Fig. 4. Step changes in reference voltage of exciter (P = 1 pu, Q = 0:234
pu): Terminal voltage (V ).

Fig. 5. Three phase short circuit test (P = 1 pu, Q = 0:234 pu): Rotor
angle (�).

B. Three Phase Short Circuit Test to Represent a Large
Impulse Type Disturbance

The plant is operating at the same steady-state condition
( pu, pu). At s, a temporary three
phase short circuit is applied at the infinite bus for 100 ms.
This test is like a severe impulse type disturbance and is used
to evaluate the performance of the controllers to see if they can
damp out the oscillations after the large disturbance and return
the generator to its initial stable operating condition.

A comparison of the performance of the CONVC, AVR
PSS, MLPNC, and RBFNC for this test appears in Fig. 5. It
shows that not only do the neurocontrollers again damp out the
oscillations more effectively than the CONVC and AVR PSS,
but once again that the RBFNC provides a better damping per-
formance than the MLPNC.

C. Three Phase Short Circuit Test Close to the Stability Limit

The operating point is now changed to a different steady-state
condition (presumably, the CONVC and AVR PSS were not

Fig. 6. Three phase short circuit test close to the stability limit (P = 1:1 pu,
Q = 0:19 pu): Rotor angle (�).

tuned at this point) from the previous test. The active power from
the generator is increased by 10% to pu, and

pu, which is closer to the stability limit of the generator.
At s, the same 100 ms three phase short circuit is again
applied at the infinite bus.

The result of this test, comparing the performance of the
CONVC, AVR PSS, MLPNC, and RBFNC, is shown in
Fig. 6. This result shows that the synchronous generator con-
trolled by the CONVC goes unstable and loses synchronism
after the disturbance, as indicated by the fact that the rotor
angle continues to increase. In contrast though, the AVR PSS,
MLPNC and RBFNC still control the generator effectively in
a stable mode. Moreover, the RBFNC once again provides a
better damping performance than the MLPNC and AVR PSS
for this test. This result shows that a generator equipped
with neurocontrollers can be operated at 110% power and
still remain stable after such a severe fault. This has major
implications on being able to operate generators (controlled
by neurocontrollers) closer to their stability limits. Thermal
limits may now be violated and would have to be verified in a
separate study.

IV. CONCLUSION

This paper compared the performance of a multilayer
perceptron neurocontroller (MLPNC), a radial basis function
neurocontroller (RBFNC), and a conventional controller
(CONVC), to control a synchronous generator connected to
a power system. The neurocontrollers based on the indirect
adaptive control scheme use deviation of signals as inputs and
outputs, and undergo continually on-line training based on
the backpropagation algorithm. The different damping and
transient performances of the two neurocontrollers have been
analyzed using the Lyapunov direct method.

The results show that the MLPNC and RBFNC provide
more damping than the CONVC and AVR PSS. Moreover,
the RBFNC is more effective than the MLPNC. The improved
damping performance by the neurocontrollers allows the gen-
erator to be operated closer to its stability limit during steady
state, and still remain stable after severe disturbances. The
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safety margins currently observed for conventionally controlled
generators can therefore be reduced by using neurocontrollers.

In general, the indirect adaptive neurocontrol method using
backpropagation can be effective when the neurocontrollers are
trained on-line with deviation signals, and the RBFN should be
preferred to the MLPN.
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