
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 2007

Training Winner-Take-All Simultaneous Recurrent Neural Training Winner-Take-All Simultaneous Recurrent Neural

Networks Networks

Xindi Cai

Danil V. Prokhorov

Donald C. Wunsch
Missouri University of Science and Technology, dwunsch@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
X. Cai et al., "Training Winner-Take-All Simultaneous Recurrent Neural Networks," IEEE Transactions on
Neural Networks, Institute of Electrical and Electronics Engineers (IEEE), Jan 2007.
The definitive version is available at https://doi.org/10.1109/TNN.2007.891685

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229201381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TNN.2007.891685
mailto:scholarsmine@mst.edu

674 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

Training Winner-Take-All Simultaneous
Recurrent Neural Networks

Xindi Cai, Member, IEEE, Danil V. Prokhorov, Senior Member, IEEE, and Donald C. Wunsch II, Fellow, IEEE

Abstract—The winner-take-all (WTA) network is useful in data-
base management, very large scale integration (VLSI) design, and
digital processing. The synthesis procedure of WTA on single-layer
fully connected architecture with sigmoid transfer function is still
not fully explored. We discuss the use of simultaneous recurrent
networks (SRNs) trained by Kalman filter algorithms for the
task of finding the maximum among N numbers. The simulation
demonstrates the effectiveness of our training approach under
conditions of a shared-weight SRN architecture. A more general
SRN also succeeds in solving a real classification application on
car engine data.

Index Terms—Backpropagation through time (BPTT), extended
Kalman filter (EKF), simultaneous recurrent network (SRN),
winner-take-all (WTA).

I. INTRODUCTION

THE simultaneous (or settling) recurrent network (SRN)
is designed to approximate static mappings. (See Fig. 1.)

State variables of such a recurrent network are initialized, and
the network as a dynamic system is iterated (usually) until its
outputs converge. Thus, inputs to the network become mapped
to certain outputs, thereby enabling the network to approximate
mappings which are more complex than static mappings ap-
proximated with conventional feedforward networks [9]. More-
over, other settling network architectures such as the Hopfield
network, applied to static optimization tasks, specify all the
weights and connections in advance based on the analysis of
various energy functions [16]. We contend that, especially for
large scale problems, it would be useful to be able to train the
weights, rather than obtain them via application of an analytical
process. This theoretical consideration is among the motivators
for our work.

Backpropagation through time (BPTT) resolves the recur-
rency by unfolding the temporal operation of the network into a
layered feedforward network. Well-organized BPTT can handle

Manuscript received September 26, 2005; revised June 25, 2006 and
September 29, 2006; accepted October 4, 2006. This work was supported
in part by the National Science Foundation and the M. K. Finley Missouri
endowment.

X. Cai is with the American Power Conversion Corporation, O’Fallon, MO
63368 USA (e-mail: xindi.cai@apc.com).

D. V. Prokhorov is with Toyota Technical Center—USA, Ann Arbor, MI
48105 USA (e-mail: dvprokhorov@gmail.com).

D. C. Wunsch II is with the Applied Computational Intelligence Laboratory
(ACIL), Department of Electrical and Computer Engineering, The University
of Missouri—Rolla, Rolla, MO 65409 USA (e-mail: dwunsch@ece.umr.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2007.891685

more general architecture efficiently and homogenously than
other recurrent methods [11]. In literature, BPTT is mistakenly
interpreted by many as the learning algorithm. In this paper, it
is actually just the method of obtaining temporal derivatives,
whereas the extended Kalman filter (EKF) algorithm is the
weight update method utilizing these derivatives [20]. The
EKF method is formulated in terms of state-space concepts,
providing efficient utilization of the information contained in
the input data [29]. Here, we train a shared weight version of the
SRN. The truncated BPTT with multistream EKF is employed.
Very good results are also obtained with the nonlinear Kalman
filter algorithm. In addition, we verify that the SRN can be used
in a practical engine diagnostic application.

In Section II, we discuss the relationship of trained SRNs to
related ideas for WTA, such as MAXNET and the Hopfield net-
work. In Section III, we define the SRN and training algorithm.
In Section IV, we describe the shared-weight SRN. We illus-
trate our simulation results in Section V with conclusions in
Section VI.

II. RELATED WORK

The winner-take-all (WTA) network has played an important
role in the design of learning algorithms; in particular, most
unsupervised learning algorithms such as competitive learning,
self-organizing map and adaptive resonance theory—and has
become the fundamental building block of many complex
systems. Several methods have been proposed to implement
the WTA: MAXNET [1], a discrete-time model, was pro-
posed in order to implement the Hamming network. Several
models based on crossbar topology exist [2]–[4]. In very large
scale integration (VLSI), a series of compact complementary
metal–oxide–semiconductor (CMOS) integrated circuits and
cellular-neural-network-based architectures were designed for
realizing the WTA function [5]–[8]. While architectures such as
the MAXNET and the Hopfield network have been extensively
studied in literature, little attention has been given to the issue
of training such networks for various problems. Generally, the
MAXNET and the Hopfield network are constructed, rather
than trained. The simultaneous recurrent networks (SRNs),
however, tune weights to learn an optimal iterative approxi-
mation to a function by minimizing error. By analyzing the
transient states of the dynamic system, the SRN tries to esti-
mate the general functional relationship, rather than building
a match-up table based on similarity to previous examples
[9]. Research on intelligent control [22] shows that iterative
relaxation SRN possesses is crucial in those tasks, where
feedforward networks do not appear powerful enough. To the
best of our knowledge, there is little existing technique to train

1045-9227/$25.00 © 2007 IEEE

CAI et al.: TRAINING WTA SIMULTANEOUS RECURRENT NEURAL NETWORKS 675

Fig. 1. Architecture of SRN implementing (1). This particular system assumes that only explicit outputs of the network are fed back as additional inputs (output
feedback), but other SRN architectures are possible, e.g., those which employ state feedback. In our WTA problem, f is defined as a single-layer fully connected
network with a bipolar sigmoid transfer function S [see (4b)]. Y (t) is the transient output vector at time t with Y (t) equal to the previous output vector
Y (t� 1). (a) General format of SRN. (b) Flow chart of unfolded SRN, in both temporal and spatial directions.

SRN for WTA in the literature. Therefore, study of training
methods for SRN, through the WTA problem, will help us to
extend SRN to less tractable problems in the future.

The combination of BPTT and EKF algorithms is studied for
training weights in WTA networks with a smooth, nonlinear
transfer function. We are given real numbers, to

, and wish to determine the maximum. The competition in an
-output network is supposed to result in only one positive

output to denote the largest component, the rest of the outputs
being negative.

Most of the work on WTA is based on the saturation transfer
function . In such a system, the “winning” component usu-
ally has the value of “1”, while all the “losing” components

have the value of “ ”. Let or
and

for . In an -neuron
WTA system, , where

is the desired output. Due
to the properties of the saturation function, the equilibrium of
the system must be in the region of [18]. We interpret the
equilibrium the same way as it is done in the Hopfield network
literature, namely, the fixed point at which the neural activations
arrive during their evolution in time.

To illustrate the challenges involved in even a simple SRN
architectures, consider the performance of MAXNET with a
saturation transfer function. The single-layer fully connected

676 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

MAXNET, with the following connection weight matrix, can
be described as:

Such a network must have a nonzero bias to converge to the de-
sired output . Also, the MAXNET cannot achieve the desired
output in a sparsely connected situation, i.e., when some of
the nondiagonal elements of the weight matrix are zero. In [18],
Michel et al. proposed a synthesis procedure for the sparsely
connected situation. However, [19] shows that the synthesis pro-
cedure results in a trivial solution for the WTA problem since the
desired outputs are linearly independent. Furthermore, there
is a lack of procedure for constructing or training networks with
a sigmoid transfer function, the most frequently used one, for
the WTA problem.

III. SRN AND TRAINING ALGORITHM

A. SRN

SRN is an architecture used for function approximation prob-
lems [9], [10]. The SRN uses recurrence to approximate a static
deterministic mapping (Fig. 1). This mapping is
computed by iterating the following:

(1)

where is any feedforward network or system, and is de-
fined as

(2)

The recurrence in SRN is invoked at each time , but it is
not visible from the outside of the network. In applications, the
number of iterations can
be limited to a reasonably large number .

B. BPTT

BPTT can be viewed as unfolding a recurrent network from
a time evolving architecture into its multilayer counterpart,
thereby translating time into space. The relevant history of
input data and network state is saved only for a fixed number
of time steps, defined as the truncation depth and denoted as .
With the truncated depth well selected, BPTT [11] produces
accurate derivatives with reduced complexity and computa-
tional expense than real-time recurrent learning. In BPTT,
computing the derivatives of error with respect to weights, in
a recurrent network, is reduced to computing the derivatives in
each layer, in a feedforward network, and adding them [12].

Derived in reverse order of forward propagation, the ordered
derivatives are appropriately distributed, using the chain rule,
from a given node to all nodes and weights that connect it in the
forward direction [13]. Efficient implementations of BPTT
are described in [14], [20].

C. EKF

The EKF [14], [20] is used for learning the weights of an
SRN. At the th time step, the algorithm of EKF to train the
network with tunable parameters and outputs is performed
by the following recursion:

In the recursion, is a user-specified nonnegative def-
inite weighting matrix usually chosen to be the identity matrix,

is the learning rate usually chosen between and 1,
and is the error vector, which represents the dif-
ference between the desired and actual outputs. The network’s
trainable weights are arranged into an vector (where

has small random values, e.g., of magnitude less than 0.1).
The approximate error covariance matrix is used
to model the correlations or interactions between each pair of
weights in the network. is initialized as a diagonal matrix
with large values (e.g., magnitude around 100). The matrix

forms the derivatives of a function of the network’s out-
puts with respect to its weights. (The derivatives of one output
with respect to all weights are listed in one column.) Finally,

is an diagonal covariance matrix that provides
a mechanism by which the effect of artificial process noise is
included in the Kalman recursion to avoid poor local minima
and divergence. is usually set to the identity matrix with a
scaling factor chosen between and (these values are
problem-dependent, but typical).

The multistream EKF is designed to update the weights
simultaneously satisfying the demands from multiple
input–output pairs [14]. The dimensionality of the derivative
matrix is increased proportionally to the number of streams,
and the corresponding columns in denote the derivatives
of outputs in different streams with respect to the trainable
weights. Similarly, the dimensionality of the error vector
is also proportionally increased. The rest is left unchanged as
in the single-stream EKF. The only extra computational cost is
the inversion of the matrix.

For the recurrent network, computing dynamic derivatives
[23] requires backpropagation of partial derivatives combined
with dynamic derivatives from previous steps. BPTT computes
dynamic derivatives which consist of the matrix in EKF.
Using these derivatives, EKF is applied for the weights update.
For discussions on convergence of gradient-based algorithms
and stability of recurrent network, the reader is referred to [12],
[13], and [24]–[28].

CAI et al.: TRAINING WTA SIMULTANEOUS RECURRENT NEURAL NETWORKS 677

IV. SHARED-WEIGHT NETWORK MODEL

We consider an -neuron fully connected WTA network. Its
system dynamic can be defined as the following SRN network:

(3)

where is the converged output vector of the network
at time , and is the transient output vector at time with

equal to the input vector , and . The
variable “ ” is an iteration variable for the SRN, while is the
time step governing presentations of external inputs. (In prac-
tice, the sequence is assumed
converged if reaches a limit for sufficiently large

.) is a real matrix, is a real vector of constant
bias values, and the real -dimensional vector-valued function

can be one of the following: 1) saturation function in (4a)
or 2) bipolar sigmoid function in (4b)

if
if
otherwise

(4a)

(4b)

where is the th component of .
We would like to illustrate our SRN-WTA training procedure

for the task of finding the maximum among numbers. [Num-
bers are required to be different only for the purpose of unique
winner. Generally, two or more identical numbers, e.g., (0.8 0.7
0.7 0.6) for , will not affect the final output of the model.]
A shared-weight SRN is more suitable for this problem due to
invariance with respect to the position of the maximum. Similar
with the MAXNET model, we assume that our SRN weights
and biases are defined as follows:

...
...

. . .
...

...
(5)

where is a positive constant and is a constant bias. The
initial values of and can be randomly selected in the range of

. From (A2), we know that there exist some equilibrium
points within the hypercube if meets certain conditions (see
Appendix). The inputs of neurons at iteration are defined as

for (6)

Clearly, the , for keeps the same order, in
terms of magnitude, as those of . The sigmoid transfer func-
tion is a monotonically increasing function. Therefore, the out-
puts of the active neurons, i.e., , also keep the same order,
which is set by the original inputs .

The shared-weight model can be described using a network
connectivity table similar to that in [20]. The network is rep-
resented by a combination of summation and product nodes. In
the network description, outputs of two bias nodes with weights

and are distributed.
The desired equilibrium point is the point which has only one

component of the output vector at its maximum
whereas all other components should be at their minima. As-
suming the same negative minimum for all such components

and some values for and , we can compute coor-
dinates of the candidate equilibrium point for our shared-weight
SRN by solving the following system of equations (cf. in
Section II):

(7)

After solving (7), one also has to check whether the SRN lin-
earization at the equilibrium point (the
Jacobian of the SRN at this point), where location of the max-
imum is arbitrary between 1 and , is locally stable. This
is equivalent to making sure that all eigenvalues of the matrix
product as in (A1) are within the unit circle. Unfortunately, the
ability to obtain a solution of (7) is not sufficient because it does
not provide a recipe for constructing the desired SRN. We resort
to training an SRN for this task.

V. EXPERIMENTAL RESULTS

A. Experiment on WTA Problem

Simulations were run on SRN for the WTA problem with
various numbers of neurons . The training data are generated
by a random uniform distribution in . The data are divided
into three sets. The easy set contains training samples that satisfy
two conditions

and for

The tough set consists of data that satisfy

and for

The random set is produced from the random uniform dis-
tribution without any limitations. Another random set is
also generated as the test set. All previous training sets are
composed of streams of 600 vectors each. Each stream
denotes a pattern of the maximum index, i.e., the th stream
has with the target and
the target for the rest of the outputs . The maximum
number of iterations of SRN is 50 [instead of in
in (3)]. In (4b), represents the slope of the bipolar sigmoid
function at the point where the sigmoid’s total input is zero.
Large , i.e., , amplifies the differences among the inputs
and facilitates the classification, but expands the saturation
region (small , i.e., , does the opposite). During the
training process, is fixed as a constant so that it will not affect
the convergence. We choose , rather than 1, because it
improved the training process.

678 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

Fig. 2. Example of error plots for all 20 epochs of training our SRN for WTA problem on N = 6. (The first six panels from top to bottom are rmse of individual
streams.)

Random initial weights work well for this task, although we
used the technique of [18] for choosing initial values. During
one epoch of training, all streams of inputs are presented
to the network, with updates of the network weights (and

) being carried out by the -stream EKF algorithm. The
derivatives of the network outputs are computed according to
the BPTT algorithm with . One epoch of training
corresponds to updates of weights. The network is first
trained on the easy set to find a near-optimal solution (for five
epochs), and then, the tough set is used to help the network clas-
sify close inputs in order to refine the near-optimal solution ob-
tained from previous training samples (ten additional epochs).
Finally, the random set improves the generalization ability and
helps the network avoid local minima (additional five epochs).
Thus, we train a total of 20 epochs. The training on each set is
terminated when the error reaches a predefined threshold (see
Fig. 2). The error of each stream is not approaching zero but
a small constant (see Fig. 3), because the targets are not the
real equilibrium points of the network outputs, which are not
available at the beginning of the training. We choose targets that

provide sufficient margins between the winner and losers [e.g.,
output of winner neuron and that of loser ; so
our].

The algorithm has found some near-optimal solutions for
and . In most of the misclassified cases, the

difference between the maximum and the second maximum
is less than 1% of the maximum, suggesting that the trained
network still cannot distinguish between two (or more) nearly
identical input numbers. In the case, a solution of
99.7% accuracy (i.e., the percentage of correctly recognized
test inputs) is found on 3600 randomly generated inputs (see
Table I). Among the misclassified cases, the difference between
the maximum and the second maximum is less than 0.1% of the
maximum. (In such situations, when the network misclassifies,
it usually outputs two positive values for both the maximum
and the second maximum.) Some other solutions are also more
than 99% accurate, as checked on a large number, e.g., 3600, of
testing inputs [see Table II; the equilibrium point has only one
positive component corresponding to the maximum location,
and the rest of components are as specified and confirmed

CAI et al.: TRAINING WTA SIMULTANEOUS RECURRENT NEURAL NETWORKS 679

Fig. 3. Error plots of the last epoch of training our SRN for WTA problem on N = 6 (the last 600-sample-long segment of Fig. 2).

TABLE I
BEST RESULT OF WTA PROBLEM ON N = 6 (STREAM I CONSISTS OF VECTORS THAT THE ith ELEMENT IS THE MAXIMUM.

ACCURACY IS BASED ON 600 SAMPLE VECTORS PER STREAM)

by solving the system (7)]. This demonstrates that the model
produces many high-quality solutions.

Further experiments using the method described in [21] allow
use of a single stream of data from the random set only. We
train the shared-weight SRN [limiting the number of iterations

in (3) to 100] in one pass through 10 000 samples and test
on an independently generated test set of 100 000 samples, con-
firming the same high accuracy described previously. Further-
more, we enable training the self-feedback weight . [The
diagonal element of the matrix in (5) is a constant value of 1,
but we call it and allow its training in this set of experi-

ments.] This results in nearly perfect solutions for and
, and is 99.9% accurate for , (and also obtains better

than 99% accurate solutions for and). For example,
for and , where the weights of a trained SRN
are , we achieve
99.9% accuracy, with equilibrium coordinates less than 0.001
away from .

The method of [21] also makes it possible to train a nondiffer-
entiable network, because the referred method is derivative-free.
Our preliminary results with the shared-weight SRN-WTA with

nonlinearities indicate that nearly perfect solutions for

680 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

TABLE II
SOME OTHER GOOD SOLUTIONS FOR WTA PROBLEM ON N = 6. ACCURACY

IS BASED ON 6� 600 = 3600 SAMPLE VECTORS

from four to eight are achievable, but they are more dependent
on initial weights and training parameters than those for the net-
works with of (4b). For example, for the weights
of a trained SRN
result in 99.99% accuracy with equilibrium coordinates at .

B. Engine Data Classification

The final example is application of an SRN to an engine data
classification. There are four classes in both training and testing
data sets, with different numbers of samples in each class. Each
sample consists of 14 elements obtained from a car engine (fac-
tors in an engine diagnostic experiment). Each element repre-
sents a certain diagnostic parameter from a test run on a partially
assembled engine. Various unknown combinations of param-
eter values indicate normal engines, or they may be indicative
of different defects. It is known that the classification problem
(whether the engine is normal or defective, and if so what kind of
defect it is likely to have) is not linearly separable. A 14-10R-4
network with bipolar sigmoid transfer functions in the hidden
and output layers is used. Neurons between different layers are
fully connected. Weights in this SRN are not required to be
symmetric and shared, as they were in the WTA problem of
Section V-A.

The original data are normalized before training and testing.
There are 41, 14, 13, and 10 sample vectors for each class in
the training set, respectively, and 4, 3, 2, and 2 in the testing
set. We arrange training into five streams. Each stream consists
of a sample vector randomly selected from those 78 and
changed for every epoch. After the five streams are presented
to the SRN network, weights are updated at the end of the
epoch. A root-mean-squared error (rmse) is then calculated for
all 78 sample vectors to monitor the training. The training
strategy for BPTT(30) and global EKF (GEKF) is to train for
the first 200 epochs with and , then 800
epochs with and (1000 epochs total).
After 1000 epochs, the rmse drops to 0.019 (see Fig. 4) and the
SRN network identifies all four classes with 100% accuracy, in
both training and testing sets (see Table III). In addition to the
previously mentioned bootstrap like training, a leave-one-out
cross validation is also employed to evaluate the quality of
the learning algorithm. The SRN network is stable in
classifying all four classes, with the mean error vec-
tors

Fig. 4. The rmse of SRN training on engine data classification. The rmse is
calculated based on all 78 training samples after SRN weights are updated by
EKF at each epoch.

TABLE III
SRN ENGINE DATA CLASSIFICATION ON THE TESTING SET

, and the standard
deviation of error vectors

.

VI. CONCLUSION

The SRN offers useful functionality among neural network
models. Training, however, has often proven a barrier. We have

CAI et al.: TRAINING WTA SIMULTANEOUS RECURRENT NEURAL NETWORKS 681

investigated the SRN for a simple WTA problem for its capa-
bility of comparing theoretically predicted versus actual perfor-
mance. EKF training is shown to be effective for SRN architec-
tures. The issues uncovered in training for this problem extend
to other, less tractable problems. This is demonstrated by ap-
plying the same technique to an engine classification problem.

APPENDIX

Local stability analysis is helpful for understanding whether
the dynamic system, with a specified weight matrix, possesses
and reaches equilibrium points and what are conditions on the
weight update rules [15].

Let represent the output vector of the
SRN. At the equilibrium points, the derivative of SRN outputs

, typically representing solutions for a given problem, has the
property of . The neuron dynamics of SRN is de-
scribed by (3). A bipolar sigmoid with slope coefficient ,
i.e., (4), is assumed as the transfer function for all neurons.

By the chain rule, we have
for where
. After simple substitutions, the

matrix form of the previous equation can be written as (A1),
shown at the bottom of the page. At the equilibrium point, the
vector of partial derivatives in (A1) is set to zero, which can
be achieved by setting the left-most matrix to the zero matrix
of appropriate dimensions. It is noted that if or

, then for all .
Clearly, (A1) shows that the corners of a unit hypercube can be
selected as the equilibrium points of an SRN. Due to properties
of the bipolar sigmoid transfer function, it is impossible to
reach the corners of the unit hypercube in finite time, with
finite values of weights and excitations. Moreover, only a
portion, of , of the vertices, i.e.,

and are desired (but
not precisely attainable) equilibrium points. Other sets of
equilibrium points, within the unit hypercube in the output

space of SRN, can be obtained by solving (A1) as follows:
Since , (A1) can be written as
(A2), shown at the bottom of the page, where is an
identity matrix. If the matrix in the parentheses has an inverse,
then the vector of partial derivatives in (A2) is equal to zero.
The condition for the existence of the inverse matrix leads
to the necessary condition of equilibrium points within the
hypercube. Such internal equilibrium points are attainable in
architectures with bipolar sigmoids for finite values of weights
and excitations.

Assume that we have an equilibrium point inside the hyper-
cube, i.e., with and

. Without loss of generality,
the matrix in the parentheses in (A2) can be written as

...
...

. . .
...

...
...

. . .
...

where .
The determinant of can be obtained as shown in the third

equation at the bottom of the page, where

...
...

. . .
...

and

...
...

. . .
...

...
...

. . .
...

...
. . .

...
...

(A1)

...
. . .

...
...

. . .
...

...
... (A2)

...
...

. . .
...

682 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

Proposition 1:

...
...

. . .
...

Proof: The proposition is proved by induction.
When

...
...

. . .
...

The proposition holds.
When , we assume that

...
...

. . .
...

holds.
When

...
...

. . .
... ...

...
...

. . .
...

...
...

. . .
...

The proposition holds, and it is now proved.
Proposition 2:

...
...

. . .
...

Proof: The proposition is proved by induction.
When

...
...

. . .
...

The proposition holds.
When , we assume that

...
...

. . .
...

holds.
When

...
...

. . .
... ...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

From the Proposition 1 and the induction assumption, we know
that

...
...

. . .
...

The proposition holds, and it is now proved.
This means that , after some simple substitutions and cal-

culation, is

thus can be obtained by Proposition 1

CAI et al.: TRAINING WTA SIMULTANEOUS RECURRENT NEURAL NETWORKS 683

(A4)

Therefore

Clearly, is not equal to zero if

i.e. (A3)

and the part in brackets, which is quadratic in , is not equal
to zero, i.e., as shown in (A4), at the top of the page. Thus, a
weight matrix (5), for which the conditions (A3) and (A4) are
satisfied, will guarantee the convergence of the WTA network
to the equilibrium . Furthermore, if the ex-
pression inside the square root in (A4) is less than zero, then the
part in brackets of has no zero solution for a real value of

, i.e.,

that is

(A5)

i.e.,

if (A6)

where the second equation shown at the top of the page holds.
An empirical observation based on extensive simulations per-

formed on WTA problems indicates that the SRN tends to con-
verge to a fixed point, starting with random initial values for the
input vectors. Furthermore, there are proofs that provide suffi-
cient conditions for the SRN with the shared weights and sig-
moid transfer function to have a unique equilibrium point for all
nonzero inputs [17]. However, our problem is sufficiently dif-
ferent to violate conditions of the existing global stability anal-
ysis techniques.

REFERENCES

[1] R. Lippmann, “An introduction to computing with neural nets,” IEEE
Acoust. Speech Signal Process. Mag., vol. 4, no. 2, pp. 4–22, Apr. 1987.

[2] S. Kaski and T. Kohonen, “Winner-take-all network for physiological
models of competitive learning,” Neural Netw., vol. 7, pp. 973–984,
1994.

[3] J. P. F. Sum and P. K. S. Tam, “Note on the MAXNET dynamic,”
Neural Comput., vol. 8, no. 3, pp. 491–499, 1996.

[4] J. P. F. Sum, C. S. Leung, P. K. S. Tam, G. H. Young, W. K. Kan, and L.
W. Chan, “Analysis for a class of winner-take-all model,” IEEE Trans.
Neural Netw., vol. 10, no. 1, pp. 64–71, Jan. 1999.

[5] J. Choi and B. J. Sheu, “A high precision VLSI winner-take-all circuit
for self organizing neural networks,” IEEE J. Solid-State Circuits, vol.
28, no. 5, pp. 576–594, May 1993.

[6] S. Smedley, J. Taylor, and M. Wilby, “A scalable high-speed current
winner take all network for VLSI neural applications,” IEEE Trans.
Circuits Syst. I, Fundam. Theory Appl., vol. 42, no. 5, pp. 289–291,
May 1995.

[7] L. Chua and L. Yang, “Cellular neural networks: Theory,” IEEE Trans.
Circuits Syst., vol. 35, no. 10, pp. 1257–1272, Oct. 1988.

[8] L. Andrew, “Improving the robustness of winner-take-all cellular
neural network,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal
Process., vol. 43, no. 4, pp. 329–334, Apr. 1996.

[9] X. Z. Pang and P. J. Werbos, “Neural network design for J function
approximation in dynamic programming,” Math. Model. Sci. Comput.
(Principia Scientia J.), vol. 5, no. 2/3, 1996.

[10] D. C. Wunsch II, “The cellular simultaneous recurrent network adap-
tive critic design for the generalized maze problem has a simple closed-
form solution,” in Proc. Int. Joint Conf. Neural Netw., Como, Italy, Jul.
2000, vol. 3, pp. 79–82.

[11] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” in Proc. IEEE, Oct. 1990, vol. 78, no. 10, pp. 1550–1560.

[12] B. Pearlmutter, “Gradient calculation for dynamic recurrent neural
networks—A survey,” IEEE Trans. Neural Netw., vol. 6, no. 5, pp.
1212–1228, Sep. 1995.

[13] P. J. Werbos, The Roots of Backpropagation: From Ordered Deriva-
tives to Neural Networks and Political Forecasting. New York: Wiley,
1994.

[14] L. A. Feldkamp and G. V. Puskorius, “A signal processing framework
based on dynamic neural networks with application to problems in
adaptation, filtering and classification,” Proc. IEEE, vol. 86, no. 11,
pp. 2259–2277, Nov. 1998.

[15] G. Serpen and Y. Xu, “Stability of simultaneous recurrent neural net-
work dynamics for static optimization,” in Proc. Int. Joint Conf. Neural
Netw., Honolulu, HI, May 2002, vol. 3, pp. 2023–2028.

[16] J. J. Hopfield and D. W. Tank, “Computing with neural circuits: A
model,” Science, vol. 233, pp. 625–633, Aug. 1986.

[17] F. Hunt and D. Pearson, “A condition for a unique equilibrium point
in a recurrent neural network,” in Proc. Int. Conf. Neural Netw., Jun.
1996, vol. 3, pp. 1308–1311.

[18] A. N. Michel, K. Wang, D. Liu, and H. Ye, “Qualitative limitations in-
curred in implementations of recurrent neural networks,” IEEE Control
Syst. Mag., vol. 15, no. 3, pp. 52–65, Jun. 1995.

[19] X. Cai and D. C. Wunsch II, “Counterexample of a claim pertaining to
the synthesis of a recurrent neural network,” in Proc. Int. Joint Conf.
Neural Netw., Honolulu, HI, May 2002, vol. 3, pp. 2029–2032.

[20] L. Feldkamp, D. Prokhorov, C. Eagen, and F. Yuan, , J. Suykens and J.
Vandewalle, Eds., “Enhanced multi-stream kalman filter training for re-
current networks,” in Nonlinear Modeling: Advanced Black-Box Tech-
niques. Norwell, MA: Kluwer, 1998, pp. 29–53.

[21] L. Feldkamp, T. Feldkamp, and D. Prokhorov, “Neural network
training with the nprKF,” in Proc. Int. Joint Conf. Neural Netw.,
Washington, DC, Jul. 2001, pp. 109–114.

[22] D. White and D. Sofge, Eds., Handbook of Intelligent Control: Neural,
Adaptive and Fuzzy Approaches. New York: Van Nostrand, 1992.

[23] G. V. Puskorius and L. A. Feldkamp, “Neurocontrol of nonlinear dy-
namical systems with Kalman filter trained recurrent networks,” IEEE
Trans. Neural Netw., vol. 5, no. 2, pp. 279–297, Mar. 1994.

684 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

[24] A. Alessandri, M. Cuneo, S. Pagnan, and M. Sanguineti, “On the con-
vergence EKF-based parameters optimization for neural networks,” in
Proc. 42nd Conf. Decision Control, 2003, pp. 5825–5830.

[25] J. de Jess Rubio and W. Yu, “Dead-zone Kalman filter algorithm for
recurrent neural networks,” in Proc. 43rd Conf. Decision Control, 2005,
pp. 2562–2567.

[26] X. Liu, K. L. Teo, and B. Xu, “Exponential stability of impulsive high-
order Hopfield-type neural networks with time-varying delays,” IEEE
Trans. Neural Netw., vol. 16, no. 5, pp. 1329–1339, Sep. 2005.

[27] H. Jiang, L. Zhang, and Z. Teng, “Existence and global exponential sta-
bility of almost periodic solution for cellular neural networks with vari-
able coefficients and time-varying delays,” IEEE Trans. Neural Netw.,
vol. 16, no. 5, pp. 1340–1351, Sep. 2005.

[28] Y. He, M. Wu, and J. She, “An improved global asymptotic stability cri-
terion for delayed cellular neural networks,” IEEE Trans. Neural Netw.,
vol. 17, no. 1, pp. 250–252, Jan. 2006.

[29] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1999.

Xindi Cai (S’00–M’06) received the B.S. degree in
information engineering from Northwestern Poly-
technical University, Xi’an, Shaanxi, P. R. China, in
1996 and the M.S. degree in computer engineering
and the Ph.D. degree in electrical engineering from
the University of Missouri—Rolla, Rolla, in 2002
and 2006, respectively.

In 2006, he joined R&D Department, American
Power Conversion Corporation, O’Fallon, MO,
where currently, he is a Senior Control Engineer.
He also worked as a System Testing Engineer with

Lucent Technologies from 1996 to 1999. He is the author of several journal
papers and invited book chapters. His research interests include adaptive
control, machine learning, neural networks, time series analysis, evolutionary
computation, particle swarm optimization, and game of Go.

Dr. Cai is a Member of the IEEE Computational Intelligence Society and
a Member of the International Neural Network Society (INNS). He has been
serving as review committee member for International Joint Conference on
Neural Networks (IJCNN) from 2002 to 2007, and reviewer for multiple
journals. He is the recipient of two prizes of worldwide competitions for
time-series analysis (IJCNN 2001 and 2004), and several Student Travel Grants
[IJCNN 2002 and 2005 and International Conference on Cognitive and Neural
Systems (ICCNS) 2004].

Danil V. Prokhorov (SM’02) received the M.S.
degree with Honors from the State Academy of
Aerospace Engineering (formerly LIAP), St. Pe-
tersburg, Russia, in 1992, and the Ph.D. degree
in electrical engineering from Texas Technical
University, Lubbock, in 1997.

He was with Ford Research Laboratory, Dearborn,
MI, from 1997 until 2005. He had been engaged in
application-driven studies of neural networks and
their training algorithms. He is currently a Research
Manager at Toyota Technical Center, Ann Arbor,

MI. He has authored 80 technical publications including several patents. His
research interest is in machine learning algorithms and their applications to
decision making under uncertainty.

Dr. Prokhorov was awarded the International Neural Network Society (INNS)
Young Investigator in 1999. He was the IJCNN 2005 General Chair and IJCNN
2001 Program Chair. He has been a reviewer for numerous journals and confer-
ences, a program committee member of many conferences, and a panel expert
for the National Science Foundation (NSF) every year since 1995.

Donald C. Wunsch II (M’94–SM’97–F’05) re-
ceived the B.S. degree in applied mathematics from
the University of New Mexico, Albuquerque, in
1984, the M.S. degree in applied mathematics, and
the Ph.D. degree in electrical engineering from
the University of Washington, Seattle, in 1987 and
in 1991, respectively, the Executive MBA from
Washington University in St. Louis, St. Louis, MO,
in 2006, and he also completed a Humanities Honors
Program at Seattle University, Seattle, WA, in 1981.

He is the Mary K. Finley Missouri Distinguished
Professor of Electrical and Computer Engineering at the University of Mis-
souri—Rolla, Rolla, where he has been since July 1999. He has courtesy ap-
pointments in computer science, systems engineering, and business administra-
tion. His prior positions were Associate Professor and Director of the Applied
Computational Intelligence Laboratory at Texas Technical University, Senior
Principal Scientist at Boeing, Consultant for Rockwell International, and Tech-
nician for International Laser Systems. He has over 250 publications in his re-
search field of computational intelligence, and has attracted over $5 million in
research funding. He has produced seven Ph.D.s in electrical engineering, four
in computer engineering, and one in computer science. His research interests
are in neural networks, and their applications in: reinforcement learning, ap-
proximate dynamic programming, the game of Go, financial engineering, graph
theory, risk assessment, representation of knowledge and uncertainty, collective
robotics, computer security, critical infrastructure protection, biomedical appli-
cations of computational intelligence, telecommunications, and smart sensor
networks.

Dr. Wunsch II is a recipient of the Halliburton Award for Excellence in
Teaching and Research and the National Science Foundation CAREER Award.
He served as a Board member of the International Neural Networks Society
(INNS), the University of Missouri Bioinformatics Consortium, the Idaho
EPSCOR Project Advisory Board, and the IEEE Neural Networks Council. He
also served as Technical Program Co-Chair for International Joint Conference
on Neural Networks (IJCNN 2002), General Chair for IJCNN 2003, and the
President of the INNS.

	Training Winner-Take-All Simultaneous Recurrent Neural Networks
	Recommended Citation

	Training winner-take-all simultaneous recurrent neural networks IEEE Transactions on Neural Networks

