
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 2011

A Semantic Agent Framework for Cyber-Physical Systems A Semantic Agent Framework for Cyber-Physical Systems

Jing Lin

Sahra Sedigh
Missouri University of Science and Technology, sedighs@mst.edu

Ann K. Miller
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
J. Lin et al., "A Semantic Agent Framework for Cyber-Physical Systems," Semantic Agent Systems:
Foundations and Applications, pp. 189-213, Springer Verlag, Jan 2011.
The definitive version is available at https://doi.org/10.1007/978-3-642-18308-9_9

This Book - Chapter is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229201303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F2987&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F2987&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-3-642-18308-9_9
mailto:scholarsmine@mst.edu

See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/226298189

A	Semantic	Agent	Framework	for	Cyber-
Physical	Systems

Chapter	·	March	2011

DOI:	10.1007/978-3-642-18308-9_9

CITATIONS

16

READS

411

3	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

PERCEPOLIS	View	project

Survivability	Analysis	and	Recovery	Support	for	Smart	Grids	View	project

Sahra	Sedigh	Sarvestani

Missouri	University	of	Science	and	Technology

105	PUBLICATIONS			719	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Sahra	Sedigh	Sarvestani	on	03	September	2014.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/226298189_A_Semantic_Agent_Framework_for_Cyber-Physical_Systems?enrichId=rgreq-24eb533a46c01249a8ba3fea5dfdcb13-XXX&enrichSource=Y292ZXJQYWdlOzIyNjI5ODE4OTtBUzoxMzczNzM2OTg0OTg1NjBAMTQwOTc2Mzg1MDQ5OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/226298189_A_Semantic_Agent_Framework_for_Cyber-Physical_Systems?enrichId=rgreq-24eb533a46c01249a8ba3fea5dfdcb13-XXX&enrichSource=Y292ZXJQYWdlOzIyNjI5ODE4OTtBUzoxMzczNzM2OTg0OTg1NjBAMTQwOTc2Mzg1MDQ5OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/PERCEPOLIS?enrichId=rgreq-24eb533a46c01249a8ba3fea5dfdcb13-XXX&enrichSource=Y292ZXJQYWdlOzIyNjI5ODE4OTtBUzoxMzczNzM2OTg0OTg1NjBAMTQwOTc2Mzg1MDQ5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Survivability-Analysis-and-Recovery-Support-for-Smart-Grids?enrichId=rgreq-24eb533a46c01249a8ba3fea5dfdcb13-XXX&enrichSource=Y292ZXJQYWdlOzIyNjI5ODE4OTtBUzoxMzczNzM2OTg0OTg1NjBAMTQwOTc2Mzg1MDQ5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-24eb533a46c01249a8ba3fea5dfdcb13-XXX&enrichSource=Y292ZXJQYWdlOzIyNjI5ODE4OTtBUzoxMzczNzM2OTg0OTg1NjBAMTQwOTc2Mzg1MDQ5OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sahra_Sedigh_Sarvestani?enrichId=rgreq-24eb533a46c01249a8ba3fea5dfdcb13-XXX&enrichSource=Y292ZXJQYWdlOzIyNjI5ODE4OTtBUzoxMzczNzM2OTg0OTg1NjBAMTQwOTc2Mzg1MDQ5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sahra_Sedigh_Sarvestani?enrichId=rgreq-24eb533a46c01249a8ba3fea5dfdcb13-XXX&enrichSource=Y292ZXJQYWdlOzIyNjI5ODE4OTtBUzoxMzczNzM2OTg0OTg1NjBAMTQwOTc2Mzg1MDQ5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Missouri_University_of_Science_and_Technology?enrichId=rgreq-24eb533a46c01249a8ba3fea5dfdcb13-XXX&enrichSource=Y292ZXJQYWdlOzIyNjI5ODE4OTtBUzoxMzczNzM2OTg0OTg1NjBAMTQwOTc2Mzg1MDQ5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sahra_Sedigh_Sarvestani?enrichId=rgreq-24eb533a46c01249a8ba3fea5dfdcb13-XXX&enrichSource=Y292ZXJQYWdlOzIyNjI5ODE4OTtBUzoxMzczNzM2OTg0OTg1NjBAMTQwOTc2Mzg1MDQ5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sahra_Sedigh_Sarvestani?enrichId=rgreq-24eb533a46c01249a8ba3fea5dfdcb13-XXX&enrichSource=Y292ZXJQYWdlOzIyNjI5ODE4OTtBUzoxMzczNzM2OTg0OTg1NjBAMTQwOTc2Mzg1MDQ5OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Semantic Agent Framework for Cyber-Physical Systems

Jing Lin, Sahra Sedigh, and Ann Miller

Department of Electrical and Computer Engineering

Missouri University of Science and Technology

Rolla, MO, USA, 65409

Email: {jlpg2, sedighs, milleran}@mst.edu

Abstract – The development of accurate models for cyber-physical systems

(CPSs) is hampered by the complexity of these systems, fundamental differ-

ences in the operation of cyber and physical components, and significant in-

terdependencies among these components. Agent-based modeling shows

promise in overcoming these challenges, due to the flexibility of software

agents as autonomous and intelligent decision-making components. Semantic

agent systems are even more capable, as the structure they provide facilitates

the extraction of meaningful content from the data provided to the software

agents. In this book chapter, we present a multi-agent model for a CPS, where

the semantic capabilities are underpinned by sensor networks that provide in-

formation about the physical operation to the cyber infrastructure. As a specif-

ic example of the semantic interpretation of raw sensor data streams, we

present a failure detection ontology for an intelligent water distribution net-

work as a model CPS. The ontology represents physical entities in the CPS, as

well as the information extraction, analysis and processing that takes place in

relation to these entities. The chapter concludes with introduction of a seman-

tic agent framework for CPS, and presentation of a sample implementation of

the framework using C++.

Keywords – cyber-physical systems, agent-based modeling, semantic ca-

pabilities, fault detection, multi-agent system, sensor networks, intelligent

water distribution.

1. Introduction
The synergy between agent-based modeling and semantic technologies holds

promise for the resolution of challenges posed by a broad range of complex

systems, in particular cyber-physical systems (CPSs), where embedded com-

puting and communication capabilities are used to streamline and fortify the

operation of a physical system [1]. In CPSs, sensors collect information about

the physical operation of the system, and communicate this information in

real-time to the computers and embedded systems used for intelligent control.

These cyber components use computational intelligence to process the infor-

mation and determine appropriate control settings for physical components of

the system, such as devices used to control the flow of a physical commodity,

e.g., water or electric power, on a line.

2

A fundamental challenge in research related to CPSs is accurate modeling and

representation of these systems, especially as related to reliability. Simplistic

models that assume components fail independently are rendered unusable for

the majority of CPSs, due to significant interdependencies within the cyber

and physical infrastructures, respectively, and across the cyber-physical boun-

dary. In other words, modeling of any CPS is hampered by the need to model

both the cyber (software, communication network, computing hardware) and

the physical infrastructure (physical components and their interactions). Fur-

thermore, the application of graph-theoretic models is complicated by hetero-

geneity in the notion of “flow” in CPSs. “Information” is the flow on the cy-

ber infrastructure that provides communication and computing capabilities.

The flow on the physical infrastructure is domain-specific, e.g., power for an

electric power grid or vehicles for a ground transportation system. Both types

of flow need to be represented accurately, such that effects of any event are re-

flected in either or both networks. Thirdly, existing explicit communication

protocols used to impart information between the cyber and physical infra-

structures do not fully capture the semantics of the interaction between the two.

The vision of using distributed computing resources in the cyber networks to

manage the distributed resources in the physical infrastructure further compli-

cates modeling of CPSs.

Among existing techniques, agent-based modeling holds promise in surmount-

ing the aforementioned challenge, due to its capability of encapsulating di-

verse attributes within one agent, as well as its emphasis on the interaction

among autonomous, heterogeneous agents, which share a common goal

achieved in a distributed fashion. Sensors are the key to this approach, as they

provide situational awareness to the agents and enable them to function based

on the semantics of their mission and the specifics of their environment. The

research presented in this book chapter aims to accurately model a CPS as a

multi-agent system, where each agent is an independent entity that manages

resources within its local scope. In the proposed model, information from the

sensor networks is dynamically integrated with semantic services to support

real-time decision support in the information-rich environment of a CPS.

The CPS domain used as a case study for an application of this model is intel-

ligent water distribution networks (WDNs). In a WDN, physical components,

e.g., valves, pipes, and reservoirs, are coupled with the hardware and software

that supports intelligent water allocation. Fig. 1.1 depicts a sample WDN.

3

Fig. 1.1 Cyber and physical components of an intelligent WDN

The primary goal of WDNs is to provide a dependable source of potable water

to the public. Information such as demand patterns, water quantity (flow and

pressure head), and water quality (contaminants and minerals) is critical in

achieving this goal, and beneficial in guiding maintenance efforts and identify-

ing vulnerable areas requiring fortification and/or monitoring. Sensors dis-

persed in the physical infrastructure collect this information, which is summed

by multiplexers and servers for hierarchical semantics interpretation. The

processed and reasoned sensor data is then fed to distributed algorithms run-

ning on the cyber networks. These algorithms provide decision support to

hardware controllers that are used to manage the allocation (quantity) and

chemical composition (quality) of the water. The algorithms are implemented

through software executing on multiple distributed computing devices. This

software is represented by the agents in our model, each of which is capable of

perceiving its environment, acting on that perception, communicating with

other agents and exhibiting behavior that fits its goal.

This book chapter is an extension of our previous work, where we first articu-

lated the use of semantic agents in modeling CPSs [2]. The extended content

includes: a more detailed discussion on the agent-based modeling technique

and its use in addressing design challenges in complex CPS, a more compre-

hensive presentation of our work on construction of semantic agent framework,

and an introduction to data type processing.

The remainder of this book chapter is organized as follows. Section 2 presents

an overview of related literature. In Section 3, we present tools and procedures

4

to construct an agent-based model, the method for defining an agent, and a

UML multi-agent model that captures the static structure and dynamic beha-

vior of a WDN. The semantic interpretation service is elaborated upon in Sec-

tion 4, where the sensor information ontology and associated semantic service

model are defined. In Section 4, we also propose a semantic agent framework

for interpretation of the semantics of raw data streams, describe data type

processing of the raw data stream, and provide an overview of implementing

semantic interpretation capabilities through C++ on Matlab. Section 5 con-

cludes the book chapter and describes future research directions.

2. Background Work
CPSs are an emerging research area, and the body of related literature is li-

mited. A considerable fraction of related work examines critical infrastructure

systems, which are prime examples of CPSs. Salient studies, e.g., [3, 4, 5, 6]

are on interdependencies among different components of critical infrastructure

systems, and [3], which provides a relatively comprehensive summary of

modeling and simulation techniques for critical infrastructure systems. System

complexity has been identified as the main challenge in characterizing inter-

dependencies in CPSs [4]. Other challenges include the low probability of oc-

currence of critical events, differences in time scales and geographical loca-

tions, and the difficulty of gathering the accurate data needed for modeling.

These challenges are clearly articulated in the literature, but solutions are very

scarce.

The need to use agent-based modeling for distributed complex system has

been investigated in [7]. The work in [8] adopts a distributed multi-agent ar-

chitecture to analyze the observed information in real-time to adapt the multi-

agent system to the evolution of its environment. To address the dependability

issue in multi-agent system, [9] improves the capability of calculating how

critical an agent is to the system through its interactions with other agents and

provides a framework that uses this information to ensure availability and re-

liability. A multi-agent system (MAS) in [10] represents a powerful model to

solve distributed computation problems. A particularly relevant study is pre-

sented in [11], where agent-based modeling is used to estimate residential wa-

ter demand. An agent community is assigned to behave as water consumers,

and econometric and social models are incorporated for estimating their water

consumption. However, this study considers the WDN as a purely physical

system with no cyber control.

As a formal specification language with precise semantics, UML 2.0 has been

adopted to model multi-agent systems with precise semantics. A detailed dem-

onstration of how UML 2.0 can be used for the specification of an agent-based

system has been presented in [12]. UML 2.0 has been adopted during the

analysis and design phase in [13], to model the physical and social contexts

for embedded multi-agent systems. The specification of Action Semantics (AS)

5

in [14] shows how the applicability of AS to the UML meta-model paves the

way for powerful meta-programming for model transformation.

Semantic agent technologies are typically closely associated with sensor net-

works, and several prototype systems or software architectures have been pro-

posed based on the combination of the two. A prototype for battlefield infor-

mation systems has been described in [15], where the stated goal is to

dynamically integrate sensor networks with information fusion processes to

support real-time sensing, interpretation, and decision-making in an informa-

tion-rich tactical environment. In [16], an architecture and programming mod-

el for a semantic service-oriented sensor information platform has been pre-

sented. In contrast to [16] our work expands the semantic service model to a

semantic agent framework, whereas [16] focuses on how to use the semantic

model to query the system for high-level events without processing raw sensed

signals. The use of autonomous semantic agents in developing new software

architecture for distributed processing environments has been proposed in [17].

The discussion in [17] involves software architecture in general, and utilizes

semantic web technologies; whereas our work is tailored to the specific re-

quirements of CPSs. Due to the stringent security requirements of critical in-

frastructure and the vulnerabilities of web technologies, we do utilize them at

this stage of our research.

The complexity of CPSs, as well as the necessity of capturing embedded com-

puting and communication capabilities motivates the use of distributed agents

and semantic services for representing the relationship between the cyber and

physical infrastructures. In our work, the distributed semantic agent model

augments the data acquisition of sensors in the CPS with ontological decision-

making intelligence. The proposed model not only captures the complexity of

the CPS in a clear and understandable way, but also takes accurate semantic

interpretation into consideration. To our knowledge, our work is the first study

to apply semantic agents to modeling of CPSs.

3. Agent-based Modeling technology

As a visual modeling language for representing object-oriented systems, UML

is an intuitive choice for supporting agent-based modeling, in both the design

and the communication phases. UML consists of several types of structured

diagrams and graphical elements that are assembled to represent a model. The

high level of abstraction is independent of the implementation of the model,

especially when an object-oriented programming language is used.

Generally, by our definition, the agent is a piece of software code with intelli-

gent decision-making functionality. An agent can be considered a self-directed

object with the capability to autonomously choose actions based on its situa-

tion, and therefore the object-oriented paradigm is a useful basis for agent

modeling. Object classes can be used as agent templates, and object methods

6

can represent agent behaviors. The data-driven, rather than process-driven

perspective of object-oriented modeling also makes it well-suited to agent-

based modeling.

The construction of an agent-based model can be broken down into the fol-

lowing steps, each of which is described in one of the subsections that follow.

1) Defining the agents in the context of the system; and identifying

attributes of the agent; and other classes, along with their attributes.

2) Defining the environment where the agents reside, and the objects with

which the agents interact.

3) Designing the methods by which agent attributes will be updated in re-

sponse to agent-to-agent interactions or agent interactions with the envi-

ronment.

4) Implementing the designed agent model in modeling software.

Our work specifically defines agent as software code and differentiates agents

from the other devices, such as sensors and actuators. In contrast, architectures

proposed in a number of other studies place the agents in the context of em-

bedded devices. For example, in [18], the agent construction model is com-

posed of components that are the basic building blocks for an agent; and the

generic functionalities of these components are further divided into informa-

tion collection (sensors), information storage (infostores), decision-making

(controllers), and affecting change in the environment (actuators). In this book

chapter, our focus is on the software aspects of agents, particularly on the im-

plementation of semantic interpretation. Related work takes a more applica-

tion-specific approach, e.g., the study in [19] discussed software aspects of in-

formation agents in a pervasive computing environment.

3.1 Definition of the agents
In our defined context of WDNs, the agent is the software code embedded in

one or more computing devices on the cyberinfrastructure, with the goal of

exerting control over components of the physical infrastructure. Other than

this software, all other system components or subsystems are mechanical or

hardware parts, including all mechanical water facilities, e.g., pumps, valves,

reservoirs, water consumption junctions; communication links and sensors; or

even more intelligent field-programmable gate array (FPGA) or programma-

ble logic controllers (PLC) devices.

Regardless of their specific task, agents share the following characteristics.

1) An agent is an identifiable and discrete individual, as each segment of

software code is located on distributed PCs to control a local water area.

The subprogram code inherits the attributes and methods of the main

program and develops its unique attributes or operations to manage water

7

resources within its scope. Therefore, it is constrained by rules governing

its behavior, and in possession of decision-making capability.

2) An agent is situated in an environment where it interacts with other

agents. In our model, each agent is in charge of its local scope, but they

collectively interact for information sharing, data transmission and paral-

lel computing.

3) An agent is goal-directed. Its major tasks include managing the raw data,

using real-time data to quantify the overall reliability of the CPS, making

a decision to take appropriate action if risk is anticipated in the near fu-

ture, and sending control commands to actuators to meet the broader sys-

tem objective or prevent potential damage. Approaches adopted for deci-

sion-making include game theory, which can be used to allocate water

resources; the Leontief model [20], which can be applied to quantify the

effect of a failure in one scope on operation of another scope; and Mar-

kovian models, which can estimate the likelihood of a transition from the

current state to a given future state.

4) An agent is flexible, due to its nature as a segment of code. It can learn

and adapt its behavior to the environment, based on new information,

which includes data from sensors or from peer agents; and experience,

such as data retrieved from a history database.

5) An agent is responsible for its intelligent semantic inference. After re-

ceiving raw data from the sensors, each agent should firstly check the in-

tegrity of the data, specifically, whether the data is deemed legitimate per

scientific hydraulic relationships among its various physical parameters;

and whether the data is reasonable, compared with history data and that

of surrounding nodes. A large number of failures can be screened out

through this procedure, and the redundancy of data can be greatly re-

duced through semantic aggregation.

6) An agent requires some form of memory, either on the computing device

or in a separate database, to store the data of various water attributes for a

period of time.

3.2 Construction of an agent-based model

In this section, we present an agent-based model for an intelligent WDN, as a

case study of CPSs. We use the various types of UML diagram to gain insights

to the system functionality, property and behavior of system components,

software architecture, and the dynamics aspects of the complex system.

 Use Case Diagram

Creating a use case diagram is the first step for system analysis. A use case

captures the interaction of a number of external actors with the system towards

accomplishment of a goal. Fig. 3.1 shows the actor and the use cases involved

8

in the intelligent WDN. The use case diagram presented here can be genera-

lized to other CPSs whose main goal is management of a physical commodity.

Examples include power grids and intelligent transportation systems. As de-

scribed in Section 1, the primary goal of WDNs is to provide a dependable

source of potable water to the public. The specific role of the agents in the sys-

tem is to intelligently guide water allocation, per the algorithm programmed in

the agents.

Fig. 3.1 Use case diagram of an intelligent WDN.

The CPS agent is the actor in the use case diagram, and associated with the

decision support algorithm. For simplicity, only use cases associated with one

agent are shown in Fig. 3.1; all other agents have similar use cases associated

with them. As shown in the use case diagram, sensors collect information

about the physical operation of the system on a time- or event-triggered basis.

The collected information is aggregated by a multiplexer and sent to the Data

Integrity Check for intelligent semantic inference. The Data Integrity Check

use case uses three main data streams, specifically, raw data from the corres-

ponding sensor, real-time data from nearby sensors for the same or related

physical attributes, and the data from a history database. The second and third

data streams mentioned are used for corroboration of the first, by checking for

discrepancies in the values, whether in variation or in conformance to physical

(hydraulic) laws that govern the physical operation of the WDN. If no data is

available from nearby sensors, as would be the case if all nearby sensors are in

sleep mode, the history database will serve as a source of data for corrobora-

tion. As indicated in Fig. 3.2, the values of physical attributes, such as water

9

quantity, of nearby nodes, should not be significantly different from each other

for the same time period. For instance, adjacent water nodes should have simi-

lar water temperature and similar water pressure value. If significant discre-

pancy exists, the use case can conclude that the collected data may not be a le-

gitimate group of data and should not be used for further information

processing.

Fig. 3.2 Flow among nearby nodes

The decision support algorithm uses three data streams, one data stream from

the Data Integrity Check, another from the history database, and a third data

stream from other agents. The decision support algorithm is an advanced algo-

rithm implemented through software code for intelligent management of phys-

ical commodities. The algorithm can make use of legitimate (corroborated) da-

ta whose integrity has been checked, and can also resort to history data for

adjustment (rectification) of the calculated values in determining an appropri-

ate strategy for resource allocation. Meanwhile, the local agent interacts and

negotiates with other agents by sharing real-time information that provides

global perspective of resources in the system, and adjusts its own strategy ac-

cordingly. For instance, one adjacent agent reports that pipe bursting have

been detected and more water is needed from neighboring areas to guarantee

regular water consumption before restoration. In this case, the well-being

agents will adjust the strategy to maintain the local water consumption and

support extra quantity of water to its neighbor. Various algorithms can be the

candidate for the decision support algorithm, and the game theory holds the

greatest promise.

 Class Diagram

Based on the use cases and interconnections defined in Fig. 3.1, Fig. 3.3 pro-

vides an overview of different classes in the intelligent WDN, along with the

specified attributes and the corresponding methods for each class. Fig. 3.3 also

depicts and how the classes interrelate. Other information provided in Fig. 3.3

includes the data types of the attributes and the main constraints used in the

decision making algorithm. The attributes of the water facility classes have

been chosen to be most representative of both static (elevation) and dynamic

aspects (head loss) of water.

10

Fig. 3.3 Class diagram of an intelligent WDN.

The Data Integrity Checking class takes three data streams, from Sensor, Phys-

ical System Configuration and History Database, respectively. Data collected

by the sensors is aggregated by the multiplexor (representing by the small di-

amond) and sent for data integrity checking. The Physical System Configura-

tion block specifies the basic configuration and topology physical water infra-

structure. This configuration data is sent to Data Integrity Checking to assist in

evaluating physical constraints, e.g., judging whether a newly requested water

value (such as quantity) will exceed the capacity of a pipe. History data can be

queried by the Data Integrity Checking for comparing abnormal real-time data

with historical values. Various types of semantic analysis are carried out

through Intelligent Semantic Inference, including the aforementioned evalua-

tion of physical constraints and corroboration with historical data or data from

nearby nodes.

The purpose of this semantic inference is to screen out illegitimate or cor-

rupted data (based on the preliminary judging criteria), to ensure that only le-

gitimate data is sent to the decision making algorithm. A domain ontology for

more advanced semantic interpretation and system failure detection based on

semantic interpretation will be introduced in Section 4.

The agent has varied types of association with other classes: it receives the da-

ta after semantic processing, stores the data in the history database or queries

data from the database to assist in decision making (bidirectional), negotiates

resource allocation with other agents, and exerts control over actuators (valves

and pumps).

11

 Component Diagram

In Fig. 3.4, the main program that implements water allocation executes on the

cyberinfrastructure. The physical location of the main program is immaterial.

The main program is directly dependent on the code specification, which is the

head file of the agent class. It includes prototype information for the class

function. The remainder of the script is the package body, which exhibits func-

tionality similar to that of the main program and executes in distributed fa-

shion within its autonomous management scope. If the script is written in C++,

the package body is a .cpp file. An independent database is attached to each

script, meaning that the script can only retrieve data from or store data to the

database for management purposes within its own scope. All the data sent to

the script for advanced semantic analysis or decision making has been checked

its integrity, as described earlier in this chapter.

Fig. 3.4 Component diagram of an intelligent WDN.

 State Transition Diagram

Fig. 3.5 depicts the state transitions of data in one period, which is the time

span from the point that data is collected at preset time (start state) until con-

trol has been exerted on the water consumption entity (end state). As agent-

based modeling is a data-driven modeling method, it is vitally important to

track each state transition of the data. The condition that can trigger entry to or

exit from a particular state has been specified. The history state (encircled „H‟)

records the state of the system immediately before query of the history data-

base. Once the agent has finished data retrieval, the state reverts back to the

original state before data storage, and the agent begins processing based on the

combination of retrieved historical data and the originally collected data. The

flow of the decision making procedure, whose goal is to allocate water (quan-

12

tity), has been specified in the figure with two decision blocks (encircled di-

amonds).

Fig. 3.5 State transition diagram of an intelligent WDN.

The Agent Process (in a solid rectangle) is the critical state within the context,

as it provides a precise numeric value to guide the control over actuators.

Markov and game-theoretic analysis are included in the state as instances.

Since the state of the data within the system has already been identified

through the agent-based model, we can use a vector to numerically represent

these states. Failure is a state transition from functional to non-functional, such

as the Sensor Sleeping or Failing, Transmission Failure, and Pipe Bursts

states (all in dotted ellipses) shown in the figure. We can define the normal

functioning state to be 1 and failure state to be 0. Therefore, vectors formed by

0 and 1 can precisely represent the state of the system. At this point, to identify

the functional states, a Markov reliability model can be built to estimate the

probability that the next state of the system is an operational state.

Game-theoretic analysis can be applied to calculate the equilibrium state of the

water allocation among the agents. In the context of a city, the water quantity

allocated to each sub-area can be determined, subject to the constraints of the

physical facility. Base on the threshold values of the constraints, the optimal

water allocation scheme can be obtained as well.

13

 Activity Diagram

In Fig. 3.6, which depicts the activity diagram for an intelligent WDN, three

entities are involved, including the physical networks; agent 1, acting as the

main agent; and agent 2 as the agent interacting with agent 1. The activity dia-

gram reflects how an agent interacts with the environment, and how the values

in the associated object change after date integrity checking and data

processing.. For instance, the raw data is changed into semantically-processed

data for control, and the requested water quantity of one agent may affect

another agent's water consumption quantity.

 Sequence Diagram

Fig. 3.7 depicts the sequence of messages exchanged among different entities

in the intelligent WDN. The message on the line shows the method adopted by

the receiver (class defined in the class diagram) upon receiving the message.

The figure shows the sequence of data received by the data integrity checking

object and the decision support algorithm object of agent. For the former ob-

ject, it directly receives and checks the raw data from the sensors (collected by

multiplexor) and then if it needs to compare the real-time data with previous

history data, it will receive data from its local database to make sure the result

of checking is based on a reliable history record. The water consumer object

and the adjacent agent object are eliminated after they send the return message,

which means that no message from these two objects will be accepted outside

of particular periods. The decision support algorithm of the agent first rece-

ives checked sensor data first, queries data from the history database, and fi-

nally communicates with the adjacent agent. Such a sequence is from the

physical infrastructure to the cyber infrastructure (bottom-up). After the deci-

sion has been made, the calculated result will be sent to the community agent

first, then a command will be sent to actuator to exert real-time control over

the physical commodity, and finally the calculated data is recorded as history

data in the database. Such a sequence is from the cyber network to the physi-

cal infrastructure (top-down), culminating in data recording.

A clear and correct sequence diagram of the agent-based WDN is the prerequi-

site for resolving challenges related to timing in CPS modeling. As the CPS is

a two-layered system, the intelligent agents make decisions based on the col-

lected data, but when the control command is sent back the actuator, the pre-

vious data for computation has already changed. Therefore, how to select an

appropriate cycle period and how to process the changing data are open prob-

lems for further research.

14

Fig. 3.6 Activity diagram of an intelligent WDN.

15

Fig. 3.7 Sequence diagram of an intelligent WDN.

4. Semantic Interpretation Services

4.1 Sensor information ontology
Semantic interpretation is carried out on semantic streams, each of which is

defined in a domain-specific ontology associated with the agent. The specific

domain in this book chapter is intelligent water distribution. Generally, an on-

tology is a description, e.g., a formal specification of a program, of the con-

cepts and relationships that can exist for an agent or a community of agents.

The notion of ontology utilized in this book chapter is a model that describes

semantic relations among components of the physical and cyber infrastruc-

tures, respectively, as well as the interdependencies across the cyber-physical

boundary. Each component in the ontology model is a unique class in terms of

programming implementation, with properties and parameters described in the

class definition. The relations define how classes can be related to one another.

Semantic interpretation is implemented through distributed software with ca-

pabilities of extraction, analysis, and processing of the semantic stream. The

definition of ontology for the WDN domain helps unify information presenta-

tion and permits software and information reuse, so as to reduce information

redundancy during the process of semantic interpretation in the agents.

The use case diagram in Fig. 3.1 depicts intelligent control of the physical in-

frastructure by the cyberinfrastructure of an intelligent WDN. To achieve the

goal of intelligent management and control, a number of tasks are involved to

implement various functionalities (use cases), such as the pre-processing of

the raw data from the sensors, coordinating the time sequence to query data

from the history database and communicate with peer agents, converting the

logical command to physical control over actuators, and so on. As ontology

has advantage over other information representations in terms of capturing the

16

structure and meaning of information, we use ontology to represent the failure

detection procedure, which is an important component of the intelligent in-

formation reasoning functionality in CPSs. Similar ontologies can be identi-

fied for other functionalities or use cases of a CPS.

Fig. 4.1 shows the information hierarchy for failure detection through the se-

mantic interpretation process. In the UML class diagram, each block

represents one type of semantic stream in the intelligent WDN. The attributes

of each class have been omitted in the interest of figure clarity. Details of the

attributes are presented in Fig. 4.6, which shows pseudo code for the semantic

service.

Fig. 4.1 UML representation of failure detection ontology in CPS for

an intelligent WDN

Fig. 4.1 shows that a failure in the WDN can be detected by the agent in the

event of device or information failure, the latter of which occurs when data

falls outside a pre-defined safety range. Failures in the physical infrastructure

of a WDN are of two main two types, physical failure due to excessive values

of pressure and elevation, or biochemical failure due to excessive quantities of

a biochemical substance or discovery of unknown biochemical materials. Cy-

ber failures can be caused by human error or device malfunction. Each class

identifies one type of semantic stream that can lead to failure in the CPS, and

the ultimate determination of failure (or the overall interpretation) is carried

out by the corresponding agent, which is in charge of all sensors deployed

within its administrative scope.

The main reason that the attributes of the class have not been defined here is

17

for simplifying reasoning procedure on information. For instance, the danger

threshold can be triggered by both excessive water quantity or cyber malfunc-

tion, but the excessive quantity of one single attribute of the water class is suf-

ficient to diagnose the source of failure is from physical networks. Besides,

the undefined attributes can help to reduce the semantic redundancy in terms

of automatic semantic conversion, which not every property field of a class

needs to be filled or met before performing detection. For example, to identify

biochemical attack from the excessive biochemical quantity (such as excessive

bacteria), the agent can just check if the detected biochemical element falls in-

to the database of known elements. As long as one type of elements is un-

known, even other co-existing elements fall into the knowledgeable scope, the

agent can immediately determine that a failure can be caused by the unknown

biochemical element.

The sensor information ontology captures the semantic entities (classes in the

UML diagram) and the relations of events and objects, deriving a reasoning

procedure beyond what sensors can directly provide through detection. The

ontology proposed in Fig. 4.1 is specific to the WDN domain, but can be rea-

dily adapted to other CPSs, such as smart power grids.

4.2 Model for semantic services
Based on the sensor information ontology proposed, we can develop compo-

nents that convert semantics between classes in the information processing

hierarchy, by extracting new semantic information from existing data streams.

In other words, the components encapsulate the semantic service into a

``black-box'' containing the execution method, which takes as input informa-

tion (defined as precondition [21]) corresponding to events detected by sen-

sors and generates as output a number of meaningful new events (defined as

postcondition [21]). The process is depicted in Fig. 4.2.

Fig. 4.2 Semantic service on the semantic stream

We propose a semantic service model that overlays the ontology defined in Fig.

4.1. The semantic service model allows the agents (users) to annotate seman-

tics of data transmitted between the services of each entity on the ontology,

and can check and automatically convert between data semantic whenever

possible. As the services are event-driven, the events passing between services

not only carry their value information, but also serve as triggers for service

execution. The semantic services can be categorized into two types, i.e., a) the

18

service that supplements input events with additional semantic annotation, and

b) the service that produces new semantic streams.

The first type of service can only identify additional properties carried by the

input event. For example, a sensor has detected that the water pressure in a

certain area has exceeded the safety threshold and reports this event to its se-

mantic service component, which can be a superior sensor or multiplexer. The

semantic service model associated with this component will add the geograph-

ical location as an additional identifier to distinguish this event from events

reported from other areas. Such functionality is particularly useful for distri-

buted control and management in the context of CPS, where a service may not

correspond to a centralized component that physically exists on one device; it

can be physically implemented on several distributed devices, but logically ex-

ists as a single service.

The second type of service automatically terminates the input semantic stream,

and uses the generated output semantic stream as the new stream propagating

on the ontology. The essence of this type of service is semantic transformation,

where the input and output events are different classes in the ontology. One

typical semantic transformation is generalization. For example, in Fig. 4.1, an

excessive pressure quantity will be interpreted as physical failure due to an

abnormal pressure value. Later on, the semantic stream of physical failure will

be propagated to a higher level for ultimate decision making, instead of the

semantic stream of abnormal pressure quantity, which no longer exists. This

case will be illustrated by the code in Section 4.6. Another example can be the

derivation of danger event by passing the threshold component, which ab-

stracts the possible sources of dangers in terms of water failure and cyber fail-

ure. Such case falls into the category of generalization.

The benefits of proposing such a semantic service model on information on-

tology include the reduction of information redundancy, pre-processing and

abstraction of data for the agent, and the facilitation of semantic query by a

user. A user can issue a query that requests that a certain data stream with de-

sired semantics be provided to a certain component device to diagnose wheth-

er failure exists on the queried level.

4.3 Semantic agent framework
Fig. 4.3 illustrates how the agents use the information detected by sensor net-

works and the interpreted semantics through components based on the defined

ontology. Raw data is obtained from sensor networks, and since each agent is

an independent entity in charge of a particular geographical area, the sensors

located in distributed areas are managed by different agents (with possible

overlap). For a semantic service component, the input semantic events are pre-

conditions of the service. The postconditions, i.e., the processed output seman-

tics, are provided to the agents for further computing.

19

Fig. 4.3 Framework of semantic agents

The agents must host uncoordinated tasks, which are events triggered by dif-

ferent physical events and sensor data categorized in the ontology at unpre-

dictable times. The data collected and process carried out strongly depends on

the agents‟ surroundings. It is very likely that redundant information will exist

among the concurrent tasks of different agents. For example, a pipe burst can

impact several agents corresponding to nearby areas. Therefore, parts of the

information for these tasks can be shared. To reduce the redundancy and use

the computing resources more economically, we adopt a distributed decision

algorithm, such as Maxflow, executing in parallel on multiple agents [22]. In

the distributed decision algorithm, each agent uses only a portion of the com-

puting resources to process the data within its own administrative scope, and

the agents circulate the calculated results among each other to share informa-

tion that may be helpful to the local decision making strategy.

A common application case is water allocation, and the algorithm we have

adopted in the model is game theory. The details of our work have been pre-

sented in [23]. The sensors located in different areas collect water quantity in-

formation and send the data to the game theory algorithm. The water alloca-

tion strategy aims to achieve Nash equilibrium among the participating players

- agents in the model. The equilibrium strategy seeks to achieve more efficient

and fair water allocation, as compared with the low-level self-regulation that

would occur if physical and hydraulic rules alone are left to govern the water

flow. The proposed work can be further refined by introducing additional con-

straints, such as different pipeline thresholds and the maximum/minimum wa-

ter quantity requirements of different water consumers.

20

However, some limitations exist in the model. The distributed algorithm is

adopted by the agents due to limited computing resources, and the agent is re-

sponsible for the final decision used to exert control over the physical network.

Several factors will impact this final decision. As shown in the use case dia-

gram (Fig. 3.1), the execution of the decision support algorithm takes into

consideration the data after integrity checking and comparison with historical

values, and will also be affected by data from nearby agents. If the decision

algorithm waits for data from all three sources to become available, the timeli-

ness of the decision cannot be guaranteed, particularly if the speed of water

flow is high and water attributes change rapidly. If the decision algorithm does

not wait for data from all sources to be ready, its implementation may suffer

the risk that the final decision does not meet the requirements or violates con-

straints, as it will already be outdated by the time it is made. Designating the

agents as the decision making authority should take such factors into consider-

ation.

Another shortcoming of the hierarchical organization is information asymme-

try. This problem is best illustrated through an example scenario, where the

program segment used to manage a certain area crashes. As the computing re-

sources and the algorithm are distributed, the code running on other computers

should remain operational and unaffected by the failure. However, water flow

is a dynamic commodity, and the areas managed by different agents are inter-

connected. The failure of even a single agent could lead to missing data, which

in turn can lead to flawed decision-making by other agents, and potentially a

cascading failure of a significant portion of the system. Such a scenario serves

as a cautionary tale of the vulnerabilities introduced by the use of cyber con-

trol.

The fault tolerance of the model is limited by several factors. A number of

them has are apparent from the state transition diagram of Fig. 3.5. Data col-

lection by the sensors may suffer the risk of sensor failure or sleep, and infor-

mation loss can be caused by transmission failure. Lost, delayed or incomplete

data can directly affect the functionality of higher-level components. Besides,

the cyber components suffer risks from computer crash, disconnect of com-

munication links, and internal design issues of the decision algorithm, such as

interference among the agents. Increasing the robustness of the system by ad-

dressing these issues is an open research topic.

Before the input events are processed in the semantic service model, the event

stream will undergo data type processing, including data type definition, data

type checking, and data type conversion. A number of issues related to timing

synchronization and sampling remain to be resolved for the data type

processing as well.

21

4.4 Data Type Processing
The main purpose of data type processing is to reduce runtime redundancies,

based on event semantics. The events in the event-driven model serve two

roles: carrying values and triggering further services defined in the failure de-

tection ontology. It is crucial for agents to identify the maximum sensing over-

lap and to reduce runtime redundancy, which is an intermediate information

reuse and summarization problem. In light of the ontology defined in Fig. 4.1

and the semantic agent framework of Fig. 4.3, the intermediate data

processing should carry out three functions: a) identification of overlapping

information from multiple sensor nodes, including those that collect physical

water data, others that monitor communication links, and yet others that su-

pervise the cyber infrastructure; b) suppress parts of the data that are useless

for failure detection, keeping only the critical information active and sending

it to the higher-level entity; and c) sharing intermediate data with its peer enti-

ties. The second and third attributes can be realized in the service-oriented ar-

chitecture proposed in Fig. 4.3, and will be elaborated upon in Section 4.4 and

Section 4.5. To maximally identify redundant sensing is the task of data type

processing.

Based on inspiration from [21] and [24], we define an event as a tuple with

two elements: a value and a tag. 2123In contrast to [24], we define a trigger-

ing event as a signal consisting of its respective value and tag types. The com-

position of an event can be represented as Fig. 4.4.

 Value

 Event

Fig. 4.4 Visual representation of an event

The value of an event is represented in the following form:

 V= (name, {n1,p1},{n2,p2,…,(nk,pk)}) , (4.1)

where name represents the name of the signal, and (ni,pi) represents the field

and the data type. Such a representation of value can help parameterize the

event and facilitate implementation of the service in the subsequent stage. For

example, the value of an event that corresponds to measurement of physical

attributes of water can be represented as:

 Time Filed and data type Name

22

water sensing = (water_sensor, {geoID, int}, {width, float}, {length, float},

{height, float}) (4.2)

Representation of events with a value also facilitates information aggregation.

Based on record types in OCL programming languages [25], a pure specifica-

tion language for expression, if two events have identical names, but the field

type of one value is a subclass of the other, then the event value with a more

generic field type can subsume the other event value to reduce data redundan-

cy, while keeping the unique field type of the subclass. The following instance

can be aggregated by (4.2).

water sensing = (water_sensor, {geoID, int}, {width, float}, {length, float},

{height, float}, {biochemical, float}) (4.3)

Aggregation of subclass data type is depicted in Fig. 4.5 (a), where the larger

area denotes the common field type, and the smaller area denotes the unique

field type of the subclass. After aggregation, the event record with the subclass

field type does not exist. Information reuse, as an extension of information ag-

gregation, keeps the common field type and the unique field type of the sub-

class separate, as shown as Fig. 4.5 (b).

Fig. 4.5 Data type processing

Tags are utilized to represent timing and ordering relations among events. So-

phisticated timing issues include the sampling frequency of sensors, difference

and conversion between discrete time signals and continuous time signals, in-

terpolation to merge different timing signals, and so on. More detailed infor-

mation can be found in [24]. In this chapter, we simply use time, T, to

represent the tag for each event.

Upon defining the value and tag, we can easily check and if necessary, convert

the data type. In checking the data type, the focus is on checking the field type

of the data, with the premise that the data has passed the integrity check. Data

type checking can facilitate reuse of services from existing tasks, by compar-

ing newly injected information about an event with existing information, in-

23

cluding matching the names of the event, checking for the existence of subset

relations in the field type, and checking the data types in the field. The focus

of data type conversion is mainly on reconciling the tag value of the triggering

event with the tag value of the subsequently triggered event. As the tags dic-

tate the timing and ordering relations among events, synchronization issues

needs to be resolved, and the solution method depends on whether the trig-

gered event is periodic or aperiodic. Interpolation is one solution method for

periodic signals [24].

4.5 Implementation in C++
The choice of C++ for implementation of the semantic service was motivated

by several factors. Firstly, a service component is an information-rich compo-

nent that needs to define the semantic service for execution, extract informa-

tion from the input, and produce new semantics at the output. Such logical

analysis is best implemented through a high-level programming language such

as C++ or JAVA, rather than a computing tool. As the modeling approach

adopts UML, it is also natural to use the Object-Constrain Language [26] to

specify the pre- and post- conditions and the actions in C++ or JAVA. Second-

ly, a class in C++ is a good fit for our definition of the service component; the

declaration of service properties and the execution method of the service can

be encapsulated into one class. Thirdly, Matlab2008b can integrate C++ and

support parallel computing, and the integration of the semantic service and

computation of the algorithm in Matlab will make simulation of the CPS more

compact and faster.

To implement the service in C++, the properties of the service are paramete-

rized, and the execution method of the service becomes the corresponding me-

thod in the service class. To illustrate the method, we choose the branch of

Pressure to Failure in Fig. 4.1 as an example. Sensors are treated as services

with only output semantics, which are parameterized into data that can be used

by superior service components. Each component has been specified with a

service name and a parameter associated with the service. Each service takes

the outputs of an inferior component as the input to its execution method, and

inherits the parameters to ensure that attributes of a potential failure source

(such as pressure, failure time, or location) are not lost during information

propagation on the ontology. The pseudo-script for C++ implementation is

shown in Fig. 4. 6.

5. Conclusions
CPSs are the topic of emerging research, but existing tools and techniques for

modeling them are still limited. A number of related challenges were discussed

in this book chapter, with focus on the importance of capturing interdependen-

cies and flow heterogeneity, and streamlining semantic interpretation between

the cyber and physical infrastructures. The use of agent-based modeling was

24

proposed, and related methods and tools were introduced. An intelligent WDN

was presented as a case study for demonstrating the ability of the technique to

capture various facets of the operation of a CPS. A semantic service model

based on the definition of ontology was presented, with the goal of reducing

information redundancy and simplifying the data interpretation procedure of

the agents. The data processing carried out for parameterizing and aggregating

the raw data streams was described, as was the implementation of the semantic

service model in C++. The proposed model reflects the semantics of intelli-

gent water distribution, but can be modified for use in other CPS domains.

The modeling work presented in this book chapter is a preliminary step that

will facilitate the broader goal of modeling CPSs. Future extensions to this

work will incorporate sophisticated decision support algorithms, e.g., game

theory, for the agents. The semantic service model implemented through C++

will be integrated with Matlab to facilitate the complex computation required.

Provision of the semantic service in C++ to the decision support algorithm in

Matlab will create an advanced simulation environment for CPSs, which can

be invaluable to gaining a more profound understanding of the operation of

CPSs.

Sensor{

water_sensor, geoID,[width,length,height], /* properties of sensors:

water detection, geographical ID, location*/

Outputs(pressure, elevation, biochemical, location, T1); /*the para-

meters can be detected by sensor at time T1* /

}

Pressure component:

Pressure_Service{

service(pressure), /*service indicates execution method and the pa-

rameter is pressure*/

Inputs (sensor(water_sensor, geoID, [width,length,height], T1);

If (pressure > normal range)

Outputs (pressure_normal (false), detected (pressure,geoID, T2));

/*add the judgment result and time T2 when make judgment*/

}

Physical component:

Physical_Service{

service(physical_failure),

Inputs(pressure_service(pressure_normal(false), detected (pres-

sure,geoID,T2)));

If ((elevation < normal range) && (pressure_normal = false))

/*guarantees pressure is the unique reason*/

Outputs(physical_normal(false), de-

tected(physical_failure,pressure,geoID,T2)); /*inherit inferior

attribute*/

}

Water component:

Water_Service{

service(water_failure),

Inputs(physical_service(normal(false), (physi-

25

cal_failure,pressure,geoID,T2)));

If ((biochemical_normal = true) && (physical_normal = false)) /*same

as above*/

Outputs(water_normal(false), detected(water_failure,physical

_failure,pressure,geoID,T2));

}

Threshold component:

Threshold_Service{

service(failure),

Inputs(physical_service(normal(false), de-

tected(physical_failure,pressure,geoID,T2)));

Switch(detected(pressure))

{

Case (within range for safe): service terminates;

Case (within range for critical): send (pressure,geoID,T2) to data-

base;

Case (within range for safe): output system failure alert;

Default: service terminates;

}

Outputs(system_failure_alert, detected(water_failure,physical

_failure,pressure,geoID,T2));

}

Fig. 4.6 Pseudocode for semantic service

References
[1] Lee E, “Cyber physical systems: Design challenges,” in Proc. of the 11th IEEE Interna-

tional Symposium on Object Oriented Real-Time Distributed Computing, May 2008, pp.

363–369.

[2] Lin J, Sedigh S, and Miller A. “Modeling cyber-physical systems with semantic

agents,” the 5th IEEE Workshop on Engineering Semantic Agent Systems in conjunc-

tion with Proc. of the 34th IEEE International Computer Software and Applications

Conference, Seoul, South Korea, July 2010.

[3] Rinaldi S M, “Modeling and simulating critical infrastructures and their interdependen-

cies,” in Proc. of the 37th Hawaii International Conference on System Sciences, 2004.

[4] Pederson P, “Critical infrastructure interdependency modeling: The survey of U.S. and

international research,” August 2006.

[5] Svendsen N K and Wolthusen S D, “Analysis and statistical properties of critical infra-

structure interdependency multiflow models,” in Proc. of the IEEE Information Assur-

ance and Security Workshop, June 2007, pp. 247–254.

[6] Lin J, Sedigh S, and Miller A, “Towards integrated simulation of cyber physical sys-

tems: A case study on intelligent water distribution,” in the 8th International Conference

on Pervasive Intelligence and Computing, 2009.

[7] Macal M C and North J M, “Tutorial on agent-based modeling and simulation Part 2:

How to model with agents,” in Proc. of the 38th Winter Simulation Conference, 2006,

pp. 73–83.

[8] Guessoum Z, Faci N, and Briot P J, “Adaptive replication of large scale multi-agent sys-

tems - towards a fault-tolerant multi-agent platform,” in Proc. of the 4th International

Workshop on Software Engineering for Large-Scale Multi-Agent Systems. ACM, 2005.

[9] C Gatti de M, Lucena de C, and Briot J, “On fault tolerance in law governed multi-agent

systems,” in Proc. of the 5th International Workshop on Software Engineering for

Large-Scale Multi-Agent Systems . ACM, 2006.

[10] Poslad S, “Specifying protocols for multi-agent systems interaction,” ACM Transac-

26

tions on Autonomous and Adaptive Systems, vol. 2, no. 4, November 2007.

[11] Athanasiadis I N, Mentes A K et al., “A hybrid agent based model for estimating

 residential water demand,” Simulation, vol. 81, no. 3, March 2005.

[12] Bauer B and Odell J, “UML 2.0 and agents: How to build agent based systems with

the new UML standard,” Engineering Applications of Artificial Intelligence, vol. 18,

no. 2, 2005.

[13] Klein F and Giese H, “Analysis and design of physical and social contexts in multi

agent systems using UML,” in Proc. of the 4th International Workshop on Software

Engineering for Large-Scale Multi-Agent Systems. ACM, 2005.

[14] Sunye G, Le Guennec A and Jezequel J, “Using UML action semantics for model ex-

ecution and transformation,” Information Systems, vol. 27, 2002, pp. 445-457.

[15] Jiang G, Chung W, and Cybenko G, “Semantic agent technologies for tactical sensor

networks,” in Proceedings of the SPIE, 2003, pp. 311–320.

[16] Liu J and Zhao F, “Towards semantic services for sensor-rich information systems,” in

2nd International Conference on Broadband Networks, 2005, pp. 44–51.

[17] Elci A and Rahnama B, “Consideration on a new software architecture for distributed

environments using autonomous semantic agents,” in Proc. of the 29th Annual Interna-

tional Computer Software and Applications Conference, 2005.

[18] Finin T, Joshi A et al., “Information Agents for Mobile and Embedded Devices,” Lec-

ture Notes in Computer Science, 2001, Volume 2182/2001, 264-286.

[19] Ashri R and Luck M, “An Agent Construction Model for Ubiquitous Computing De-

vices,” in Proc. of the Fifth International Workshop on Agent-Oriented Software Engi-

neering, 2004.

[20] Haimes Y Y and Jiang P, “Leontief-based model of risk in complex interconnected in-

frastructures,” Journal of Infrastructure Systems, vol.7, No.1, March 2001, pp. 1-12.

[21] Lee E A and Vincentelli A S. “A framework for comparing models of computation”.

IEEE Transactions on CAD, 17(12):1217–1229, Dec. 1998.

[22] Armbruster A, Gosnell M et al., “Power Transmission Control Using Distributed Max-

Flow,” Proc. of the 29th International Computers, Software, and Applications Confe-

rence, 2005.

[23] Lin J, Sedigh S, and Miller A. “A Game-Theoretic Approach to Decision Support for

Intelligent Water Distribution,” Hawaii International Conference on System Sciences,

January 2011.

[24] Liu J, Cheong E and Zhao F, “Semantics-based optimization across uncoordinated

tasks in networked embedded systems,” The International Conference on Embedded

Software, September, 2005.

[25] Mitchell C J (1996) Foundations for Programming Languages. MIT Press.

[26] Object Constraint Language Specification Version 2.0, “OCL,”

http://www.omg.org/technology/documents/formal/ocl.htm. Accessed 20 February

2010.

View publication statsView publication stats

https://www.researchgate.net/publication/226298189

	A Semantic Agent Framework for Cyber-Physical Systems
	Recommended Citation

	tmp.1525290491.pdf.gljSL

