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Abstract – The development of accurate models for cyber-physical systems 

(CPSs) is hampered by the complexity of these systems, fundamental differ-

ences in the operation of cyber and physical components, and significant in-

terdependencies among these components. Agent-based modeling shows 

promise in overcoming these challenges, due to the flexibility of software 

agents as autonomous and intelligent decision-making components. Semantic 

agent systems are even more capable, as the structure they provide facilitates 

the extraction of meaningful content from the data provided to the software 

agents. In this book chapter, we present a multi-agent model for a CPS, where 

the semantic capabilities are underpinned by sensor networks that provide in-

formation about the physical operation to the cyber infrastructure. As a specif-

ic example of the semantic interpretation of raw sensor data streams, we 

present a failure detection ontology for an intelligent water distribution net-

work as a model CPS. The ontology represents physical entities in the CPS, as 

well as the information extraction, analysis and processing that takes place in 

relation to these entities. The chapter concludes with introduction of a seman-

tic agent framework for CPS, and presentation of a sample implementation of 

the framework using C++. 

 

Keywords – cyber-physical systems, agent-based modeling, semantic ca-

pabilities, fault detection, multi-agent system, sensor networks, intelligent 

water distribution. 

 

1. Introduction  
The synergy between agent-based modeling and semantic technologies holds 

promise for the resolution of challenges posed by a broad range of complex 

systems, in particular cyber-physical systems (CPSs), where embedded com-

puting and communication capabilities are used to streamline and fortify the 

operation of a physical system [1]. In CPSs, sensors collect information about 

the physical operation of the system, and communicate this information in 

real-time to the computers and embedded systems used for intelligent control. 

These cyber components use computational intelligence to process the infor-

mation and determine appropriate control settings for physical components of 

the system, such as devices used to control the flow of a physical commodity, 

e.g., water or electric power, on a line. 
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A fundamental challenge in research related to CPSs is accurate modeling and 

representation of these systems, especially as related to reliability. Simplistic 

models that assume components fail independently are rendered unusable for 

the majority of CPSs, due to significant interdependencies within the cyber 

and physical infrastructures, respectively, and across the cyber-physical boun-

dary. In other words, modeling of any CPS is hampered by the need to model 

both the cyber (software, communication network, computing hardware) and 

the physical infrastructure (physical components and their interactions). Fur-

thermore, the application of graph-theoretic models is complicated by hetero-

geneity in the notion of “flow” in CPSs.  “Information” is the flow on the cy-

ber infrastructure that provides communication and computing capabilities. 

The flow on the physical infrastructure is domain-specific, e.g., power for an 

electric power grid or vehicles for a ground transportation system. Both types 

of flow need to be represented accurately, such that effects of any event are re-

flected in either or both networks. Thirdly, existing explicit communication 

protocols used to impart information between the cyber and physical infra-

structures do not fully capture the semantics of the interaction between the two. 

The vision of using distributed computing resources in the cyber networks to 

manage the distributed resources in the physical infrastructure further compli-

cates modeling of CPSs. 

Among existing techniques, agent-based modeling holds promise in surmount-

ing the aforementioned challenge, due to its capability of encapsulating di-

verse attributes within one agent, as well as its emphasis on the interaction 

among autonomous, heterogeneous agents, which share a common goal 

achieved in a distributed fashion. Sensors are the key to this approach, as they 

provide situational awareness to the agents and enable them to function based 

on the semantics of their mission and the specifics of their environment. The 

research presented in this book chapter aims to accurately model a CPS as a 

multi-agent system, where each agent is an independent entity that manages 

resources within its local scope. In the proposed model, information from the 

sensor networks is dynamically integrated with semantic services to support 

real-time decision support in the information-rich environment of a CPS. 

The CPS domain used as a case study for an application of this model is intel-

ligent water distribution networks (WDNs). In a WDN, physical components, 

e.g., valves, pipes, and reservoirs, are coupled with the hardware and software 

that supports intelligent water allocation. Fig. 1.1 depicts a sample WDN. 



3 

 
Fig. 1.1 Cyber and physical components of an intelligent WDN  

 

The primary goal of WDNs is to provide a dependable source of potable water 

to the public. Information such as demand patterns, water quantity (flow and 

pressure head), and water quality (contaminants and minerals) is critical in 

achieving this goal, and beneficial in guiding maintenance efforts and identify-

ing vulnerable areas requiring fortification and/or monitoring. Sensors dis-

persed in the physical infrastructure collect this information, which is summed 

by multiplexers and servers for hierarchical semantics interpretation. The 

processed and reasoned sensor data is then fed to distributed algorithms run-

ning on the cyber networks. These algorithms provide decision support to 

hardware controllers that are used to manage the allocation (quantity) and 

chemical composition (quality) of the water. The algorithms are implemented 

through software executing on multiple distributed computing devices. This 

software is represented by the agents in our model, each of which is capable of 

perceiving its environment, acting on that perception, communicating with 

other agents and exhibiting behavior that fits its goal. 

This book chapter is an extension of our previous work, where we first articu-

lated the use of semantic agents in modeling CPSs [2]. The extended content 

includes: a more detailed discussion on the agent-based modeling technique 

and its use in addressing design challenges in complex CPS, a more compre-

hensive presentation of our work on construction of semantic agent framework, 

and an introduction to data type processing.  

The remainder of this book chapter is organized as follows. Section 2 presents 

an overview of related literature. In Section 3, we present tools and procedures 
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to construct an agent-based model, the method for defining an agent, and a 

UML multi-agent model that captures the static structure and dynamic beha-

vior of a WDN. The semantic interpretation service is elaborated upon in Sec-

tion 4, where the sensor information ontology and associated semantic service 

model are defined. In Section 4, we also propose a semantic agent framework 

for interpretation of the semantics of raw data streams, describe data type 

processing of the raw data stream, and provide an overview of implementing 

semantic interpretation capabilities through C++ on Matlab. Section 5 con-

cludes the book chapter and describes future research directions. 

 

2. Background Work  
CPSs are an emerging research area, and the body of related literature is li-

mited. A considerable fraction of related work examines critical infrastructure 

systems, which are prime examples of CPSs. Salient studies, e.g., [3, 4, 5, 6] 

are on interdependencies among different components of critical infrastructure 

systems, and [3], which provides a relatively comprehensive summary of 

modeling and simulation techniques for critical infrastructure systems. System 

complexity has been identified as the main challenge in characterizing inter-

dependencies in CPSs [4].  Other challenges include the low probability of oc-

currence of critical events, differences in time scales and geographical loca-

tions, and the difficulty of gathering the accurate data needed for modeling. 

These challenges are clearly articulated in the literature, but solutions are very 

scarce. 

The need to use agent-based modeling for distributed complex system has 

been investigated in [7]. The work in [8] adopts a distributed multi-agent ar-

chitecture to analyze the observed information in real-time to adapt the multi-

agent system to the evolution of its environment. To address the dependability 

issue in multi-agent system, [9] improves the capability of calculating how 

critical an agent is to the system through its interactions with other agents and 

provides a framework that uses this information to ensure availability and re-

liability. A multi-agent system (MAS) in [10] represents a powerful model to 

solve distributed computation problems. A particularly relevant study is pre-

sented in [11], where agent-based modeling is used to estimate residential wa-

ter demand. An agent community is assigned to behave as water consumers, 

and econometric and social models are incorporated for estimating their water 

consumption. However, this study considers the WDN as a purely physical 

system with no cyber control. 

As a formal specification language with precise semantics, UML 2.0 has been 

adopted to model multi-agent systems with precise semantics. A detailed dem-

onstration of how UML 2.0 can be used for the specification of an agent-based 

system has been presented in [12]. UML 2.0 has been adopted during the 

analysis and design phase in [13], to model the physical and social contexts 

for embedded multi-agent systems. The specification of Action Semantics (AS) 
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in [14] shows how the applicability of AS to the UML meta-model paves the 

way for powerful meta-programming for model transformation.       

Semantic agent technologies are typically closely associated with sensor net-

works, and several prototype systems or software architectures have been pro-

posed based on the combination of the two. A prototype for battlefield infor-

mation systems has been described in [15], where the stated goal is to 

dynamically integrate sensor networks with information fusion processes to 

support real-time sensing, interpretation, and decision-making in an informa-

tion-rich tactical environment. In [16], an architecture and programming mod-

el for a semantic service-oriented sensor information platform has been pre-

sented. In contrast to [16] our work expands the semantic service model to a 

semantic agent framework, whereas [16] focuses on how to use the semantic 

model to query the system for high-level events without processing raw sensed 

signals. The use of autonomous semantic agents in developing new software 

architecture for distributed processing environments has been proposed in [17]. 

The discussion in [17] involves software architecture in general, and utilizes 

semantic web technologies; whereas our work is tailored to the specific re-

quirements of CPSs. Due to the stringent security requirements of critical in-

frastructure and the vulnerabilities of web technologies, we do utilize them at 

this stage of our research.  

The complexity of CPSs, as well as the necessity of capturing embedded com-

puting and communication capabilities motivates the use of distributed agents 

and semantic services for representing the relationship between the cyber and 

physical infrastructures. In our work, the distributed semantic agent model 

augments the data acquisition of sensors in the CPS with ontological decision-

making intelligence. The proposed model not only captures the complexity of 

the CPS in a clear and understandable way, but also takes accurate semantic 

interpretation into consideration. To our knowledge, our work is the first study 

to apply semantic agents to modeling of CPSs. 

 

3. Agent-based Modeling technology  
 

As a visual modeling language for representing object-oriented systems, UML 

is an intuitive choice for supporting agent-based modeling, in both the design 

and the communication phases. UML consists of several types of structured 

diagrams and graphical elements that are assembled to represent a model. The 

high level of abstraction is independent of the implementation of the model, 

especially when an object-oriented programming language is used. 

Generally, by our definition, the agent is a piece of software code with intelli-

gent decision-making functionality. An agent can be considered a self-directed 

object with the capability to autonomously choose actions based on its situa-

tion, and therefore the object-oriented paradigm is a useful basis for agent 

modeling.  Object classes can be used as agent templates, and object methods 
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can represent agent behaviors. The data-driven, rather than process-driven 

perspective of object-oriented modeling also makes it well-suited to agent-

based modeling. 

The construction of an agent-based model can be broken down into the fol-

lowing steps, each of which is described in one of the subsections that follow. 

 

1) Defining the agents in the context of the system; and identifying 

attributes of the agent; and other classes, along with their attributes. 

2) Defining the environment where the agents reside, and the objects with 

which the agents interact. 

3) Designing the methods by which agent attributes will be updated in re-

sponse to agent-to-agent interactions or agent interactions with the envi-

ronment. 

4) Implementing the designed agent model in modeling software. 

 

Our work specifically defines agent as software code and differentiates agents 

from the other devices, such as sensors and actuators. In contrast, architectures 

proposed in a number of other studies place the agents in the context of em-

bedded devices. For example, in [18], the agent construction model is com-

posed of components that are the basic building blocks for an agent; and the 

generic functionalities of these components are further divided into informa-

tion collection (sensors), information storage (infostores), decision-making 

(controllers), and affecting change in the environment (actuators). In this book 

chapter, our focus is on the software aspects of agents, particularly on the im-

plementation of semantic interpretation. Related work takes a more applica-

tion-specific approach, e.g., the study in [19] discussed software aspects of in-

formation agents in a pervasive computing environment. 

   

3.1 Definition of the agents 
In our defined context of WDNs, the agent is the software code embedded in 

one or more computing devices on the cyberinfrastructure, with the goal of 

exerting control over components of the physical infrastructure. Other than 

this software, all other system components or subsystems are mechanical or 

hardware parts, including all mechanical water facilities, e.g.,  pumps, valves, 

reservoirs, water consumption junctions; communication links and sensors; or 

even more intelligent field-programmable gate array (FPGA) or programma-

ble logic controllers (PLC) devices.  

 

Regardless of their specific task, agents share the following characteristics. 

1) An agent is an identifiable and discrete individual, as each segment of 

software code is located on distributed PCs to control a local water area. 

The subprogram code inherits the attributes and methods of the main 

program and develops its unique attributes or operations to manage water 
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resources within its scope. Therefore, it is constrained by rules governing 

its behavior, and in possession of decision-making capability.  

2) An agent is situated in an environment where it interacts with other 

agents. In our model, each agent is in charge of its local scope, but they 

collectively interact for information sharing, data transmission and paral-

lel computing. 

3) An agent is goal-directed. Its major tasks include managing the raw data, 

using real-time data to quantify the overall reliability of the CPS, making 

a decision to take appropriate action if risk is anticipated in the near fu-

ture, and sending control commands to actuators to meet the broader sys-

tem objective or prevent potential damage. Approaches adopted for deci-

sion-making include game theory, which can be used to allocate water 

resources; the Leontief model [20], which can be applied to quantify the 

effect of a failure in one scope on operation of another scope; and Mar-

kovian models, which can estimate the likelihood of a transition from the 

current state to a given future state. 

4) An agent is flexible, due to its nature as a segment of code. It can learn 

and adapt its behavior to the environment, based on new information, 

which includes data from sensors or from peer agents; and experience, 

such as data retrieved from a history database. 

5) An agent is responsible for its intelligent semantic inference. After re-

ceiving raw data from the sensors, each agent should firstly check the in-

tegrity of the data, specifically, whether the data is deemed legitimate per 

scientific hydraulic relationships among its various physical parameters; 

and whether the data is reasonable, compared with history data and that 

of surrounding nodes.  A large number of failures can be screened out 

through this procedure, and the redundancy of data can be greatly re-

duced through semantic aggregation.  

6) An agent requires some form of memory, either on the computing device 

or in a separate database, to store the data of various water attributes for a 

period of time.  

 

3.2 Construction of an agent-based model  
 
In this section, we present an agent-based model for an intelligent WDN, as a 

case study of CPSs. We use the various types of UML diagram to gain insights 

to the system functionality, property and behavior of system components, 

software architecture, and the dynamics aspects of the complex system.  

 

 Use Case Diagram  

Creating a use case diagram is the first step for system analysis. A use case 

captures the interaction of a number of external actors with the system towards 

accomplishment of a goal. Fig. 3.1 shows the actor and the use cases involved 
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in the intelligent WDN. The use case diagram presented here can be genera-

lized to other CPSs whose main goal is management of a physical commodity. 

Examples include power grids and intelligent transportation systems. As de-

scribed in Section 1, the primary goal of WDNs is to provide a dependable 

source of potable water to the public. The specific role of the agents in the sys-

tem is to intelligently guide water allocation, per the algorithm programmed in 

the agents.  

 
Fig. 3.1 Use case diagram of an intelligent WDN. 

The CPS agent is the actor in the use case diagram, and associated with the 

decision support algorithm. For simplicity, only use cases associated with one 

agent are shown in Fig. 3.1; all other agents have similar use cases associated 

with them. As shown in the use case diagram, sensors collect information 

about the physical operation of the system on a time- or event-triggered basis. 

The collected information is aggregated by a multiplexer and sent to the Data 

Integrity Check for intelligent semantic inference. The Data Integrity Check 

use case uses three main data streams, specifically, raw data from the corres-

ponding sensor, real-time data from nearby sensors for the same or related 

physical attributes, and the data from a history database. The second and third 

data streams mentioned are used for corroboration of the first, by checking for 

discrepancies in the values, whether in variation or in conformance to physical 

(hydraulic) laws that govern the physical operation of the WDN. If no data is 

available from nearby sensors, as would be the case if all nearby sensors are in 

sleep mode, the history database will serve as a source of data for corrobora-

tion. As indicated in Fig. 3.2, the values of physical attributes, such as water 
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quantity, of nearby nodes, should not be significantly different from each other 

for the same time period. For instance, adjacent water nodes should have simi-

lar water temperature and similar water pressure value. If significant discre-

pancy exists, the use case can conclude that the collected data may not be a le-

gitimate group of data and should not be used for further information 

processing. 

 

 

 

 

 

                                 

Fig. 3.2 Flow among nearby nodes 

 

The decision support algorithm uses three data streams, one data stream from 

the Data Integrity Check, another from the history database, and a third data 

stream from other agents. The decision support algorithm is an advanced algo-

rithm implemented through software code for intelligent management of phys-

ical commodities. The algorithm can make use of legitimate (corroborated) da-

ta whose integrity has been checked, and can also resort to history data for 

adjustment (rectification) of the calculated values in determining an appropri-

ate strategy for resource allocation. Meanwhile, the local agent interacts and 

negotiates with other agents by sharing real-time information that provides 

global perspective of resources in the system, and adjusts its own strategy ac-

cordingly. For instance, one adjacent agent reports that pipe bursting have 

been detected and more water is needed from neighboring areas to guarantee 

regular water consumption before restoration. In this case, the well-being 

agents will adjust the strategy to maintain the local water consumption and 

support extra quantity of water to its neighbor. Various algorithms can be the 

candidate for the decision support algorithm, and the game theory holds the 

greatest promise. 

 

 Class Diagram  

Based on the use cases and interconnections defined in Fig. 3.1, Fig. 3.3 pro-

vides an overview of different classes in the intelligent WDN, along with the 

specified attributes and the corresponding methods for each class. Fig. 3.3 also 

depicts and how the classes interrelate. Other information provided in Fig. 3.3 

includes the data types of the attributes and the main constraints used in the 

decision making algorithm. The attributes of the water facility classes have 

been chosen to be most representative of both static (elevation) and dynamic 

aspects (head loss) of water. 
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Fig. 3.3 Class diagram of an intelligent WDN. 

 
The Data Integrity Checking class takes three data streams, from Sensor, Phys-

ical System Configuration and History Database, respectively. Data collected 

by the sensors is aggregated by the multiplexor (representing by the small di-

amond) and sent for data integrity checking. The Physical System Configura-

tion block specifies the basic configuration and topology physical water infra-

structure. This configuration data is sent to Data Integrity Checking to assist in 

evaluating physical constraints, e.g., judging whether a newly requested water 

value (such as quantity) will exceed the capacity of a pipe. History data can be 

queried by the Data Integrity Checking for comparing abnormal real-time data 

with historical values. Various types of semantic analysis are carried out 

through Intelligent Semantic Inference, including the aforementioned evalua-

tion of physical constraints and corroboration with historical data or data from 

nearby nodes. 

The purpose of this semantic inference is to screen out illegitimate or cor-

rupted data (based on the preliminary judging criteria), to ensure that only le-

gitimate data is sent to the decision making algorithm. A domain ontology for 

more advanced semantic interpretation and system failure detection based on 

semantic interpretation will be introduced in Section 4.   

The agent has varied types of association with other classes: it receives the da-

ta after semantic processing, stores the data in the history database or queries 

data from the database to assist in decision making (bidirectional), negotiates 

resource allocation with other agents, and exerts control over actuators (valves 

and pumps).   
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 Component Diagram   

In Fig. 3.4, the main program that implements water allocation executes on the 

cyberinfrastructure. The physical location of the main program is immaterial. 

The main program is directly dependent on the code specification, which is the 

head file of the agent class. It includes prototype information for the class 

function. The remainder of the script is the package body, which exhibits func-

tionality similar to that of the main program and executes in distributed fa-

shion within its autonomous management scope. If the script is written in C++, 

the package body is a .cpp file. An independent database is attached to each 

script, meaning that the script can only retrieve data from or store data to the 

database for management purposes within its own scope. All the data sent to 

the script for advanced semantic analysis or decision making has been checked 

its integrity, as described earlier in this chapter.  

 

 
Fig. 3.4 Component diagram of an intelligent WDN. 

 

 State Transition Diagram  

Fig. 3.5 depicts the state transitions of data in one period, which is the time 

span from the point that data is collected at preset time (start state) until con-

trol has been exerted on the water consumption entity (end state). As agent-

based modeling is a data-driven modeling method, it is vitally important to 

track each state transition of the data. The condition that can trigger entry to or 

exit from a particular state has been specified. The history state  (encircled „H‟) 

records the state of the system immediately before query of the history data-

base. Once the agent has finished data retrieval, the state reverts back to the 

original state before data storage, and the agent begins processing based on the 

combination of retrieved historical data and the originally collected data. The 

flow of the decision making procedure, whose goal is to allocate water (quan-
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tity), has been specified in the figure with two decision blocks (encircled di-

amonds).  

 
Fig. 3.5 State transition diagram of an intelligent WDN. 

 

The Agent Process (in a solid rectangle) is the critical state within the context, 

as it provides a precise numeric value to guide the control over actuators. 

Markov and game-theoretic analysis are included in the state as instances. 

Since the state of the data within the system has already been identified 

through the agent-based model, we can use a vector to numerically represent 

these states. Failure is a state transition from functional to non-functional, such 

as the Sensor Sleeping or Failing, Transmission Failure, and Pipe Bursts 

states (all in dotted ellipses) shown in the figure. We can define the normal 

functioning state to be 1 and failure state to be 0. Therefore, vectors formed by 

0 and 1 can precisely represent the state of the system. At this point, to identify 

the functional states, a Markov reliability model can be built to estimate the 

probability that the next state of the system is an operational state.  

Game-theoretic analysis can be applied to calculate the equilibrium state of the 

water allocation among the agents. In the context of a city, the water quantity 

allocated to each sub-area can be determined, subject to the constraints of the 

physical facility. Base on the threshold values of the constraints, the optimal 

water allocation scheme can be obtained as well.  
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 Activity Diagram  

In Fig. 3.6, which depicts the activity diagram for an intelligent WDN, three 

entities are involved, including the physical networks; agent 1, acting as the 

main agent; and agent 2 as the agent interacting with agent 1. The activity dia-

gram reflects how an agent interacts with the environment, and how the values 

in the associated object change after date integrity checking and data 

processing.. For instance, the raw data is changed into semantically-processed 

data for control, and the requested water quantity of one agent may affect 

another agent's water consumption quantity. 

 

 Sequence Diagram  

Fig. 3.7 depicts the sequence of messages exchanged among different entities 

in the intelligent WDN. The message on the line shows the method adopted by 

the receiver (class defined in the class diagram) upon receiving the message. 

The figure shows the sequence of data received by the data integrity checking 

object and the decision support algorithm object of agent. For the former ob-

ject, it directly receives and checks the raw data from the sensors (collected by 

multiplexor) and then if it needs to compare the real-time data with previous 

history data, it will receive data from its local database to make sure the result 

of checking is based on a reliable history record. The water consumer object 

and the adjacent agent object are eliminated after they send the return message, 

which means that no message from these two objects will be accepted outside 

of  particular periods. The decision support algorithm of the agent first rece-

ives checked sensor data first, queries data from the history database, and fi-

nally communicates with the adjacent agent. Such a sequence is from the 

physical infrastructure to the cyber infrastructure (bottom-up). After the deci-

sion has been made, the calculated result will be sent to the community agent 

first, then a command will be sent to actuator to exert real-time control over 

the physical commodity, and finally the calculated data is recorded as history 

data in the database. Such a sequence is from the cyber network to the physi-

cal infrastructure (top-down), culminating in data recording.  

A clear and correct sequence diagram of the agent-based WDN is the prerequi-

site for resolving challenges related to timing in CPS modeling. As the CPS is 

a two-layered system, the intelligent agents make decisions based on the col-

lected data, but when the control command is sent back the actuator, the pre-

vious data for computation has already changed. Therefore, how to select an 

appropriate cycle period and how to process the changing data are open prob-

lems for further research.  
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Fig. 3.6 Activity diagram of an intelligent WDN. 
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Fig. 3.7 Sequence diagram of an intelligent WDN. 

 

4. Semantic Interpretation Services  
 

4.1 Sensor information ontology   
Semantic interpretation is carried out on semantic streams, each of which is 

defined in a domain-specific ontology associated with the agent. The specific 

domain in this book chapter is intelligent water distribution. Generally, an on-

tology is a description, e.g., a formal specification of a program, of the con-

cepts and relationships that can exist for an agent or a community of agents. 

The notion of ontology utilized in this book chapter is a model that describes 

semantic relations among components of the physical and cyber infrastruc-

tures, respectively, as well as the interdependencies across the cyber-physical 

boundary. Each component in the ontology model is a unique class in terms of 

programming implementation, with properties and parameters described in the 

class definition. The relations define how classes can be related to one another. 

Semantic interpretation is implemented through distributed software with ca-

pabilities of extraction, analysis, and processing of the semantic stream. The 

definition of ontology for the WDN domain helps unify information presenta-

tion and permits software and information reuse, so as to reduce information 

redundancy during the process of semantic interpretation in the agents. 

The use case diagram in Fig. 3.1 depicts intelligent control of the physical in-

frastructure by the cyberinfrastructure of an intelligent WDN. To achieve the 

goal of intelligent management and control, a number of tasks are involved to 

implement various functionalities (use cases), such as the pre-processing of 

the raw data from the sensors, coordinating the time sequence to query data 

from the history database and communicate with peer agents, converting the 

logical command to physical control over actuators, and so on. As ontology 

has advantage over other information representations in terms of capturing the 
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structure and meaning of information, we use ontology to represent the failure 

detection procedure, which is an important component of the intelligent in-

formation reasoning functionality in CPSs. Similar ontologies can be identi-

fied for other functionalities or use cases of a CPS.   

Fig. 4.1 shows the information hierarchy for failure detection through the se-

mantic interpretation process. In the UML class diagram, each block 

represents one type of semantic stream in the intelligent WDN. The attributes 

of each class have been omitted in the interest of figure clarity. Details of the 

attributes are presented in Fig. 4.6, which shows pseudo code for the semantic 

service.  

 
Fig.  4.1 UML representation of failure detection ontology in CPS for  

an intelligent WDN 
 

Fig. 4.1 shows that a failure in the WDN can be detected by the agent in the 

event of device or information failure, the latter of which occurs when data 

falls outside a pre-defined safety range. Failures in the physical infrastructure 

of a WDN are of two main two types, physical failure due to excessive values 

of pressure and elevation, or biochemical failure due to excessive quantities of 

a biochemical substance or discovery of unknown biochemical materials. Cy-

ber failures can be caused by human error or device malfunction. Each class 

identifies one type of semantic stream that can lead to failure in the CPS, and 

the ultimate determination of failure (or the overall interpretation) is carried 

out by the corresponding agent, which is in charge of all sensors deployed 

within its administrative scope. 

The main reason that the attributes of the class have not been defined here is 
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for simplifying reasoning procedure on information. For instance, the danger 

threshold can be triggered by both excessive water quantity or cyber malfunc-

tion, but the excessive quantity of one single attribute of the water class is suf-

ficient to diagnose the source of failure is from physical networks. Besides, 

the undefined attributes can help to reduce the semantic redundancy in terms 

of automatic semantic conversion, which not every property field of a class 

needs to be filled or met before performing detection. For example, to identify 

biochemical attack from the excessive biochemical quantity (such as excessive 

bacteria), the agent can just check if the detected biochemical element falls in-

to the database of known elements. As long as one type of elements is un-

known, even other co-existing elements fall into the knowledgeable scope, the 

agent can immediately determine that a failure can be caused by the unknown 

biochemical element. 

The sensor information ontology captures the semantic entities (classes in the 

UML diagram) and the relations of events and objects, deriving a reasoning 

procedure beyond what sensors can directly provide through detection. The 

ontology proposed in Fig. 4.1 is specific to the WDN domain, but can be rea-

dily adapted to other CPSs, such as smart power grids. 

 

 

4.2 Model for semantic services  
Based on the sensor information ontology proposed, we can develop compo-

nents that convert semantics between classes in the information processing 

hierarchy, by extracting new semantic information from existing data streams. 

In other words, the components encapsulate the semantic service into a 

``black-box'' containing the execution method, which takes as input informa-

tion (defined as precondition [21]) corresponding to events detected by sen-

sors and generates as output a number of meaningful new events (defined as 

postcondition [21]). The process is depicted in Fig. 4.2. 

 

 
Fig. 4.2 Semantic service on the semantic stream 

 

We propose a semantic service model that overlays the ontology defined in Fig. 

4.1. The semantic service model allows the agents (users) to annotate seman-

tics of data transmitted between the services of each entity on the ontology, 

and can check and automatically convert between data semantic whenever 

possible. As the services are event-driven, the events passing between services 

not only carry their value information, but also serve as triggers for service 

execution. The semantic services can be categorized into two types, i.e., a) the 
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service that supplements input events with additional semantic annotation, and 

b) the service that produces new semantic streams.   

The first type of service can only identify additional properties carried by the 

input event. For example, a sensor has detected that the water pressure in a 

certain area has exceeded the safety threshold and reports this event to its se-

mantic service component, which can be a superior sensor or multiplexer. The 

semantic service model associated with this component will add the geograph-

ical location as an additional identifier to distinguish this event from events 

reported from other areas. Such functionality is particularly useful for distri-

buted control and management in the context of CPS, where a service may not 

correspond to a centralized component that physically exists on one device; it 

can be physically implemented on several distributed devices, but logically ex-

ists as a single service. 

The second type of service automatically terminates the input semantic stream, 

and uses the generated output semantic stream as the new stream propagating 

on the ontology. The essence of this type of service is semantic transformation, 

where the input and output events are different classes in the ontology. One 

typical semantic transformation is generalization. For example, in Fig. 4.1, an 

excessive pressure quantity will be interpreted as physical failure due to an 

abnormal pressure value. Later on, the semantic stream of physical failure will 

be propagated to a higher level for ultimate decision making, instead of the 

semantic stream of abnormal pressure quantity, which no longer exists. This 

case will be illustrated by the code in Section 4.6. Another example can be the 

derivation of danger event by passing the threshold component, which ab-

stracts the possible sources of dangers in terms of water failure and cyber fail-

ure. Such case falls into the category of generalization.  

The benefits of proposing such a semantic service model on information on-

tology include the reduction of information redundancy, pre-processing and 

abstraction of data for the agent, and the facilitation of semantic query by a 

user. A user can issue a query that requests that a certain data stream with de-

sired semantics be provided to a certain component device to diagnose wheth-

er failure exists on the queried level. 

 

4.3 Semantic agent framework  
Fig. 4.3 illustrates how the agents use the information detected by sensor net-

works and the interpreted semantics through components based on the defined 

ontology. Raw data is obtained from sensor networks, and since each agent is 

an independent entity in charge of a particular geographical area, the sensors 

located in distributed areas are managed by different agents (with possible 

overlap). For a semantic service component, the input semantic events are pre-

conditions of the service. The postconditions, i.e., the processed output seman-

tics, are provided to the agents for further computing.  
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Fig. 4.3 Framework of semantic agents 

 

The agents must host uncoordinated tasks, which are events triggered by dif-

ferent physical events and sensor data categorized in the ontology at unpre-

dictable times. The data collected and process carried out strongly depends on 

the agents‟ surroundings. It is very likely that redundant information will exist 

among the concurrent tasks of different agents. For example, a pipe burst can 

impact several agents corresponding to nearby areas. Therefore, parts of the 

information for these tasks can be shared. To reduce the redundancy and use 

the computing resources more economically, we adopt a distributed decision 

algorithm, such as Maxflow, executing in parallel on multiple agents [22]. In 

the distributed decision algorithm, each agent uses only a portion of the com-

puting resources to process the data within its own administrative scope, and 

the agents circulate the calculated results among each other to share informa-

tion that may be helpful to the local decision making strategy.  

A common application case is water allocation, and the algorithm we have 

adopted in the model is game theory. The details of our work have been pre-

sented in [23]. The sensors located in different areas collect water quantity in-

formation and send the data to the game theory algorithm. The water alloca-

tion strategy aims to achieve Nash equilibrium among the participating players 

- agents in the model. The equilibrium strategy seeks to achieve more efficient 

and fair water allocation, as compared with the low-level self-regulation that 

would occur if physical and hydraulic rules alone are left to govern the water 

flow. The proposed work can be further refined by introducing additional con-

straints, such as different pipeline thresholds and the maximum/minimum wa-

ter quantity requirements of different water consumers.  
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However, some limitations exist in the model. The distributed algorithm is 

adopted by the agents due to limited computing resources, and the agent is re-

sponsible for the final decision used to exert control over the physical network. 

Several factors will impact this final decision. As shown in the use case dia-

gram (Fig. 3.1), the execution of the decision support algorithm takes into 

consideration the data after integrity checking and comparison with historical 

values, and will also be affected by data from nearby agents. If the decision 

algorithm waits for data from all three sources to become available, the timeli-

ness of the decision cannot be guaranteed, particularly if the speed of water 

flow is high and water attributes change rapidly. If the decision algorithm does 

not wait for data from all sources to be ready, its implementation may suffer 

the risk that the final decision does not meet the requirements or violates con-

straints, as it will already be outdated by the time it is made. Designating the 

agents as the decision making authority should take such factors into consider-

ation.  

Another shortcoming of the hierarchical organization is information asymme-

try. This problem is best illustrated through an example scenario, where the 

program segment used to manage a certain area crashes.  As the computing re-

sources and the algorithm are distributed, the code running on other computers 

should remain operational and unaffected by the failure. However, water flow 

is a dynamic commodity, and the areas managed by different agents are inter-

connected. The failure of even a single agent could lead to missing data, which 

in turn can lead to flawed decision-making by other agents, and potentially a 

cascading failure of a significant portion of the system. Such a scenario serves 

as a cautionary tale of the vulnerabilities introduced by the use of cyber con-

trol. 

The fault tolerance of the model is limited by several factors. A number of 

them has are apparent from the state transition diagram of Fig. 3.5. Data col-

lection by the sensors may suffer the risk of sensor failure or sleep, and infor-

mation loss can be caused by transmission failure. Lost, delayed or incomplete 

data can directly affect the functionality of higher-level components. Besides, 

the cyber components suffer risks from computer crash, disconnect of com-

munication links, and internal design issues of the decision algorithm, such as 

interference among the agents. Increasing the robustness of the system by ad-

dressing these issues is an open research topic. 

Before the input events are processed in the semantic service model, the event 

stream will undergo data type processing, including data type definition, data 

type checking, and data type conversion. A number of issues related to timing 

synchronization and sampling remain to be resolved for the data type 

processing as well. 
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4.4 Data Type Processing  
The main purpose of data type processing is to reduce runtime redundancies, 

based on event semantics. The events in the event-driven model serve two 

roles: carrying values and triggering further services defined in the failure de-

tection ontology. It is crucial for agents to identify the maximum sensing over-

lap and to reduce runtime redundancy, which is an intermediate information 

reuse and summarization problem. In light of the ontology defined in Fig. 4.1 

and the semantic agent framework of Fig. 4.3, the intermediate data 

processing should carry out three functions: a) identification of overlapping 

information from multiple sensor nodes, including those that collect physical 

water data, others that monitor communication links, and yet others that su-

pervise the cyber infrastructure; b) suppress parts of the data that are useless 

for failure detection, keeping only the critical information active and sending 

it to the higher-level entity; and c) sharing intermediate data with its peer enti-

ties.  The second and third attributes can be realized in the service-oriented ar-

chitecture proposed in Fig. 4.3, and will be elaborated upon in Section 4.4 and 

Section 4.5. To maximally identify redundant sensing is the task of data type 

processing.  

Based on inspiration from [21] and [24], we define an event as a tuple with 

two elements: a value and a tag. 2123In contrast to [24], we define a trigger-

ing event as a signal consisting of its respective value and tag types. The com-

position of an event can be represented as Fig. 4.4.  

 

 

 

 

 

                                           Value 

 

 

                                                       Event  

Fig. 4.4 Visual representation of an event 
 

The value of an event is represented in the following form:  

 

      V= (name, {n1,p1},{n2,p2,…,(nk,pk)}) ,                        (4.1) 

 

where name represents the name of the signal, and (ni,pi) represents the field 

and the data type. Such a representation of value can help parameterize the 

event and facilitate implementation of the service in the subsequent stage. For 

example, the value of an event that corresponds to measurement of physical 

attributes of water can be represented as:  

 

                                                                            Time                               Filed and data type Name 
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water sensing = (water_sensor, {geoID, int}, {width, float}, {length, float},            

{height, float})                                                       (4.2) 

 

Representation of events with a value also facilitates information aggregation.  

Based on record types in OCL programming languages [25], a pure specifica-

tion language for expression, if two events have identical names, but the field 

type of one value is a subclass of the other, then the event value with a more 

generic field type can subsume the other event value to reduce data redundan-

cy, while keeping the unique field type of the subclass. The following instance 

can be aggregated by (4.2).  

 

water sensing = (water_sensor, {geoID, int}, {width, float}, {length, float}, 

{height, float}, {biochemical, float})                   (4.3) 

 

Aggregation of subclass data type is depicted in Fig. 4.5 (a), where the larger 

area denotes the common field type, and the smaller area denotes the unique 

field type of the subclass. After aggregation, the event record with the subclass 

field type does not exist. Information reuse, as an extension of information ag-

gregation, keeps the common field type and the unique field type of the sub-

class separate, as shown as Fig. 4.5 (b). 

 

 
Fig. 4.5 Data type processing 

 

Tags are utilized to represent timing and ordering relations among events. So-

phisticated timing issues include the sampling frequency of sensors, difference 

and conversion between discrete time signals and continuous time signals, in-

terpolation to merge different timing signals, and so on. More detailed infor-

mation can be found in [24]. In this chapter, we simply use time, T, to 

represent the tag for each event.   

Upon defining the value and tag, we can easily check and if necessary, convert 

the data type. In checking the data type, the focus is on checking the field type 

of the data, with the premise that the data has passed the integrity check. Data 

type checking can facilitate reuse of services from existing tasks, by compar-

ing newly injected information about an event with existing information, in-
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cluding matching the names of the event, checking for the existence of subset 

relations in the field type, and checking the data types in the field. The focus 

of data type conversion is mainly on reconciling the tag value of the triggering 

event with the tag value of the subsequently triggered event. As the tags dic-

tate the timing and ordering relations among events, synchronization issues 

needs to be resolved, and the solution method depends on whether the trig-

gered event is periodic or aperiodic. Interpolation is one solution method for 

periodic signals [24].  
 

4.5 Implementation in C++  
The choice of C++ for implementation of the semantic service was motivated 

by several factors. Firstly, a service component is an information-rich compo-

nent that needs to define the semantic service for execution, extract informa-

tion from the input, and produce new semantics at the output. Such logical 

analysis is best implemented through a high-level programming language such 

as C++ or JAVA, rather than a computing tool. As the modeling approach 

adopts UML, it is also natural to use the Object-Constrain Language [26] to 

specify the pre- and post- conditions and the actions in C++ or JAVA. Second-

ly, a class in C++ is a good fit for our definition of the service component; the 

declaration of service properties and the execution method of the service can 

be encapsulated into one class. Thirdly, Matlab2008b can integrate C++ and 

support parallel computing, and the integration of the semantic service and 

computation of the algorithm in Matlab will make simulation of the CPS more 

compact and faster. 

To implement the service in C++, the properties of the service are paramete-

rized, and the execution method of the service becomes the corresponding me-

thod in the service class. To illustrate the method, we choose the branch of 

Pressure to Failure in Fig. 4.1 as an example. Sensors are treated as services 

with only output semantics, which are parameterized into data that can be used 

by superior service components. Each component has been specified with a 

service name and a parameter associated with the service. Each service takes 

the outputs of an inferior component as the input to its execution method, and 

inherits the parameters to ensure that attributes of a potential failure source 

(such as pressure, failure time, or location) are not lost during information 

propagation on the ontology. The pseudo-script for C++ implementation is 

shown in Fig. 4. 6. 

 

5. Conclusions  
CPSs are the topic of emerging research, but existing tools and techniques for 

modeling them are still limited. A number of related challenges were discussed 

in this book chapter, with focus on the importance of capturing interdependen-

cies and flow heterogeneity, and streamlining semantic interpretation between 

the cyber and physical infrastructures. The use of agent-based modeling was 
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proposed, and related methods and tools were introduced. An intelligent WDN 

was presented as a case study for demonstrating the ability of the technique to 

capture various facets of the operation of a CPS. A semantic service model 

based on the definition of ontology was presented, with the goal of reducing 

information redundancy and simplifying the data interpretation procedure of 

the agents. The data processing carried out for parameterizing and aggregating 

the raw data streams was described, as was the implementation of the semantic 

service model in C++. The proposed model reflects the semantics of intelli-

gent water distribution, but can be modified for use in other CPS domains. 

The modeling work presented in this book chapter is a preliminary step that 

will facilitate the broader goal of modeling CPSs. Future extensions to this 

work will incorporate sophisticated decision support algorithms, e.g., game 

theory, for the agents. The semantic service model implemented through C++ 

will be integrated with Matlab to facilitate the complex computation required. 

Provision of the semantic service in C++ to the decision support algorithm in 

Matlab will create an advanced simulation environment for CPSs, which can 

be invaluable to gaining a more profound understanding of the operation of 

CPSs. 

 
Sensor{  

water_sensor, geoID,[width,length,height], /* properties of sensors: 

water detection, geographical ID, location*/  

Outputs(pressure, elevation, biochemical, location, T1);  /*the para-

meters can be detected by sensor at time T1* /  

}  

 

Pressure component:  

Pressure_Service{  

service(pressure),   /*service indicates execution method and the pa-

rameter is pressure*/  

Inputs (sensor(water_sensor, geoID, [width,length,height], T1);  

If (pressure > normal range)  

Outputs (pressure_normal (false), detected (pressure,geoID, T2));      

/*add the judgment result and time T2 when make judgment*/  

}  

 

Physical component:  

Physical_Service{  

service(physical_failure),  

Inputs(pressure_service(pressure_normal(false), detected (pres-

sure,geoID,T2)));  

If ((elevation < normal range) && (pressure_normal = false)) 

/*guarantees pressure is the unique reason*/  

Outputs(physical_normal(false), de-

tected(physical_failure,pressure,geoID,T2)); /*inherit inferior 

attribute*/  

}  

 

Water component:  

Water_Service{  

service(water_failure),  

Inputs(physical_service(normal(false), (physi-
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cal_failure,pressure,geoID,T2)));  

If ((biochemical_normal = true) && (physical_normal = false)) /*same 

as above*/  

Outputs(water_normal(false), detected(water_failure,physical 

_failure,pressure,geoID,T2));  

}  

 

Threshold component:  

Threshold_Service{  

service(failure),  

Inputs(physical_service(normal(false), de-

tected(physical_failure,pressure,geoID,T2)));  

Switch(detected(pressure))  

{  

Case (within range for safe): service terminates;  

Case (within range for critical): send (pressure,geoID,T2) to data-

base;  

Case (within range for safe): output system failure alert;  

Default: service terminates;  

}  

Outputs(system_failure_alert, detected( water_failure,physical 

_failure,pressure,geoID,T2));  

} 

Fig. 4.6 Pseudocode for semantic service 
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