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Hierarchical Neurocontroller Architecture
for Robotic Manipulation

Luis C. Rabelo and Xavier J. R. Avula

A hierarchical neurocontroller architecture
consisting of two artificial neural network sys-
tems for the manipulation of a robotic arm is
presented. The higher level neural network
system participates in the delineation of the
robot arm workspace and coordinates
transformation and the motion decision
making process. The lower neural network
provides the correct sequence of control ac-
tions. A straightforward example illustrates
the architecture capabilities including speed,
adaptability, and computational efficiency.

Neural Networks and
Robotic Control

A number of authors have applied neural
networks to the engineering problem of robotic
control. Guez and Ahmad [1] presented a
hybrid approach using a multi-layered feedfor-
ward network to the iterative solution of
robotic manipulators which resulted in ac-
celerated convergence in the inverse
kinematics. Guo and Cherkassky [2] presented
a solution algorithm, using an analog neural
computational scheme to implement the
Jacobian control technique in real time which
is desirable in practical control problems.
Sobajic et al. [3] investigated the control of a
constrained robot manipulator using back-
propagation, and showed that the manipulator
could be moved toward a target in the presence
of different disturbances. Bassi and Bekey [4]
provided a simulated control strategy which
indicated that it is practical to control a
manipulator to an arbitrary degree of precision
by using a neural network whose transforma-
tion has a relatively low precision. Liu et al.
[5] employed an adaptive neural network in

An early version of this paper was presented
at the 1991 IEEE International Conference on
Robotics and Automation, Sacramento CA,
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Department of Industrial and Systems En-
gineering, Ohio University, Athens, OH
45701. Xavier J.R. Avula is with the Depart-
ment of Mechanical and Aerospace Engineer-
ing and Engineering Mechanics, University of
Missouri-Rolla, Rolla, MO 65401.
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Fig. 1. Modeled robot arm.
building a generic architecture for robot System Model

hand control. This architecture allows
device-independent control and separates
the low level control problems from high
level functionality.

The work presented here develops an ar-
chitecture which can yield a strategy for
dynamic decision making that allows the
robot end-effector to reach its goal using a
priori and on-line contextual information. The
neural network systems cooperate with the
entire architecture to achieve the necessary
flexibility to adapt to unforeseen changes in
the robot workspace, environmental changes,
coordinate transformations, contextual rules
(e.g., payload, direction of travel, stiffness),
and interactions with other systems. In these
neural systems, the knowledge necessary to
adapt to a new environment is learned from
experience. This allows the implementation of
self-organization strategies and, therefore, of
evolving systems.

0272-1708/92/$03.0001992IEEE

The computer simulated robotic
manipulator model consists of a two dimen-
sion version of an arm with two jointed links
of equal length. Fig. 1 illustrates the
simulated robot arm. The workspace is con-
strained by the combined lengths of the two
members (200 cm) in the simulation and by
a maximum rotational displacement limit of
170° at the elbow joint. The robotic
manipulator’s dimensions can also change
due to the effects of temperature induced
link expansion or contraction. The tempera-
ture is assumed to vary randomly in the
range 25°C to 125°C. A coefficient of ther-
mal expansion similar to that of aluminum
is used (e.g., deformations up to 15% with
an increment of temperature of 100°C are
possible).

Due to the simplicity of the simulated
manipulator, algorithmic relationships yield
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most of the feedback needed for the supervi-
sionofthe learning of the differentnetworks.

Neural Networks

Two different neural network systems are
presented associated with the prototype of a
scheme which uses the integration of neural
networks and knowledge-based systems for
robotics motion control. These neural network
systems participate in the tasks of the motion
analysis process at the higher hierarchical
level and the process of control-emulation at
the lower level.

The neural network system at the higher
hierarchical level supports the decision
making by providing the motion analysis
process with an initial hypothesis. This initial
hypothesis is utilized to develop an early mo-
tion strategy to achieve the final position. This
initiative does not preclude adaptive changes
during the course of motion due to unexpected
changes. The simplicity of the model utilized
permits decomposition of the initial stage into
three distinct tasks, each with its own as-
sociated neural network arrangement. How-
ever, for more complex models other
techniques could be utilized such as goal
programming, dynamic programming, and
neural forward modeling [6],[7]. The first part,
consisting of the preliminary motion
feasibility analysis, uses a Restricted
Coulomb Energy (RCE) network to delineate
the robot-arm workspace and evaluate
whether the end-effector could reach the
proposed location. If the goal is feasible, a
second system of neural networks is employed
to map the angular coordinates of the two
possible robot configurations that are consis-
tent with the end-effector. Backpropagation is
utilized for the coordinates transformation
scheme. Special emphasis is placed on finding
a reliable approach to obtain an efficient net-
work architecture. Finally, the third network
arrangement using backpropagation analyzes
both alternatives and select the most adequate
one in accordance with the initial position.
This third network makes an initial proposi-
tion to the motion decision making mecha-
nism which could use the cooperation of
other knowledge sources (e.g., knowledge
bases, algorithms, procedures) with more
contextual information leading to the final
decision. This final decision will create a
plan for the control actions which are going
to be implemented by the lower elements of
the hierarchy.

The process of control-emulation is imple-
mented at the lower part of the hierarchy. This
part is based on previous developments by
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Barto et al. [8], Jordan [9],[10], Jordan and
Rumelhart [6], Kawato [7], Kong and Kosko
[11], Nguyen and Widrow [12],[13], and Wer-
bos [141,[15]. The problem to be solved is to
provide the correct sequence of control actions
to incite the robot arm to go from an initial
position to a target position. This "correct
sequence” of control actions is decided by a
plan generated by the high-level planner
which manages and coordinates information
concerning the task to be performed, and up-
dates the system knowledge. This high-level
planner is a computer generated response
which uses multiple problem-solving
modalities. In this study we have utilized for-
ward modeling because of the availability of
data. The forward model is taught by the high-
level planner using simulated sensor feedback
and implemented in a backpropagation net-
work. Then, the emulator network of the robot
arm dynamics is developed and the controller
implementation is started. The controller is
implemented using a backpropagation net-
work which is driven by the high-level planner
which takes the decision on the kind of trajec-
tory to be followed (i.e., linear, circular, linear/
circular). The frequency of these trajectory
changes is totally handled by the high-level
planner according to sensory information,
goals, and optimization factors. In addition,
the controller receives input from the emulator
at ahigher frequency. The methodology which
has been successfully used to train back-
propagation networks in the motion analysis
is utilized to train the emulator-controller
neural network system. This methodology is
proven to be efficient in the development of
the required networks which especially in-
volve large training data sets.

RCE Mapping of a Two Dimensional
Robotic Arm Workspace

In the present study, an RCE network was
used to accomplish this workspace filter. In an
RCE network [16],[17], all examples of a
pattern category (e.g., IN, OUT) define a set
of points in the feature space that can be
characterized as a region (or a set of regions)
having some arbitrary shape. This feature of
RCE networks makes them appropriate to
define and learn complex workspaces (ie.,
several degrees of freedom and links of ar-
bitrary geometric shapes). In addition, RCE
networks are appropriate for real-time learn-
ing of complicated nonlinear class regions,
and capable of probability estimations to
handle uncertainty.

The NDS 500 network package from Nes-
tor Inc. was used to obtain the workspace

mapping. The training data is clustered ac-
cording to the class boundaries to help the
learning process. In addition, to reduce the
level of overlapping of the cells in the internal
layer, very small minimum influence fields
were selected.

The RCE network used in this study was
of the most liberal type since it was desired to
prompt it to decide the categorization of the
X-Y pair (it is also possible to use polar coor-
dinates, if required) even at relatively high
uncertainty levels due to the fact that a
response was needed. The nearest neighbor
approximation was used whenever an input
vector fell outside the influence region of any
hidden layer cell. A training data file consist-
ing of 4500 points and a testing file of 499
points were utilized. The final network had
426 units. Of these, 115 had overlapping in-
fluence fields, while the rest possessed in-
fluence fields that were exclusive. The
learning process showed a healthy input sub-
space growth. This growth, represented by the
number of internal layer cells versus the num-
ber of training samples presented, is a good
indication of the quality of the categorization
(99.9%). The number reached an asymptotic
value as training was completed and the net-
work converged.

Mapping with Backpropagation

The neural networks for coordinate
transformation, configuration selection, arm
emulator, and neurocontroller were developed
using the standard backpropagation paradigm.
The training process using backpropagation is
a difficult problem [18]-[22]. It is necessary to
find an appropriate architecture (e.g., number
of hidden units, number of hidden layers, etc.),
adequate size and quality of training data,
satisfactory initialization (e.g., initial
weights), learning parameter values (e.g.,
learning rates), and to avoid over-training ef-
fects (performance degradation due to
prolonged training).

In this research the following approaches
were utilized:

1. To help to find an appropriate architec-
ture (i.e., number of hidden units) an interac-
tive addition of nodes was performed as
proposed by the Dynamic Node Creation
(DNC). DNC is a methodology developed at
the University of California-San Diego by Ash
[18] which adds nodes to the hidden layer(s)
of the network during training. A new node is
added if the root mean squared (RMS) error
curve has flattened out to an unacceptable
level. This level depends upon the relationship
of the drop in the RMS error over the previous
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"flattness window" to the RMS error when the
last node was added. When this value falls
below a user defined limit, a new node is
added. This process is stopped when the
desired performance has been achieved.

2. To speed up the convergence behavior,
the selection of parameters such as learning
rates and the utilization of a momentum factor
were utilized. The learning rule utilized con-
sisted of a weight update using momentum (j3)
with the exception that each weight had its
own "adaptive" learning rate parameter (W)
[23]. The "adaptive" learning rate strategy in-
crements the p(s) by a small constant if the
current partial derivative of the objective func-
tion (E = 1/2Z(Target — Output)z) with respect
to the weight (w) and the exponential average
of the previous derivatives have the same sign,
otherwise p will be decremented by a propor-
tion to its value. The updating equation of the
weights is defined by using wy; as the weight
value located between nodes i and j, t is the
present iteration, Aw is the weight increment
which is equal to the product of the i and the
partial derivative of the objective function
with respect to the weight (8£/8wy)),

wij(t) = wij(t=1) + Awii(t) + PAw;(1=1).

The momentum [} is changed dynamically,
because each problem has a range of optimal
B values to avoid oscillations.

3. To reinforce learning, Combined Subset
Training (CST) was utilized [25]. CST com-
bines old and new training sets. First, a random
subset to train the network is selected. When
the network has learned it fairly well, a new
subset (of the same size as the previous one) is
added to the first training set, and the network
is trained with the combined set. If this can be
learned successfully, the training set is doubled
in the same fashion. This training method is for
large and "uniform"” training sets.

4. In this research, three different types of
data sets were utilized: a training set, a valida-
tion set, and a testing set. The training set was
utilized for determining the values of the
weights. The validation set (a set with unseen
data to make on-line tests about network per-
formance) was utilized to avoid over-training
effects [21],{22]. The testing set (as expressed
by Weigend er al. [22]: "It is strictly set apart
and never used in training.") was utilized to
estimate the expected performance of the net-
work. The criterion utilized in this research to
stop training was based on low RMS and
minimum output errors (as a function of some
reasonable precision desired) for the training
and validation data sets, and the network’s
performance with the testing set.
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Robot Arm Coordinates Transformation

The coordinates transformation for the
robot used in this research is not a one-to-one
mapping. Two configurations, with a positive
and a negative elbow rotation, are valid if no
arbitrary constraints are placed on the solution
space. Consequently, it is important to develop
a methodology for choosing one which satis-
fies the motion and contextual constraints.
The simplicity of the model allowed us to list
the two possible target configurations and to
decide an optimum configuration which is
compatible with the initial configuration. For
models with three or more degrees of freedom
(which preclude the listing of possible configura-
tions) the robot arm coordinates transformation
and configuration selection should be treated by
converting the constraints on solutions to a func-
tion to be optimized. This function could be
added to the objective training function, and
therefore could be part of the supervisory
scheme utilized to train the network(s).

The system used to produce this transfor-
mation is based on two neural networks, each
responsible for one of the possible configura-
tions. The mapping assigns a three dimen-
sional input vector consisting on the X and Y
location of the end-effector as well as the
temperature, T, (X, ¥, T) to a two dimensional
vector containing the required shoulder and
elbow angular position (81,62).

The final architecture for both neural net-
works had 15 hidden units. Training sessions
starting with one hidden unit and 100 data
samples and incrementing nodes using a con-
servative width for the flatness window, the
training epochs were indeed large (i.e., 80 000
epochs). When the final architecture of 15
hidden units was achieved CST was applied
up to 800 data samples. It is interesting to note,
that the next set of data to be added to the
training file was based on the minimum output
errors achieved before. Therefore, each data
set added as defined by CST concentrated in
those points where the network has had some
lower performance. However, the effort was
automated in its majority in the standard back-
propagation simulator using the C program-
ming language. Training trials starting with
more hidden nodes initially (if a priori
knowledge or heuristics specify a lower
bound) and combined with learning rate adap-
tation required considerably less epochs (i.e.,
8000 epochs).

For configuration selection, a neural net-
work based on backpropagation is used. It has
six inputs representing both possible
configurations and the initial position of the
arm, two outputs specifying the rank given to

each configuration (The higher value iden-
tifies the winning combination of shoulder
and elbow angles), and six hidden units. This
network was developed using the training
techniques described above — starting with a
training set of 100 data samples and incre-
mented as specified by CST up to 400 data
samples.

Arm Emulator

The arm emulator is needed in order to
identify the arm dynamic behavior. As ex-
pressed by Nguyen and Widrow [12],[13],
"This process is roughly analogous to the steps
that would be taken by a human designer to
identify the plant" and this "identification is
done automatically by a neural network.” In
addition, using an emulator provides the ad-
vantage to extend this approach to more
degrees of freedom [6),{9}, and learn to con-
trol trajectories based on a final position error
[6], 171, [9], [10], {12)-[14]. The procedures,
in order to develop the emulator, should be
encoded in the high-level planner. The high-
level planner could examine the arm responses
in the cartesian plane with different motor
actions. This process will be implemented
repetitively until an efficient emulator is
developed. Neural networks has several ad-
vantages for this "automatic identification
process” due to their nonlinearity and learning
capabilities.

A neural network is developed using the
techniques previously mentioned. This
neural network has 3 inputs identifying the
current X, Y cartesian positions, the elbow
and shoulder angle increments (which could
define the width of the motors drive pulses
in our discrete-time model), and the
temperature. The neural network has two
outputs which correspond to the X, Y posi-
tions (i.e., next state) after the movement
has been performed. The neural network
developed has 42 hidden units and initially
was trained with 800 data samples. After the
final architecture was achieved, the training
set was incremented as specified by CST
up to 6400 data samples. It is interesting
to report that the interactive addition of
nodes loses some effectiveness when a
network grows above certain number of
hidden nodes. Recent research has empha-
sized in the development of architectures
(especially for those which require rela-
tively large sizes of hidden nodes and hid-
den layers) using pruning techniques
based on the second derivatives of the
objective function with respect to the
weights [20].
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Target
Configurations

Initial Configuration

Fig. 2. Motion analysis.

Neurocontroller

The neurocontroller has the functions to
provide a sequence of orders in order to drive
the arm from an initial position to a target
position. The emulator is used to teach the
controller by the high-level planner which
provides the plans. The plans in this applica-
tion define the type of trajectory desired. The
trajectory could be defined as linear or cir-
cular. The high-level planner decides accord-
ing to sensory feedback or emulator responses
to modify the plans given to the
neurocontroller. To define the type of trajec-
tory the coefficients of a line (Bx + C) or circle
(A)c2 + Bx + () are provided to the
neurocontroller. The neurocontroller taking
into consideration the present state vector (X,
Y, T) and the plan (A, B, C) generates the
discrete increments for the elbow and
shoulder angles. Then the "new" present
state vector is used repeatedly till the tar-
geted position is achieved. The necessary
comparison is done by the high-level plan-
ner which will decide to send the STOP
order(A=B=C=0).

Aneural network is developed using back-
propagation and the techiques mentioned
above to implement the neurocontroller. This
neural network has 6 inputs corresponding to
X, Y, T, A, B, and C. The outputs correspond
to the increments of the shoulder and elbow
angles. As it was mentioned above problems
with the training sessions were due to the
increments of node technique utilized. The
network was started training with an 800 data
samples. When a reasonable architecture was
found (46 hidden units), data samples were
incrementally added as specified by CST up
to 6400 data samples.

40

Fig. 3. Neurocontroller/emulator execution. (a) First movement (X = 150, Y = 70, T = 25°C, AB1
=2.0° A0y =4.8° X = 141.3, Y = 78.2). (b) Fourth movement (X = 121.7, Y = 98.7, T = 50°C,

AB| = 3.6°, A0 = 3.5° X =110.9, Y = 108.9).

An Example

Here we consider an example to illustrate
the integration of the different neural networks
toward the development and accomplishment
of a motion task. The goal of this task is to
drive the manipulator from the initial position
X =150 cm, Y=70cm, and a temperature T =
25°C to the final position X = 80 cm, ¥ = 140
cm at temperature 7 = 60°C using a linear
trajectory. A linear trajectory is characterized
by the general equation fx) = Ad +Bx+C
with A = 0. The neural network system
developed in this study utilizes the final posi-
tion coordinates in planning the initial motion
strategy. During motion along the prescribed
trajectory, the system allows compensation for
the linkage dimension changes that would
occur due to significant temperature changes
in the environment.

The robotic arm operates in the workspace
which is confined between the inside and out-
side curves shown in Fig. 2. After the RCE unit
declares that the target position is indeed in-
side the workspace, the two neural networks
developed for coordinate transformation are
executed. A selection from the two possible con-
figurations is made by using a backpropagation
network which takes into consideration the ini-
tial configuration. The high-level planner
develops the plan for the neurocontroller which
in this example are the coefficients of the
trajectory between the initial and the goal
position (A=0, B=—-1.0, C = 220).

The neurocontroller drives the
manipulator arm from the initial position to
the final position using a quasi-linear trajec-

tory. In spite of temperature variations which
produce dimensional changes in the links, the
neurocontroller can adapt and drive the
manipulator along the planned trajectory. The
input vector to the neurocontroller consists of
the trajectory parameters A, B, C (here A = 0)
and the current X, Y, T state and its output
defines the angle increments (A8, AB2) re-
quired to reach the target and maintain the
prescribed trajectory. At time 1 =0 s the current
state assumes the initial conditions. The
emulator has as inputs the current X, Y, T state
and the output of the neurocontroller. The
emulator output defines the "new" X, Y posi-
tion reached by the manipulator. The execu-
tion of the neurocontroller/emulator system is
illustrated in Fig. 3 which depicts the
manipulator arm position at different times
and temperature values. The high-level plan-
ner monitors the neurocontroller/emulator
system in order to decide when to stop the
motion execution.

System Capabilities Enhanced

Neural networks have capabilities to leam, to
perform massively parallel processing, and to
adapt to complex environmental changes. These
capabilities are especially significant in robotics
for providing enhanced systems with abilities of
learning and self-organization, and efficient real-
time operation. In this paper, we have
demonstrated the utilization of several neural
networks to support the robot motion decision
analysis and drive amanipulator arm. The super-
vised learning models which are introduced
here have the following capabilities:
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® perform automated modeling of work-
spaces in spite of their arbitrary shape,

® support decision making using contex-
tual information in order to provide an
initial strategy,

® provide systems which are adaptable to
environmental changes, and

® develop controllers which can create
their own knowledge bases about the sys-
tem dynamics.

The hierarchical structure introduced here
significantly enhances the system capabilities
because it takes into consideration not only the
knowledge about the manipulator but also
about the controller. Using arms with more
than two degrees of freedom and three dimen-
sional work envelopes are not limiting factors
to this architecture due to its concurrent
coordination capabilities. However, the needs
to improve the accuracy of the system and
utilize a more continuous plan definition are
recognized. Further research will concentrate
in the coordination of several robotic end-ef-
fectors using sensor/arm integration and
trajectory/configuration optimization as func-
tions of the planning horizon.
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