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Wetting kinetics of films containing nonadsorbing polymers
S. Saritha, Xianzhong Zhang, and P. Neogia�

Chemical and Biological Engineering, University of Missouri-Rolla, Rolla, Missouri 65409-1230

�Received 15 February 2005; accepted 21 April 2005; published online 29 June 2005�

Kinetics of wetting by a polymer solution have been studied theoretically for a film pinned to a slot.
The fluid mechanical equations have been solved using a numerical scheme. The role of polymers
appears in the disjoining pressure in the model. The spreading kinetics are observed to follow a
power law: a power of 1

4 is observed at short times due to the Laplace pressure, and 1
2 at large times

under the Hamaker part of the disjoining pressure at very large times and with no equilibration. It
is argued and demonstrated that techniques which have low resolutions such as microscopy will
measure quite different kinetics: at short times a power of 1

4 as for wetting liquids and then a sudden
equilibration as reported in these experiments. It is also argued on the basis of steric exclusion, and
quantified in the disjoining pressure, that the behavior returns to that of wetting liquids when the
polymer molecular weight becomes very high, as also observed in the experiments. Examples of
how these features can find practical applications, and hence, the importance of use of polymers as
additives are given. © 2005 American Institute of Physics. �DOI: 10.1063/1.1943427�

INTRODUCTION

The knowledge of spreading kinetics finds many
applications1 and, as a result, a considerable amount of work
has been reported. One instance where an ultrathin coat of
polymer is applied on a solid surface during the fabrication
of microelectronic devices is considered here. The easiest
way to perform this is to layer a thin film of polymer solution
on the solid surface and then evaporate the solvent. However,
Klein and co-workers2–6 found that such films were nonwet-
ting and broke up into beads. Since the substrates used, such
as glass slides, silicon wafers, etc., have high surface ener-
gies, low-surface-energy polymer solutions should have wet-
ted the surfaces.7 Nieh et al.8 have reported the values of
equilibrium contact angles as functions of polymer concen-
tration and molecular weight. In all the above cases, the
polymers were judged to be nonadsorbing. Ybarra et al.9

have explained the equilibrium results using the properties of
thin liquid films. A simple view of the shape of the contact
line for a nonwetting liquid at equilibrium is shown in Fig.
1�a� in the form of a wedge. For a wetting liquid, there is no
equilibrium and the liquid spreads out until a thin film of
constant thickness is reached everywhere. There is yet one
other kind of equilibrium configuration. Derjaguin10 and
Frumkin11 have shown that if the added potential in thin
films in the form of disjoining pressure is considered, then a
wedge can form in equilibrium with a thin film of constant
thickness. However, the disjoining pressure must have a part
that promotes thinning �such as London–van der Waals
forces� and a part that prevents thinning, which the nonad-
sorbing polymers do. In that case the wedge angle � is the
contact angle and one has

cos � = 1 +
1

�
�

h0

�

��h�dh , �1�

where � is the disjoining pressure and � is the surface ten-
sion. As shown in Fig. 1�a�, the wedge does not taper to a
point, but forms a thin film of constant thickness h0. In this
film, the two opposing forces mentioned earlier balance one
another and ��h0�=0 for a wedge. The thickness h0 is much
larger than the molecular dimensions, but cannot be observed
under a microscope. Ybarra et al.9 have used the excess en-
ergy of nonadsorbing thin films calculated by Daoud and de
Gennes12 to obtain

� =
AH

12�h3 −
RT���p

M
N�b

h
�5/3

, �2�

where the first term on the right represents the Hamaker in-
teraction. The volume fraction of the polymer in the main
drop is ��, the density of the polymer is �p, N is the number
of steps in the polymer, b is the step size, and M is the
molecular weight of the monomer. The second term is due to
the polymer and arises when the effect of change in the con-
formation of the polymer as it is squeezed into the thin film
is considered. Use of Eqs. �1� and �2� and the appropriate
equilibrium relations led them to calculate the contact angle
�. These values were found to be small in keeping with the
experimental results. In addition, on increasing the molecular
weights of the polymer ��106� it was found that the system
returned to wetting, as seen in the experiments.8

The characteristics of wetting kinetics which determine
the efficacy of the accompanying coating process are of im-
portance. The observations on the kinetics of spreading made
by Nieh et al.8 are peculiar. They reported that the drops
spread with the rate expected of wetting liquids. If r0 is the
basal radius, then r0� t1/10 for wetting liquids. However, the
spreading drops stopped almost suddenly to equilibrate. This
behavior has been noted by Zosel13 as well. Nieh et al.8 alsoa�Electronic mail: neogi@umr.edu
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found that at high polymer concentrations �40 wt % � the
more predictable behavior, that the spreading rate of the drop
decreased continuously to zero at equilibrium, was seen. In
view of the earlier work that explained the equilibrium be-
havior using thin-film phenomena, it becomes important to
consider the kinetics of wetting where the disjoining pressure
that is capable of equilibrating the drop is included. That is,
this form of the disjoining pressure is considered below. We
also have some expectations that the sudden-stop behavior
and the kinetics of wetting which follows that of wetting
liquids can be explained this way.

Experiments on wetting kinetics are carried out in a con-
tact angle goniometer, which has an error of about ±14 	m
in their linear measurements. As a result small drops can be
observed, but not the thin films, as shown in Fig. 1�a�. In
addition, if the contact line is defined where the local film
thickness h=0, it becomes apparent that its location can only
be approximated when h is of the order of 14 	m instead of
zero. In contrast, the resolution in differential ellipsometry is
at ±0.1 nm.14 The “drops” studied here are often vapor de-
posited. In practically all cases studied by ellipsometry, the
macroscopic thicknesses of these drops are within values
where the disjoining pressure dominates. This makes the
spreading kinetics different. In particular, the contact line is
located at a thickness of �0.1 nm. This too has an impact in
that at h=14 	m a macrodrop will feel very different forces
of spreading than at h=0.1 nm.

Most practical problems in wetting have macroscales
much greater than the thickness over which the disjoining
pressure is important. Consequently, it is necessary to ana-
lyze problems where the macroscale is at least 100 nm, the
largest thickness where the effects of the disjoining pressure
can be detected. Such results have been reported earlier15 for
wetting liquids containing no polymers. One feature that was

reported in those calculations is that even when the speed at
h=1 nm is taken to be the spreading velocity, the rates are
seen to be dominated by the effects of surface tension, until
at exceptionally large times when the rates become those
determined by the disjoining pressure. Those liquids that
were studied have no equilibrium, but the polymer solutions
considered here do. It becomes conceivable that drops of
polymer solutions at film thickness h=14 	m will see equili-
bration even at times where the spreading is determined by
surface tension. This would explain why the t1/10 rate is ob-
served.

In the next section, the formulation and the method of
solution are discussed. These have been covered in brief as
they have seen more detailed discussion earlier.15

FORMULATION

The film is thin and flat and the lubrication theory ap-
proximation can be used. Under this approximation, the mo-
mentum equations are solved under the assumptions that the
flow is mainly in the tangential direction �x� and varies only
in the normal direction �z�. The system of coordinates is
shown in Fig. 1�b�, along with some key parameters. Using
the no-slip boundary condition on the solid surface and zero
shear at the air–liquid interface, the velocity is averaged in
the normal direction and used in the continuity equation to
get an equation for the film profile15

�h

�t
=

1

3	

�

�x
	h3�P

�x

 , �3�

where the total pressure is the sum of the Laplace pressure
and the disjoining pressure

P = − �
�2h

�x2 + ��h� . �4�

In addition, a term in the disjoining pressure is introduced,

� =
AH

12�h3 −
RT���p

M
N�b

h
�5/3

e−N�b/h�5/3
, �5�

where ��e−N�b / h�5/3
is the local polymer volume fraction �,

which is different from the reservoir value ��. This differ-
ence occurs because it is difficult to squeeze a polymer into a
thin film. The exponential term is the Boltzmann factor,
where the energy used is −T
S, which also occurs in the
disjoining pressure with some modifications. Here 
S is the
change of entropy of the polymer molecule. At equilibrium,
thermodynamic calculations can be made9 to show the exact
differences between the two concentrations, but we have a
dynamic system here. Consequently, the Boltzmann term is
used both for its simplicity and for the fact that it follows
qualitatively the right trend in excluding polymers from very
thin films.

Nondimensionalizing Eqs. �3� and �4� leads to

�H

�T
=

1

R2

�

�X
	H3

3

��

�X

 , �6�

FIG. 1. �a� The profile of a nonwetting liquid near the contact line is just a
wedge. The liquids described by Eq. �1� also posses a wedge and the wedge
angle is the equilibrium contact angle. However, it thins down to a film of
constant thickness instead of converging to a sharp point. Solutions of non-
adsorbing polymers fall in this category. Only a thin film of constant thick-
ness can be formed with wetting liquids. �b� Schematic view of the flow
from the slot. The film thickness is h at any location, h=h0 at the slot mouth
and h* at the contact line.
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� = −
1

R2

�2H

�X2 + �̄ , �7�

where H=h /h0, X=x /x0, R=x0 /x0�0� �̄= �h0
2 /�x0�0���, T

= �� /	x0�0��t, and �= �h0
2 /�x0�0��P. Here x0 determines the

position of the contact line, x0�0� is the initial position of the
contact line, and h0 is the thickness of the film at x=0.

With no forced spreading, the Laplace pressure is zero at
the mouth of the slit �X=0�. Also, the slope at the contact
line �X=1� is zero. The other boundary conditions used in
solving the above equations are H equal to 1 at the slit mouth
and H* at the contact line, where H is the dimensionless
thickness equal to h /h0 and H*=h*�=1 nm� /h0. The equa-
tions are solved using forward-time-central-space �FTCS�
scheme �and not central-time-forward-space �CTFS� stated
incorrectly by Zhang et al.15�. A simplified initial profile of a
straight line with a steep slope was chosen. This was used to
subsequently update the position of the contact line at a later
time, using the equations of average velocity in the tangen-
tial direction,

��vx�x=x0
=

dx0

dt
, �8�

�vx = −
h2

3	

�P

�x
. �9�

Note that h=h* at X=1 in Eq. �8�. Instead of evaluating the
left-hand side in Eq. �8� at X=1, the present scheme allows
us to evaluate it only at X=0.99. The reason for this short-
coming is discussed by Zhang et al.,15 who also showed that
there are no accompanying ill effects. The film thickness at
this effective contact line is found to lie between h
=1–2 nm, instead of 1 nm that would be seen at X=1. A
small initial time step was chosen, which was gradually in-
creased in order to speed up the computation. It should be
noted that the liquid has been assumed to be a Newtonian
liquid even though a polymer solution is being analyzed.
This assumption has been made since Nieh et al.8 have ob-
served in their experiments that there was no distinction be-
tween the quantitative behavior of a Newtonian fluid and a
shear-thinning polymer solution. Some theoretical justifica-
tion is also available. Neogi and Ybarra16 have shown theo-
retically, using the method of de Gennes17 that shear-thinning
liquids behave like Newtonian fluids with viscosities equal to
their zero-shear viscosities.

All physical parameters have been taken from Ybarra
et al.,9 corresponding to polystyrene �molecular weight
45 000� dissolved in dibutyl phthalate. These are �p

=0.8 g/cm3, b=5 nm, and for the solvent M /N=104
=molecular weight of the solvent under the lattice theory.
The effective volume fraction of the polymer in the reservoir
��=0.05.

RESULTS AND DISCUSSION

Both due to the small step sizes and the complexity of
the expressions in Eq. �5�, it took about one year of compu-
tation time to complete the calculations on a workstation.
The extent of spreading as a function of time is shown in Fig.

2. Two cases were considered, one for h0=100 nm and
x0�0�=400 nm and one for h0=50 nm and x0�0�=200 nm.
Both cases follow the power rule, and the slope rises from
the value of 1

4 to that of 1
2 . Zhang et al.15 have shown that in

the absence of polymers, the spreading rates show a sharp
transition from surface-tension-driven flow �slope of 1

4
power� to disjoining-pressure- �exclusively Hamaker forces�
driven flow �slope of 1

2 power�. The dashed line of slope 1
4 in

Fig. 2 has been used to aid the eye. In the 50-nm case, the
results for thin films with polymer are identical to those
without polymer.15 The transition between the two slopes
takes place earlier than where h0=100 nm because of the
increased importance of the disjoining pressure when the
macroscale is smaller. Where h0=100 nm, it is also seen that
the system containing the dissolved polymer spreads slower
than without polymer. One plausible explanation is given
below. If we section Figs. 3�a� and 3�b� into two horizontal
strips, then the top strip will be dominated by surface-tension
forces. This strip also is the thickest strip. The bottom strip is
a very thin one and is dominated by London–van der Waals
forces. In the case where the film is thin, h0=50 nm, these
two regions overlap. Where the films are thicker, h0

=100 nm, a middle panel is possible, where the repulsion
forces due to the polymer can be felt. This would help retard
the spreading. Nevertheless, the effect of polymers is suffi-
ciently strong in both cases such that at equilibrium a thin
film of constant thickness develops at the contact line.

We emphasize that these results of spreading kinetics
apply when the measurements are taken at h=1–2 nm, or in
dimensionless form at H�0.01. As stated earlier, it is pos-
sible to suggest that this would be the outcome using mea-
suring techniques with dimensionless errors of ±0.01. Up to
this point, it is seen that the effects of added polymer are not
detectable, except in one case where there is a small slowing
down.

The profiles provide interesting details. These have been
shown at various times for the case of h0=100 nm in Fig.

FIG. 2. The results for liquid-containing polymers have been shown for the
two cases of h0=100 nm �white squares� and h0=50 nm �solid black
squares�. The dashed line represents the asymptotic 1

4 slope, which is an
indication of surface-tension-driven flow. At larger times the slope increases
to a power of 1

2 , which is disjoining-pressure-driven flow determined by
Hamaker forces only.

244711-3 Wetting kinetics of films J. Chem. Phys. 122, 244711 �2005�
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3�a� and for h0=50 nm in Fig. 3�b�. The macroscopic profiles
reach equilibrium in the first phase and in the second phase a
thin film �microscopic� is established, which does not reach
equilibrium. At this point we revisit the Boltzmann factor
e−N�b / h�5/3

, which shows the polymer concentration to be
nearly zero in the thin film. These are shown in Figs. 4�a�
and 4�b� for the two cases of h0=100 nm and h0=50 nm.
Note that in the second case, considerable penetration of the
polymer into the thin film has occurred. Nevertheless, the
polymer concentration drops to zero by the time the contact
line is approached. Both Figs. 4�a� and 4�b� are at T=5
�1011. It clearly shows why the movement of the contact
line discussed in the above section is dominated by Hamaker
forces at large times. It is obvious that the thin film will not
be seen if the magnification is not high. Using arguments
given earlier, if the measuring technique has the larger di-
mensionless error of ±0.5, then the contact line would be
measured at the dimensionless thickness of H�0.5. This
new contact line speed is bound to show equilibrium, as seen
in Fig. 5. Of importance is the fact that before equilibration,

both plots �corresponding to high and low magnifications�
show the same slope of 1

4 . This is the region of surface-
tension-driven flow. The profiles in Fig. 3 show that up to
equilibration in the thick film, no thin-film region is estab-
lished. Thus, all of the flow is indeed determined by the
surface-tension forces up to that point. These results also
compare favorably to the experimental observations on drops
where Nieh et al.8 report that drops of polymer solution
spread with time, showing a power of 1 /10 which is indica-
tive of surface-tension-driven flows. Using microscopy, they
also observed a sudden stop. In Fig. 5 it is seen that the
extent of spread determined at low resolution decreases a
little upon equilibration. This small dip is not possible to
verify experimentally since it is possible to wait twice the
equilibration times in the experiments, but not over two or-
ders of magnitude as indicated in the figure.

One key feature that emerges from this study is that it
does not mean that the liquid is wetting when the spreading
is found to be driven by surface tension ��t1/4�. The only
way to confirm this is to wait for sufficiently large times.

To help classify clearly the different cases, the behavior

FIG. 3. �a� The film profiles have been shown in the form of dimensionless
thickness vs spreading for the case when h0=100 nm. There are two parts of
the film profile, the macroscopic part, which reaches equilibrium much be-
fore the thin-film region, and the thin-film region, which continues to spread
and does not attain equilibrium. From left to right, the plots are shown at
dimensionless time T=1�106, 1�107, 1�109, 5�109, 1�1010, 5�1010,
1�1011, and 5�1011. �b� The same as in Fig. 3�a� for h0=50 nm. From left
to right, the plots are shown at dimensionless time T=1�106, 1�107, 1
�109, 5�109, 5�1010, and 5�1011.

FIG. 4. �a� The film profile �bold line� at the largest time as well as the

dimensionless polymer concentration � /��=e−N�b / h�5/3
and the Boltzmann

factor �dashed line� have been shown at the largest time for h0=100 nm. The
polymer concentration in the thin-film region is nearly zero. T=5�1011. �b�
The same as in Fig. 4�a� for h0=50 nm. T=5�1011.
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in a system containing a well-defined contact line �see Fig.
1�a�� is described in brief. This case has been studied theo-
retically by Neogi and Miller18 and shows only a gradual
move towards equilibrium. If the macroscopic wedge angle
is defined as the dynamic contact angle � �and one that will
be measured using low-resolution methods such as micros-
copy commonly in use�, then at short times ��, the equi-
librium angle. For such times, the drop does move at the
same rate as that for a wetting liquid. The manner in which
equilibrium is reached, as observed under microscopy, is,
however, gradual in contrast to the case studied here, which
is characterized by sudden equilibration. This gradual equili-
bration is also observed in polymer solutions, but at large
polymer concentrations,8 and remains as the only case that
we cannot predict because the disjoining pressure used does
not apply at large concentrations.

Some results of practical importance are now deter-
mined. Where the thin liquid films are not of interest, we are
able to compress their effects into boundary conditions for
solving problems of interest at the macroscale. Thus, �a�
where there is partial wetting at equilibrium and �b� where
observations are being made at resolutions no better than in
microscopy,

dx0

dt
=

�

6	
	ln�1

�
�
−1

�3 � � � , �10a�

=0 � = � , �10b�

=−
�

6	
	ln�1

�
�
−1

���2 − �2� � � � . �10c�

Here � is the ratio of slip length to the macroscopic length
scale and is equivalent to h* /h0 here. Now, Eq. �10a� is the
full form of wetting kinetics for a wetting liquid as obtained
by de Gennes.17 Equations �10a� and �10b� describe the sud-
den stop. Equation �10c� is from Brochard–Wyart and de
Gennes,19 modified by the results of Neogi and Miller18 �see
Neogi20 for further discussion�, and describes a receding
contact line with an equilibrium contact angle � defined by
Eq. �1�. It has been conjectured above that in the case of an
overshoot, the system will return to equilibrium.

We return to the process of layering of ultrathin polymer
films on substrates starting with thin films of polymer solu-
tion. Consider the Boltzmann factor e−N�b / h�5/3

when the mo-
lecular weight of the polymer is high �106. For the param-
eters used here, the exponential term is negligible up to h
=150 nm. That means the fluid which emerges from the slot
is free of polymer and is wetting as the solvent is wetting. Of
course, we know that the Boltzmann factor is a simple ap-
proximation, but it shows that the larger the molecular
weight of the polymer, the larger is the film thickness over
which the filtering effect is observed. In Figs. 1 and 3, the
contact line can be taken to be at the junction between the
bulk and the thin film. The above result implies that as the
molecular weight is increased, this contact line will not get
pinned, that is, it will not reach equilibrium. This has been
verified experimentally by Nieh et al.8 In that, we provide a
better alternative to spreading a thin layer of polymer solu-
tion by using a polymer of large molecular weight than Klein
and co-workers who suggest difficult substrate modifications.
Our method can also be used in conventional coating pro-
cesses.

In summary, we find that the thin-film phenomena are
able to explain the main observations in the experiments as
well as provide a practical guide as to how to manipulate
wettability and wetting kinetics using polymers as additives.
We fall short of predicting the observations at large polymer
concentrations since Eq. �2� is not valid there.
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