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Wetting kinetics of a thin film evaporating in air
S. Saritha and P. Neogia�

Chemical and Biological Engineering, University of Missouri-Rolla,b� Rolla, Missouri 65409-1230, USA

�Received 18 June 2007; accepted 24 October 2007; published online 28 November 2007�

The conservation equation and the equations of motion are solved for a case where a thin liquid film
moves out of a slot onto a horizontal surface. The liquid is allowed to evaporate into air. The
evaporation process is taken to be isothermal. Lubrication theory approximation is used where only
the tangential velocity and its dependence only in the normal direction are considered. The dynamics
of thin films includes the use of disjoining pressure for a pure liquid and where there is a dissolved
polymer. The results show that evaporation is quicker than film thinning such that a spreading
regime dominated by the effects of disjoining pressure is never achieved. However, unlike the cases
of pinning studied so far, there is no singularity in the evaporative flux near the contact line because
of the use of disjoining pressure on evaporation. It is also observed that a balance between the rate
of viscous dissipation and surface work is able to quantify the steady state contact angle.
Consequently, a more macroscopic �and quantitative� description of contact line can be found that
avoids the singularities discussed earlier and also the detailed calculations shown here. However, the
detailed calculations are necessary to make the above point. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2815737�

I. INTRODUCTION

Consider a drop of liquid lying on a horizontal solid
surface where the ambient fluid is air. The line common to
the three phases is the contact line, and the angle that the
liquid-air interface makes on the solid surface is the contact
angle. Theory shows that the evaporation rate under air at the
contact line is infinite.1–5 The evaporative flux at the liquid-
air interface is perpendicular to the interface and remains
nonzero in the limit that the contact line is approached trav-
eling along the interface. In contrast, the flux at the solid-air
interface remains zero when the contact line is approached
traveling along this interface. It can be argued then, that the
flux there is two-valued and its gradient infinite. However,
the special features that need to be considered near a contact
line such as the equilibrium contact angle and the disjoining
pressure are unaccounted for in most analyses. The steep rise
in evaporation rate near the contact line was first reported by
Renk and Wayner6 and what has turned out to be its remedy
in a model was arrived at by Moosman and Homsy.7 The
local mass transfer coefficient may show changes. Neverthe-
less, an average mass transfer coefficient kL can be defined in
the region where such changes take place. This problem with
concurrent heat, mass, and momentum transfer is complex.
Simplification is made by confining evaporation to be iso-
thermal, thus eliminating the heat transfer, and which is re-
alized when there is no heat source and the latent heat of
vaporization is negligible. Another feature that some investi-
gators assume is a lack of local equilibrium at the evaporat-
ing interface.8–10 However, this effect is not expected to be
significant unless the ambient fluid is at very low pressures,11

which will not be considered here.

The main feature of interest here is that the experimental
observations indicate that the contact line for an evaporating
drop of a nonwetting liquid is often pinned: there is no
spreading and the contact angle decreases with time. The
Marangoni effect due to the surface tension gradients is ar-
gued to be responsible.5 No Marangoni effect is expected
under isothermal conditions for pure liquids �or for equili-
brated mixtures�.

We study below a contact line where disjoining pressure
and its effect on mass transfer and fluid flow are included.
Evaporation is assumed to be isothermal. We know that
transport singularities can be eliminated, but do not know
beforehand if the rate of evaporation can balance the rate of
wetting to lead to pinning. The liquids are wetting or nearly
wetting, which too is a significant departure as most investi-
gations deal with nonwetting liquids.

Two different disjoining pressures are used here as body
forces as functions of local film thickness h:

� =
AH

12�h3 , �1�

� =
AH

12�h3 −
RT���p

M
N�b

h
�5/3

e−N�b/h�5/3
. �2�

The first equation represents the disjoining pressure due to
Hamaker interaction alone, while the second includes that
due to the presence of a polymer in the liquid. The volume
fraction of the polymer in the main drop is ��, the density of
the polymer �p, the number of steps in the polymer N, the
step size b, and the molecular weight of the monomer M. For
Hamaker constant AH�0 assumed here, Eq. �1� represents a
wetting liquid. �� times the exponential is the actual poly-
mer concentration in the film. Equation �2� represents a par-
tially wetting liquid. Whereas the form in Eq. �1� cannot
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equilibrate and thus represents a wetting liquid, the form
given by Eq. �2� can.12 The equilibrium profile in the vicinity
of the contact line is that of a wedge of angle �, which tapers
into a thin film of constant thickness ĥ. Now, � is identified
as the equilibrium contact angle by Derjaguin-Frumkin
equation13,14

cos � = 1 +
1

�
�

ĥ

�

��h�dh , �3�

where ��ĥ�=0 for a wedge. Thus, the long time behaviors of
the two are different. Sketches of the disjoining pressures are
shown in Fig. 1�a� and the expected profiles at equilibrium in
Fig. 1�b�. It is evident from the figures that the disjoining
pressure given by Eq. �2� leads to a profile at equilibrium
that has no contact line and the contact angle is defined at
sufficient distance above the solid surface.

Use of the Boltzmann factor in Eq. �2� gives rise to a
decrease in the local concentration � from the bulk value ��

with decreasing film thickness. However, it also ensures that
the chemical potential remains the same to some
approximation.15 As a result, an assumption can be made that
no Marangoni effect will arise due to changes in concentra-
tions when the chemical potentials do not change.

II. FORMULATION

Liquid emerges from a slit and flows on the lower sur-
face as shown in Fig. 2 along with the coordinate system.
The slit heights used are 100 and 25 nm, where 100 nm is
the film thickness for which the disjoining pressure becomes
negligible. Since the film is thin and flat and spreads slowly,
lubrication theory approximation is used. Here, only the tan-
gential velocity vx is considered and it is assumed that it
varies mainly in the normal direction, z. The equations of
motion become

0 = 	
�2vx

�z2 −
��p + 
�

�x
, �4�

0 =
��p + 
�

�z
, �5�

where p is the Laplace pressure and 
 is the excess poten-
tial. The boundary conditions are

vx = 0 at z = 0, �6�

�vx

�z
= 0 at z = h�x� , �7�

p = − �
�2h

�x2 at z = h�x� , �8�


 = − ��h� at z = h�x� , �9�

leading to the tangential velocity averaged over the local
thickness

�vx	 = −
h2

3	

�

�x
�− �

�2h

�x2 − �� . �10�

The continuity equation becomes

�h

�t
= −

��h�vx	�
�x

− Q�h� , �11�

where

FIG. 1. �a� Schematic view of disjoining pressures given in Eq. �1�, which is
always positive, and Eq. �2�, which has significant negative portions at large
film thickness h. �b� Expected equilibrium film profiles for the two disjoin-
ing pressures. For the disjoining pressure given by Eq. �1�, no equilibrium is
possible, a thin film of constant thickness �including zero thickness� is
formed at large times. For the case described by Eq. �2�, a wedge ends in a
film of constant thickness. The wedge angle is the equilibrium contact angle.

FIG. 2. Schematic view of the spreading thin film. Coordinate system and
key parameters are indicated.
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Q =
kLps��1 − ��

�LRT
,

where kL is the mass transfer coefficient, �L is the density of
the liquid, � is the surface tension, and R is the universal gas
constant. The last term on the right-hand side of Eq. �11� is
due to evaporation. The ideal gas law has been used to obtain
the concentration of the vapor in the gas phase at the inter-
face. Ideal solution behavior has been used to include the
effect of polymer on the vapor pressure. As mentioned ear-
lier, the system is isothermal at temperature T. The saturated
vapor pressure of pure liquid at this temperature is ps, differ-
ent from ps� used in Eq. �11�, because the total pressure in the
liquid has altered because of the Laplace pressure and the
disjoining pressure. Thermodynamic considerations are used
to relate the two:

ps� = ps exp
−
1

RT�L
��

�2h

�x2 + ��� . �12�

Note that ps� becomes zero at the contact line of thickness
h=0. It is described below that we go down in thickness to
only h*. However, this h* is very small and of the order of
molecular dimensions. As a result the saturated vapor pres-
sure falls to negligible values in the immediate vicinity of the
contact line. Thus, the fact that the evaporative flux reaches a
value of zero at the contact line, eliminates the contact line
singularity discussed earlier. Substituting Eq. �12� into Eq.
�11� and nondimensionalizing, we get

�H

�T
= −

1

R2

�

�X
�H3

3

�

�X

 1

R2

�2H

�X2 + �̄� − Q̄ , �13�

where H=h /h0, X=x /x0, R=x0 /x0�0�, T= ��x0
2�0� /	h0

3�t, Q̄
= �	x0

4�0� /h0
4��Q, �̄= �x0

2�0� /�h0��. �The incorrectly stated
dimensionless group representing T in Saritha et al.12 has
been corrected here.�

Equation �13� is subject to boundary conditions that

h = h* at x = xo − � , �14�

�h

�x
= 0 at x = xo − � , �15�

h = h0 at x = 0, �16�

�2h

�x2 = 0 at x = 0. �17�

The rate of spreading is determined from

�vx	x=xo
=

dxo

dt
. �18�

However, the calculations need to be stopped before the con-
tact line h=0 is approached to avoid the contact line singu-
larity. For convenience with the numerical scheme used to
solve this problem, the cutoff ��� is defined along x and not
in h. The numerical method used has been discussed
earlier.12,16 We have used finite differences. The equations
are fourth order and show large problems with instability.
Hopscotch is used to decrease this problem, but increasing

step sizes in time also increases the error. The step size was
initially chosen to be 10−9, but was slowly increased to 10−3.

The parameters are obtained by taking the pure liquid to
be toluene and the solution to be polystyrene of molecular
weight 45 000 in toluene. All other parameters have been
taken from Ybarra et al.15 and are �p=0.8 g /cm3, b=5 nm,
and for the solvent M =104. The volume fraction of the poly-
mer in the reservoir is ��=0.05. To calculate kL, we use the
analogy that

Sh

Nu
= �Sc

Pr
�2/3

, �19�

where Sh is the Sherwood number, Nu the Nusselt number,
Sc the Schmidt number, and Pr the Prandtl number. In addi-
tion, the fact that the heat transfer coefficient in Nu for air is
almost constant at 12 W / �m2 K� has been used. This pro-
vides an estimate for kL and the main feature studied here;
the effects of curvature and disjoining pressure on mass
fluxes are felt through their effect on the saturated vapor
pressure �Eq. �12�� and the definition of Q following
Eq. �11�.

III. RESULTS AND DISCUSSION

The distances spread have been plotted as functions of
time in Fig. 3. The two cases of liquid with and without
polymer are indistinguishable. Steady state is reached in all
cases. This is a new result. The fact that the disjoining pres-
sures do not matter is not surprising. At short times, the films
are thick and Laplace pressure dominates as the driving
force. At large times, the films thin down and the disjoining
pressure dominates the spreading rates.12,16 However, the
transition occurs at extremely large times. We find that phe-
nomena such as evaporation come into effect well before the
transition to disjoining pressure driven flows comes into ef-
fect. This means that emerging thin films are evaporated off
and steady state is reached. Earlier investigators17,18 have
found this to be sometimes the case when the substrate is
heated, which is a situation where the thin film is more likely
to be evaporated off. They have many features besides the
nonisothermal condition in their model, such as that the equi-

FIG. 3. The extents spread R=xo /xo�0� have been shown for the two cases
of ho=100 nm �white squares� and ho=25 nm �solid black squares�. The
corresponding two cases without polymer are shown in solid black triangles
�ho=25 nm� and white triangles �ho=100 nm�. The dashed line represents
the asymptotic 1/4 slope, which is an indication of surface tension driven
flow. The white and the black points are almost coincident.

112104-3 Wetting kinetics of a thin film evaporating in air Phys. Fluids 19, 112104 �2007�

Downloaded 09 May 2008 to 131.151.26.95. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



librium relation Eq. �12� is linearized. Local nonequilibrium
at the interface and Marangoni effect are also included, nei-
ther of which applies here. Consequently, comparing their
results to ours is difficult.

In Fig. 4, the profiles for the two cases of 25 and 100 nm
slit width are shown at different times. Only the cases with
no polymer are shown because those with polymer are iden-
tical at this scale. The profiles shown at the largest time are
such that there is no change in shape at later times; that is,
they have reached steady state. It is striking that all profiles,
particularly at the steady state, are essentially given by equa-
tions of straight lines. It means that at steady state, a contact
angle � �the slope of this line� can be defined/measured,
which is not related to the equilibrium contact angle. The
measured contact angles are transport dependent. For Figs.
4�a� �25 nm slit� and 4�b� �100 nm slit�, they are 3° and
2.25°, respectively.

To understand these, consider the geometry used by
de Gennes19 to quantify the apparent dynamic contact angles.

A liquid wedge on a horizontal solid surface will wet the
surface and move forward �in the negative x direction�, as
shown in Fig. 5�a�. However, if the plate is dragged forward
with a velocity U, the wedge will remain stationary. de
Gennes equated the total viscous dissipation to the rate of
surface work done to show that

U =
��3

6	
�ln�1

�
�−1

�20�

for small values of � and wetting liquids. Here, �=� /L,
where � is the small cutoff length �in the x direction� used in
the boundary condition Eq. �14� and L is the macroscale of
the problem, and equivalent to �=h* /ho. The inverse loga-
rithmic dependence indicates that U is insensitive to the
magnitude of �. Now, during evaporation, the contact line
recedes. This has been shown schematically in Fig. 5�b�. The
bold line is the initial position and the dashed line is that
after a time t. The distance between the two, as shown with
the line segment perpendicular to them, is obtained from the
jump balance as �kLps /�RT�t, where the vapor pressure
used is that away from the immediate vicinity of the contact
line, where the profile is a straight line. Consequently,

xo =
kLps

�RT
t/�

is obtained. In the limit t goes to zero, the rate of wetting
�actually the wedge is receding� is dxo /dt. This is equated to
de Gennes’ velocity U with which the plate is dragged, lead-
ing to

FIG. 4. �a� The film profiles have been shown for the case when ho

=25 nm in the absence of polymer. From left to right, the plots are shown at
dimensionless times T=1�103 , 1�104 , 1�105 , 5�109 , 5�105. �b� The
film profiles have been shown for the case when ho=100 nm in the absence
of polymer. From left to right, the plots are shown at dimensionless times
T=1�101 , 1�104 , 1�105 , 5�105 , 1�106. The cases with polymer are
identical to those above.

FIG. 5. �a� Schematic view of a liquid wedge on a horizontal solid surface.
The flat plate is dragged forward with a velocity U. �b� Schematic view of a
liquid wedge evaporating on a horizontal solid surface. The flat plate is
dragged forward with a velocity U. The dashed line represents the liquid
wedge after time t.
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� = �3	

�

kLps

�RT
�1/4�ln�1

�
�1/4

, �21�

a result that is independent of slit width. For the physical
properties used here, �=2.1° for both cases, a result very
close to those obtained from the numerical solutions
discussed earlier. The importance of capillary flow on pin-
ning is clear from the above. It is likely that its impact is
lessened in nonwetting liquids and when the evaporation is
nonisothermal.

We show in Fig. 6 the enhancement in the local flux over
the value of kLps /RT. This enhancement is E
= �kLps� /RT� / �kLps /RT�, which is the ratio between the local
flux when the effect of curvature and disjoining pressure are
included and that when there are ignored. This is further
generalized to take into account that the activity of the liquid
is lowered in presence of the polymer by a factor of �1−��,
where � varies with film thickness due to volume restriction
given by the exponential factor described after Eq. �2�. In
particular, � is �� when the volume restriction is not used.
Consequently,

E =
kLps��1 − ��/RT

kLps�1 − ���/RT
,

where the numerator is the actual local flux and the denomi-
nator is the flux where none of the special features of thin
films is included. Simplifying after using Eq. �12�,

E =

exp
−
1

RT�L
��

�2h

�x2 + ����1 − �� · e−N�b/h�5/3
�

�1 − ���
�22�

is obtained. Of course, if there is no polymer, �� is zero.
The plots of E in Figs. 6�a� and 6�b� dip as the contact

line is approached, both because of thinning, which increases
the disjoining pressure, and because of increasing curvatures.
This is followed by a short rise, which is the expected rise in
flux near the contact line, as explained in Sec. I. This has
been suppressed because of the fall in vapor pressure, but the
evaporation rate rises soon after. The cutoff prevents us from
reaching the last stage where this rise is followed by a quick
fall to zero. That is, the effects of changes in saturation pres-
sure �Eq. �12�� overshadows the rise in evaporation rate that
is conventionally calculated, except in a narrow range in the
middle. Figure 6�c� includes the effects of polymer in form
of a factor �1−�� / �1−���, where � goes to zero as the film
thickness goes to zero;12 that is, Fig. 6�c� differs from Figs.
6�a� and 6�b� mainly because of this term. The polymer gets
excluded from the thin film region in a manner that is more
marked in Fig. 6�c� because the starting thickness is a low
25 nm. These effects are lot less marked when the starting
thickness is 100 nm; the case is not shown here. In Fig. 6�c�
there is a fall and a rise in the rate of evaporation, just as
seen in Figs. 6�a� and 6�b�, but it is lot less marked.

Experimental observations have been made using non-
wetting drops.20–23 Due to evaporation, the contact angles
fall below their equilibrium values, which leads the contact
line to recede. The Marangoni effect pushes it forward and
the contact angle is pinned. Wetting liquids treated here are

quite different because the contact angles cannot fall below
the equilibrium value of zero. In addition, most drops studied
are water drops, which have a large latent heat, and upon
evaporation should give rise to Marangoni flow. It is empha-
sized that when the liquids with low latent heats are used,
very different observations are made as to where the contact
lines recede and contact angles remain at their equilibrium

FIG. 6. Enhancement of the flux over kLps along the length are shown. In �a�
and �b� without the polymer at ho=100 and 25 nm, respectively. �c� Polymer
is included with ho=25 nm. The increase in fluxes is due to the added factor
of �1−�� / �1−���. The remaining case of 100 nm with polymer is less
marked but similar to �c�.

112104-5 Wetting kinetics of a thin film evaporating in air Phys. Fluids 19, 112104 �2007�

Downloaded 09 May 2008 to 131.151.26.95. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



values.20,23 A large section of systems therefore exists where
the present considerations apply and bring in features not
encountered before.
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