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L
ike many folks, I have switched
from modeling mechanical systems
to developing computational finance
software with nary a glance back.

However, I have found revealing I do
this work can be implicitly self-discred-
iting. Many people, even educated pro-
fessionals, do not understand the basic
premises or possibilities of this emerg-
ing new science. For them, unless I
own an island somewhere, I don’t know
anymore about stocks than they do.

They assume I’m writing programs
to forecast stock buys and, of course,
using this knowledge to personally
profit. This brings us to our first funda-
mental lesson about financial modeling.
Little effort is given to stock market
prediction. In fact, the vast majority of
stock market models are premised on
the belief the current price reflects all
that is known about a stock. Using yes-
terday’s data will not help determine
the price of the stock tomorrow. (Of
course, in this day of high-powered
computing, there are several groups
working on stock market prediction.
Check out the web site <http://
www.predict.com> for an example of a
company using nonlinear dynamics the-
ory to do stock market prediction.)

Computational finance models do,
however, attempt to model the random-
ness of a stock’s price. At a fixed future
time, a stock’s price is modeled as a ran-
dom variable with a normal distribution
centered about the current price adjusted
with a simple growth multiplier. The
standard deviation of this normal distri-
bution depends on the length of time
into the future one peers and the volatili-
ty of the market. As the market becomes
more volatile and we look further ahead,
the less likely the stock will have a price
near the adjusted current price.

Implementing these ideas requires a
tool borrowed from physics called the
Brownian motion, originally developed
to describe the vibration of pollen parti-
cles in a liquid solution. In a sense, a
stock’s price is modeled as a point fluc-
tuating about in “dollar space.” Hence a
financial modeler can no more predict
what price a stock will have at a given
instance in time than a physicist can
predict where a particular air molecule
might be.

Not THAT kind of derivative
Now that we have gone over what

financial modeling does not do, let us
consider what is done. The prototypical
example of financial modeling involves

a product called a European call stock
option. It is a contract giving the holder
the right to purchase a share of stock at
a predetermined price, called the strike
price, on a given day, called the expiry.

The basic function of financial mod-
eling is to determine the price of such a
contract. On the closing day this is easy
to do. If the price of the stock on the
expiry day is ST and the strike price is
K then the value of the option at the
close of the contract is max(ST - K,0).

To see this, suppose the trading price
of the stock is greater than the strike
price. The holder of the option should
buy the stock at the strike price. (This
process is known as exercising the
option.) The option holder makes a
profit equal to the difference in the two
prices. However, if the stock’s trading
price is less than the strike price, the
holder should choose not to exercise the
option. It is not smart to pay more than
the stock is currently worth, so there is
no return on the option.

This contract derives its worth from
the price of the underlying stock.
Hence, it is called a financial
derivative. The goal of financial mathe-
matics is determining the contract’s
price at a time before the expiry inde-
pendent of the unknown price of the
stock on the closing day of the contract.

Doesn’t seem possible, does it? The
trick is that this contract can be mimic-
ked using other pathways through the
financial marketplace, and these paths
cost money to traverse. Ultimately, that
cost becomes the price of the option.

Let us work through a simple
demonstration with numbers. Suppose a
stock’s current price is $100 and that
the strike price of the option is also
$100. To keep this demonstration sim-
ple, we assume stocks are traded at dis-
crete time intervals. In fact, we suppose
our option expires the next time we can
trade. To make it really simple, we
assume the stock can only go up to
$110 or down to $95, each with its own
probability. Thus, the payoff on the
contract will be either $10 if the stock
goes up or $0 if it goes down.

Allow me to demonstrate a different
path to the same end, namely $10 if the
stock goes up or $0 if the stock goes
down. Suppose we buy α shares of the
stock and borrow β dollars from a bank at
an interest rate of 2% for the time period.
The cost of doing this is C0 = 100α + β.

At expiry, we want this combination
of assets to equal the payoff of the
option. This means α and β must satisfy

110α + 1.02β = 10 if the stock goes up,
and 95α + 1.02β = 0 if the stock goes
down. This is two equations in two
unknowns and has α = 2/3 and β = -
62.09 as a solution. With these numbers
we determine our initial cash outlay for
this alternative path is C0 = $4.57.

It is argued for a large marketplace
with many investors, the value of the
option must be C0. To see this, suppose
you can sell one of these options for
more than $4.57 to someone. You
should then buy two-thirds of a share of
stock by borrowing $62.09 and adding
$4.57 from your own pocket. If the
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price of the stock goes down, the holder
of the option you sold will not exercise
it. You sell the stock on the open market
and have exactly enough to repay the
loan and its interest.

If the stock’s price increases, the
holder will exercise the option. You sell
your share of stock on the open market
and have $10 left after you repay the
loan plus interest. With the $100 you
receive from the option holder, you
have exactly enough to purchase a share
at the current $110 level. You give the
share to the option holder fulfilling your
obligation.

Either way you have made a profit,
independent of market behavior, equal
to the difference between C0 and the
price you received for the option.
Furthermore, there was no risk associat-
ed with this profit, which is a clue the
price of the option should not be greater
than $4.57. Likewise, a similar path-
way, also leading to a risk-free profit,
can be traversed if the option is priced
less than $4.57.

Companies hire people to identify
these pathways that mimic options and
exploit them to make money without
risk. Such people are called arbitragers.
In a sense, their manipulations are the
forces that determine the price of a
financial derivative. It is standard to
assume a large marketplace will not
allow such arbitrage opportunities for
very long, thereby setting the price of an
option at C0. (This is sometimes called
the “no free lunch” principle.)

Models and methods
So then, determining the price of a

financial derivative is the basic problem
of computational finance. As imagina-
tions have whirled, and the years
passed, the menu of derivative securities
has grown, but the basic ingredients
remain the same. Most derivatives are
contracts involving an underlying prod-
uct that experiences random fluctua-
tions in its price. The underlying prod-
uct can be anything from pork bellies to
home mortgage interest rates. Yet with
all of this variety, there are two domi-
nant types of mathematical models used
to determine the price of financial deriv-
atives: partial differential equations and
expected value integrals.

Partial differential
equation models

The argument used by Black and
Scholes in 1973 to determine the price
of a European call option is fundamen-
tally similar to what we just considered.
However, they allowed stock trading to
happen continuously with a stock pos-
sessing a full spectrum of values, mak-
ing the mathematics more difficult.
They argued the current value of an
option is the cost incurred by moving
funds from the stock market into the
bank and back, as we did. Our one step
example required solving a linear sys-
tem of equations. Theirs required solv-
ing a partial differential equation (since
known as the Black-Scholes PDE) .

After a clever set of transformation,
this PDE becomes something familiar to
the engineering community, namely the
heat equation, which has a known solu-
tion. (I bet you never thought that some-
thing you learned in thermodynamics
could be used in multi-billion dollar
financial transactions. Now where are
those notes...?)

Their solution of this PDE has
become a modern finance mainstay.
The solution is now a standard part of
dozens of software packages. For it’s
discovery, Black and Scholes were
awarded a Noble prize.

Finite difference methods
Since research tends to move in a

copycat fashion, it is not surprising that
a number of Black-Scholes-like partial
differential equations have been pro-
duced. These models can draw upon
decades of engineers’ experiences of
numerically solving mechanical models
using techniques like the finite differ-
ence method.

Briefly speaking, the finite differ-
ence method involves replacing the par-
tial derivatives in the equation with a
difference quotient. A system of equa-
tions results, and its solution yields an
approximation of the unknown at vari-
ous locations.

There are many subtleties in this
process and model complexity soon
leads to long computation times. But the
years of applying this technique to the
equations governing fluid and solid
mechanics prepared engineers well for
Wall Street. Soon after the work of
Black and Scholes became popular,
Wall Street greedily “borrowed” experts
from the defense and space industries to
implement such numerical solvers.
Thus, the nickname of “rocket science”
for financial mathematics came to be.

Expected value
integral models

An alternative model describing the
European call option, discovered some-
time after Black and Scholes, involves
the use of an expected value integral.
Recall the expected value of a function
F(X) of a random variable X with proba-
bility density function p(X)  is the inte-
gral of F(X)  times p(X).

Applying this to the financial setting
begins with the observation the value of
the stock at expiry, ST, is a random vari-
able with an assumed probability distri-
bution. One might conjecture that the
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price we should charge for a call option
is the expected value of its payoff
max(ST - K,0).

Philosophically, this is correct, but
the devil is in the details, as they say.
This formulation requires the use of
martingale theory and stochastic calcu-
lus. (Career note: People with Ph.D.s in
either of these subjects have been
extremely popular on Wall Street for
about 20 years.) Knowing the price of
the option once the integral is formed
reduces to performing a numerical inte-
gration. Most financial derivative prob-
lems can be modeled in this style.

(Quasi)-Monte Carlo method
The Monte Carlo Method is the nat-

ural numerical method for approximat-
ing expected value integrals. It is a fair-
ly simple algorithm that begins with
generating a set of pseudo-random num-
bers (or vectors) according to a desired
probability distribution. Averaging the
value of the integrand evaluated at each
of the pseudo-random points approxi-
mates the integral.

This method has the advantage over
quadrature methods of being interpreted
as a marketplace simulation. Each ran-
dom number can be viewed as a possible
outcome of the market on expiry. The
combined results of each simulated mar-
ket outcome are averaged for the estimate.

An extension of the Monte Carlo
method becoming increasingly more pop-
ular in financial modeling is the so-called
quasi-Monte Carlo method. The differ-
ence between the two approaches is that
pseudo-random number generation is
replaced with low discrepancy sequences.
These are a number-theoretic creation
that does not attempt to mimic random-
ness as much as fill space as efficiently as
possible. Financial simulations performed
with low discrepancy sequences have
witnessed dramatic increases in perfor-
mance. As a result, Wall Street is now
looking for number theorists.

So many derivatives ...
so little time

The volume and variety of complex
financial derivatives being handled by
trading firms is enormous. Thus, it is lit-
tle wonder the time required to deter-
mine the price of their products has
become a limiting factor for their busi-
ness. In fact, the financial world’s situa-
tion is much worse than that of the
physical sciences community. Tidal
waves of new information inundate ana-

lysts. Decisions must be made quickly.
Programs need to provide answers in
“real time.” Computing horsepower can
go only so far to remedy the situation.
To demonstrate the challenges being
faced in the industry, here are a couple
of examples I have encountered in my
consulting and research. The model
used for all of these is the expected
value integral with a (quasi)-Monte
Carlo simulation.

Equity-indexed annuity: Many insur-
ance companies sell an annuity product
that makes a payment based on stock
market growth. Normally, they average
a stock index, such as the S&P 500, at
month intervals over the course of the
year. Then, using the value of the index
at the beginning of the year as a strike
price, they calculate the rate of payment
on the annuity in a fashion like the pay-
off on a call option. In the parlance of
the financial markets, this is known as
an embedded Asian option. The product
is called an equity-indexed annuity.

We have used both traditional and
quasi-Monte Carlo methods to estimate
the current value of such an annuity.
This requires using a pseudo-random
vector containing the 12 monthly index
value. Typically, the number of random
vectors required is on the order of
50,000 for the traditional approach and
20,000 for the quasi-Monte Carlo
approach. Since annuities are sold daily,
insurance providers are faced with gen-
erating a total of 107 vectors for the 365
different options they maintain. Using
spreadsheets and Visual Basic, these
calculations took over 24 hours for one
company. This strongly limited their
business practice and demonstrates the
kind of challenges present in computa-
tional finance. Recently, I implemented
the quasi-Monte Carlo method using
C++ programs and reduced the compu-
tation time to 10 minutes. (Most every
job has the right tool...)

Stochastic interest rate bonds:
Bonds are a classic valuation problem.
We sell them at a price today based on
what we want them to be worth years
from now. If the bond’s interest pay-
ments are based on the randomly fluctu-
ating interest rates of the US Treasury,
this is a tough problem.

To implement the Monte Carlo
method, we need an interest rate point in
the random vector for each day (or week,
as reasonable) in the life of the bond.
This results in a random vector contain-
ing thousands of points. Also, the Monte
Carlo approximation may require a mil-

lion of these vectors to converge. Hence,
the valuation of a single bond may run
for hours on a workstation. Recent simu-
lations done with the quasi-Monte Carlo
has shown that the number of random
vectors required can be reduced to two
orders of magnitude, thus, the valuation
can be done in minutes. This is much
closer to real time trading.

Cash flow through insurance compa-
nies: Consider this situation faced by
insurance companies every year. They
must demonstrate they will have the
money to fulfill the obligations of their
policies. This balances the return on
their investments against the mortality
of the customers over the next 30 years.
Since most of their investments are in a
variety of bonds, they need models of
the coupled short-term and long-term
interest rates to estimate their return on
investment. To complete the simulation,
actuaries must provide models of the
life expectancies of their clients.

The Monte Carlo method can simu-
late their solvency, but here’s the catch.
The combined set of models for a bil-
lion-dollar company is so involved that
the simulation can process only one
hundred interest rate vectors in a 24-hour
period. Letting the simulation run for
days is impossible because of network
considerations. Using only 100 sample
paths simply does not produce a tight
estimate. Quasi-Monte Carlo methods
have helped, but this remains an example
of a computational problem for which
there is no practical solution . . . yet.
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