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ABSTRACT 

Tissue engineering is a process of developing new tissues in a host. Tissue 

engineering draws upon revitalizing damaged tissues that otherwise would not heal 

completely from the body’s natural response. To augment the body’s natural response to 

impairment, cells can be transplanted to the afflicted area to boost the healing response. 

Implementing these cells onto scaffolds and transplanting them into the body improves 

the healing response dramatically. Tissue regeneration improves when a biodegradable 

scaffold is used in conjunction with cells to augment the body’s healing response. 

Microparticles provide a surface that can mimic the environment cells perceive in vivo, 

allowing cells to proliferate and grow on the microparticle surface optimally. When 

these microparticles are transplanted into the body, the accompanying cells transition 

into the host tissue as the microparticles degrade. Proteins comprising the extracellular 

matrix (ECM), like collagen, fibronectin, and laminin, are used to facilitate cell binding 

to substrates, whether a biomaterial material ex vivo or an enzyme in vivo. 

Functionalizing the surface of microparticles with ECM proteins improves the adherence 

of cells which increases the area of tissue regenerated. When cells bind to ECM proteins 

on a biomaterial, a cascade of signals is initiated which communicates to the cell to 

spread on the surface of the biomaterial and begin the process of mitosis, leading to 

proliferation. Cationic polymers have also been shown to improve cell-surface 

interactions. Functionalizing particles with cationic polymers and extracellular matrix 

proteins provides a surface optimized for cell attachment and spreading.  
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SECTION 

 

1. INTRODUCTION 

Tissue engineering is a quickly developing field that has the potential to change the 

face of medicine. Engineering tissues requires the use of both cells and non-cytotoxic 

materials. These materials can be either synthetic, natural, ceramic, or metallic. Metallic 

and ceramic materials are best used in joint replacement procedures, such as hip or knee 

replacement, because these joints should last for at least 10 years or more. Additionally, 

metallic and ceramic materials have larger Young’s moduli and thus are more resistant to 

stress and strain, which is required in large joints. However, metallic and ceramic 

materials are still prone to inflammation and immune response leading to implant 

degradation over time. Since new tissue is not formed in these implants the body will 

eventually reject the implant requiring the implant to be removed and replaced. While 

metallic and ceramic biomaterials are stronger and more resilient, natural or synthetic 

scaffolds show promise in permanent remedies for biological damage. 

 

1.1 SYNTHETIC BIOMATERIALS 

Synthetic biomaterials are composed of polymers with a range of properties. 

Synthetic scaffolds are robust and versatile and can be used in a variety of tissue 

regeneration processes. Most synthetic scaffolds are polymeric, with polyesters being 

common, and can be fashioned into constructs similar to natural scaffolds, however, 

synthetic materials can range from weak to strong mechanical properties, long to short 

degradation times, and bioinert to biodegradable, while maintaining low to zero 

cytotoxicity [1]. Synthetic scaffolds benefit from stronger mechanical properties, 

resistance to dangerous biological environments, control over degradation rate, and are 
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easily modifiable and tunable compared to natural biomaterials [2]. When considering 

tissue regeneration, the strength of the biomaterial is of pivotal importance to support the 

tissue they encompass in order to prevent plastic degradation, or irreversible degradation, 

or breakage. Depending on which tissue is being regenerated will influence what material 

is chosen as a scaffold. For example, the Young’s modulus of bone is 338.3 MPa [3] 

whereas cartilage tissue has a Young’s modulus of 0.45 to 0.8 MPa [4]. To regenerate 

either of these two tissues, the biomaterial chosen should have a Young’s modulus close 

to that of the tissue. In addition, the degradation rate of the biomaterial must be chosen 

such that the material degrades at a similar rate that tissue regenerates. Tissues in the 

body rejuvenate at different rates and this requires that a biomimetic scaffold degrade at a 

rate that matches rejuvenation of the damaged tissue. The degradation rate should match 

the proliferation rate of the cells composing the damaged tissue such that a seamless 

incorporation of implanted cells occurs. However, most synthetic scaffolds do not readily 

associate with cells like their natural counterparts, which is a critical aspect of tissue 

engineering. Synthetic scaffolds are typically hydrophobic, carrying a net negative charge 

which is known to repel cells due to their net negative charge around the plasma 

membrane [5]. To effectively achieve cellular attachment to synthetic scaffolds, surface 

functionalization is typically required. Scaffolds are functionalized through physical 

adsorption [6], bioconjugation [7], or plasma polymerization [8] with extracellular matrix 

proteins [8-10] or cationic polymers [11-14]. Extracellular matrix proteins contain 

specific amino acid sequences that anchorto receptor proteins on the cell membrane [15], 

whereas cationic polymers utilize electrostatic interactions to associate with cellular 

membranes [16]. The biomaterial most advantageous for which tissue is engineered 
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depends on the recovery rate of the tissue. Bone, cartilage, skin, muscle, and heart tissue 

each have unique regeneration responses. Each of these tissues use specific signal 

cascades to deliver different types of cells and growth factors at certain times in their 

regeneration process. Due to the varied wound response of each tissue, a biomaterial to 

regenerate these tissues must be carefully chosen. A variety of materials are available for 

tissue engineering such as polycaprolactone (PCL), poly(glycolic acid) (PGA), 

poly(lactic acid) (PLA), poly(methyl methacrylate) (PMMA), polystyrene, and  

Poly(lactic-co-glycolic) acid (PLGA). PCL has a long degradation time and is useful for 

applications where slow, continual repair or drug delivery is required. PGA is a 

hydrophilic polymer that has been used for synthetic, biodegradable sutures due to its 

quick degradation time. PLA is a hydrophobic polymer, owing to the methyl pendant 

group off its main chain, and has been used for stents for blood vessel stenosis [17]. 

PMMA is a bioinert material with powerful mechanical strength and has been used as 

bone cement. Polystyrene particles have been used to study the effect of different shapes 

of micro and nanoparticles in relation to their uptake in cancer cells [18]. PLGA is a 

versatile biomaterial which is FDA approved and has been used in drug delivery, and 

tissue regeneration [12, 19]. PLGA degrades through hydrolysis into lactic and glycolic 

acid. Lactic acid is naturally produced during anaerobic cellular respiration and is 

excreted as waste. Glycolic acid is an extremely water-soluble molecule; thus, it is easily 

removed from the body as waste in urine [20].  PLGA is versatile in that it can be 

fabricated into fibers [21], constructs of varying dimensions by sintering [22], disk [18], 

rods [23], or particles [24]. PLGA is a prime contender for tissue engineering 

applications because of its degradation rate, mechanical strength, and ease of 
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functionalization. PLGA degradation rate can be controlled by varying the ratio of 

glycolic acid to lactic acid in the copolymer. When composed of a 50/50 mix of the two 

comprising polymers, PLGA experiences its quickest degradation rate; undergoing 

complete degradation within 4 weeks in vivo. By increasing the molar ratio of lactic acid 

in PLGA, the degradation rate can increase to 7 months, whereas increasing the glycolic 

acid ratio increases degradation rate to at most 5 months. Therefore, PLGA can be used 

in a wide variety of tissue regeneration applications. Additionally, PLGA naturally 

consists of carboxyl groups due to the presence of glycolic acid. These carboxyl groups 

allow PLGA to be modified with proteins through amine coupling in bioconjugation 

processes. Modifying the surface of PLGA with proteins increases the ability for cells to 

associate with the biomaterial enabling augmented tissue regeneration. Using 

biomaterials for tissue regeneration is important because severely damaged tissues will 

not undergo complete repair like broken bones in elderly patients, or severe burns. 

However, the infusion of transportable microparticle devices for cell delivery into 

damaged tissues offers a new paradigm for tissue regeneration.  

 

1.2 NATURAL BIOMATERIALS 

 Natural scaffolds are comprised of materials naturally found in the body. These 

materials typically comprise the extracellular matrix network, which anchors cells 

together as tissues, as well as structural and sensing components of the plasma membrane 

on cells. Proteins are a typical natural biomaterial used in tissue regeneration. Proteins are 

interesting molecules because they are synthesized in a cell, from translated messenger 

ribonucleic acid (mRNA), and are built in a structural hierarchy. The mRNA is translated 
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by ribosomes into amino acids, which are the building blocks of protein. There are 20 

common amino acids which form all proteins found in the body. These amino acids are 

linked together in a chain by peptide bonds, which forms the first-degree structure of 

proteins. Depending on the amino acid profile of the peptide chain, the peptide conforms 

into one of two secondary structures: an alpha helix or beta sheet. The alpha helix and 

beta sheet are stabilized through hydrogen bonds between successive amino acids. These 

secondary structures associate with each other through hydrogen bonding as well as 

disulfide bonds between cysteine residues to form a tertiary structure, which is the three-

dimensional representation of a protein. This tertiary structure undergoes folding and 

modification to form a functional protein. Furthermore, these tertiary structures will 

associate to form a quaternary structure, which is at least two tertiary proteins binding 

together through disulfide bonds and hydrogen bonding.  

Natural scaffolds are derived from materials occurring naturally in vivo such as, 

hyaluronan [10], chitosan [25], chondroitin-6-sulfate [26], collagen [27], and many others 

[28] and have been prepared as films [29], hydrogels [30], fibers [31], and particles [32].  

Chitosan is an interesting biomaterial considering it is an amino polysaccharide 

consisting of N-acetyl-D-Glucosamine. Chitosan is formed from the deacetylation of 

chitin, a hard material used by shrimp, crabs, and other shellfish for their shells. The 

deacetylation step allows for chitin to polymerize with D-glucosamine via glycosidic 

bonds, forming the cationic polymer chitosan. Due to the large number of amino groups 

littered on the backbone of chitosan, it has large potential as a tissue engineering material. 

The amino groups will carry a positive charge at physiologic pH (7.4) which will help 

associate with the negatively charged plasma membrane of cells. In addition, chitosan is 
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mucoadhesive and thus can bind to mucus membranes [33].  Chitosan is especially useful 

as a hydrogel [34] since it can incorporate numerous bioactive compounds through 

electrostatic interactions and amide bonds. Nucleic acids, like DNA, are a promising 

natural material for regenerative medicine. DNA has been formed into many shapes and 

structures and is a potential nanomaterial for drug delivery, biomarkers, and shape 

controlling of hydrogels [27]. However, DNA is limited in tissue engineering as it is 

difficult to fabricate into large structures. Additionally, the net negative charge of DNA is 

a natural repellent of the plasma membrane, limiting its ability to associate with cells.  

These biomaterials show virtually no cytotoxicity and many compose the extracellular 

matrix or are involved in cell anchoring, spreading, and communication [14, 35]. In this 

manner, natural materials are advantageous for tissue engineering because they naturally 

associate with cells and stimulate cellular proliferation. However, natural biomaterials, 

especially proteins, are subject to hydrolysis and enzymatic degradation in vivo. 

Additionally, natural materials suffer from limitations in synthesis. Many natural 

materials must be maintained in solutions that are at or near physiologic pH, otherwise 

they will degrade. Proteins are dependent on temperature to maintain proper structure, 

otherwise known as their native conformation. Above 37ºC proteins degrade into their 

amino acid constituents and lose their function, likewise, materials made solely out of 

proteins can not withstand temperature fluctuations. Natural scaffolds also suffer from 

weaker mechanical properties and quicker degradation in atypical somatic environments, 

such as the acidic pH environment at wound sites, relative to synthetic biomaterials. 

Thus, natural scaffolds are a useful tool for tissue regeneration, however, their capacity is 

limited when used on their own. 
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1.3 TISSUE ENGINEERING 

In the presented study, synthetic biomaterials were coupled with materials derived 

from naturally occurring proteins in the body for the attachment of endothelial cells. 

Endothelial cells line the lumen of blood vessels and are defined as either vascular or 

lymphatic depending on whether they are in contact with the blood or lymph, 

respectively. These cells diffuse nutrients and oxygen from the blood to tissues 

throughout the entire body as endothelial cells line the entire vasculature. Additionally, 

they act as a mediator for immune cells to traverse the body and infiltrate wounded and 

diseased tissues. Blood vessels are responsible for many functions like fluid filtration in 

the kidneys, maintaining homeostasis, and delivering hormones. When a tissue, such as 

skin, incurs damage, blood vessels are typically damaged as well, which is apparent when 

someone bleeds. By using biomaterials to deliver endothelial cells to damaged tissues, an 

increased response to wound repair is expected. These cells participate in angiogenesis, 

which is the formation of new blood vessels. Considering that blood vessels are 

responsible for delivering oxygen and removing wastes from tissues, delivering these 

cells using biomaterials is important in regenerating tissue. For example, when someone 

suffers from a heart attack there is a chance that acute myocardial infarction can develop. 

When a patient suffers from acute myocardial infarction part of the tissue in the heart dies 

and is repaired by fibrosis. Fibrosis occurs when scar tissue forms to repair a wound site. 

It is possible that stimulating tissue which has suffered myocardial infarction with 

endothelial cells will improve wound repair and prevent scar tissue formation and 

fibrosis.  
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Li et. al. used trophoblast and mesenchymal stem cells to augment repair of 

myocardial infarction in a mice model [36]. The group instigated myocardial infarction, 

colloquially known as a heart attack, in a mouse, then applied stem cells derived from 

embryonic blastocysts. Trophoblast and mesenchymal stem cells were successfully 

delivered to the heart and did reduce the area of infarction, however, only 8% of the stem 

cells successfully engrafted into the tissue and proliferated. A majority of the cells did not 

transplant to the target location and were flushed away by the mouse’s excretory system. 

Low engraftment rates are a pivotal issue in cell-based therapies. Many regenerative 

therapies suffer because cells do not efficiently adhere to the wounded tissue. These cells 

have difficultly incorporating into tissues of interest because the body’s blood vessels are 

constantly pushing fluids through every system in the body. Cells get flushed away 

during this cycle. To alleviate excretion of cells biomaterials are being developed which 

can target wounded tissues and bind cells. Using biomaterials as a mediator for tissue 

regeneration improves cell engraftment in damaged tissues. Additionally, these 

biomaterials can be functionalized to bind specific types of cells as well as target specific 

tissues, rather than the “shotgun” approach of administering cells in a wholesale fashion. 

Furthermore, the advent of microparticles facilitates ease of administration through 

minimally invasive surgical procedures. Also, microparticles are versatile and can be 

applied to virtually all tissues and are modular in that they can be functionalized to enable 

attachment of any cell type. The present investigation elicits the potential of these 

microparticles such that their surface can be functionalized through bioconjugation or 

physical adsorption using either extracellular matrix derived proteins, like gelatin, or 

polycationic polymers like poly-l-lysine (PLL).  
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 PAPER 

I. PLGA MICROPARTICLES AS VEHICLES FOR CELL TRANSPORT 

 

ABSTRACT 

 

Tissue engineering offers promising solutions for the future of regenerative 

medicine. Current technology focuses on metallic or ceramic implants for replacement 

therapy, direct application of cells to damaged tissues, or large constructs or hydrogels. 

Particles offer a promising approach to tissue regeneration, however, many studies have 

been limited to small particles sizes (<50 µm) which limits the extent to which cells can 

attach and be modelled as a biomimetic device. Here, the efficacy of a simple flow-

focusing device coupled with the single emulsion solvent diffusion technique to fabricate 

poly(lactic-co-glycolic) microparticles for attachment of human umbilical vein 

endothelial cells (HUVECs) is demonstrated. PLGA microparticles measured at 122 ± 

40.4 µm in diameter and reached up to 156 ± 39.9 µm in coated formulations. Zeta 

potential ranged from -16.7 to -35.1 mV. Coating efficiency ranged from 30.6 ± 1.51% to 

76.8 ± 4.94%. Particles were assessed for cell binding potential using confocal and light 

microscopy as well as flow cytometry. A mixture of cationic polymer and extracellular 

matrix adsorbed on the surface of the microparticles resulted in the most cells attaching to 

the surface.  
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1. INTRODUCTION 

Biodegradable and biocompatible materials offer an effective channel for advancing 

regenerative medicine and tissue engineering. Common polymers in use are poly(lactic-

co-glycolic acd) (PLGA) [1-3], poly(lactic acid) (PLA) [4, 5], polycaprolactone (PCL), 

and polyethylene glycol (PEG) [6] and are FDA approved for use in vivo [7].  One of the 

barriers for biomaterials to overcome is cell attachment and delivery. Tissue engineering 

requires delivery of cells to a target site to induce healthy regeneration and prevent 

hazardous scar tissue formation. Tissues with large scar areas are prone to malfunction 

and increased risk of further injury. In fact, a wound area which encompasses a large 

fraction of tissue surface area can not fully repair by natural mechanisms [8], total repair 

requires the use of a biomaterial to augment the regeneration response. Biodegradable 

materials are chosen for their degradation rate, mechanical properties, and surface 

characteristics. Their unique ability to interact with the human body without producing a 

cytotoxic or immune response facilitates their use as a scaffold for culturing cells. PLGA 

is a versatile biomaterial which degrades due to hydrolysis in as little as two weeks [9]. 

Current studies demonstrate the efficacy of PLGA as an instrument for regenerating 

cardiac [10], nervous [11, 12], hepatic [13], cartilage [14], and skin tissue [15]. However, 

current studies have not thoroughly investigated the capability for microparticles to 

induce tissue regeneration, especially in skin tissue reconstruction. Particles are easily 

distributed in vivo by minimally invasive surgical techniques, rather than open surgery 

for implants and large constructs. This reduces the inherent risk to patients and provides a 

safe solution to tissue repair. Certain formulations of PLGA degrade within 2-4 weeks 

once implanted in vivo [16] which is ideal in the regeneration of severe wounds. The 
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initial wound response in vivo where the majority of cellular repair including 

vascularization and mending of the wound gap takes place within a month of the initial 

wound incursion [17].  

A major limitation in improving tissue regeneration and repair in the body is cellular 

attachment to biomaterials. Extracellular matrix is a critical component for cell survival, 

proliferation, and attachment. The extracellular matrix not only functions as an anchor for 

cells to adhere to and spread on, but also acts as an information boulevard for cells to 

communicate with each other through signaling molecules. Synthetic biomaterials lack 

these extracellular domains that cells recognize and thus require modification for healthy 

cell attachment. When an extracellular matrix is lacking in a cell’s environment, 

programmed cell death, like anoikis or apoptosis, can occur. Thus, biomaterials are 

functionalized with extracellular matrix proteins, such as fibronectin [18], collagen [5], or 

laminin [19], or cationic polymers like chitosan [20, 21] or poly-l-lysine (PLL) [22].  

Endothelial cells line blood vessel walls and provide an intricate super highway for 

nutrient and gas delivery throughout the body. Thus, endothelial cells are found in most 

tissues of the body including organs, muscles, and bones. Curiously, in skin only the 

dermis is vascularized, whereas the epidermis receives nutrients through diffusion from 

the dermis and from the environment. Endothelial cells are crucial for maintaining this 

homeostasis as skin relies on dense vascular networks to deliver excesses of nutrients 

such that the epidermis is properly maintained. However, in severe burns, abrasions, or 

ulcers, the skin loses its ability to completely regenerate leaving the formation of a scar. 

The scar tissue formed consists of extracellular matrix proteins aggregated to seal the 

wound site. However, the use of biomaterials as vehicles for cellular delivery to augment 
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tissue repair response has the potential to prevent malignant bodily responses. Delivery of 

endothelial cells to the wound site would increase vascularization marking an 

improvement in vital nutrient delivery. Transporting cells effectively has proved 

challenging since biomimetic scaffolds typically require extensive surface modification 

in the form of plasma polymerization [5, 23, 24] conjugation chemistry [2,14], or 

physical adsorption [11], while the literature seldom mentions endothelial cell attachment 

to microparticles.  

Herein is described a simple but effective method for endothelial cell attachment. 

PLGA microparticles were fabricated using a modified version of the single emulsion 

solvent-evaporation method utilizing a proprietary flow-focusing device. Additionally, 

particles were surface functionalized for cellular attachment by physical adsorption of 

PLL, gelatin, or a combination of both. Finally, particles were assessed for cell 

attachment and potential.  
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2. MATERIALS & METHODS 

2.1 MICROPARTICLE SYNTHESIS 

The solvent diffusion method was used with a simple flow-focusing apparatus to 

synthesize polymer microparticles. Firstly, an organic solution was formulated by 

dissolving 300 mg of Poly(D,L-lactide-co-glycolide) (PLGA; Acros Organics, ~19 kDa) 

in 4.5 ml of ethyl acetate (Fisher Scientific). An aqueous solution of 1 % (w/v) polyvinyl 

alcohol (PVA; Sigma-Aldrich, 30-70 kDa) was formed by dissolving PVA in reverse 

osmosis (RO) water. A flow-focusing apparatus was assembled with 5 and 10 ml 

syringes, a two-syringe pump (kdScientific, KDS-200), plastic tubing, a Pasteur pipette, 

and a stir plate. The 5 and 10 ml syringes were completely filled with the PLGA and 1% 

PVA solutions, respectively; these represent the organic and the aqueous carrier streams 

of the flow-focusing apparatus.  

By using an equal drive block velocity on both syringes, the two streams were 

injected into the Pasteur pipette at a 7:10 flow rate differential. With careful adjustments, 

gently forcing the organic stream tubing into the pipette neck produced regularly-sized 

organic droplets surrounded by the aqueous carrier stream in the pipette capillary. The 

Pasteur pipette was positioned vertically above 100 ml of the 1 % PVA solution (stirring 

at approximately 250 rpm) such that the pipette tip was just submerged near the center of 

the solution’s vortex whorl. For 10 minutes of injection, the organic droplets were 

dispersed into the continuous aqueous phase. The Pasteur pipette was then removed, and 

the emulsion was stirred for an additional 15 minutes. The mixture was left undisturbed 

overnight (> 18 hours) to allow for evaporation of residual ethyl acetate at room 
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temperature. PVA was removed by centrifugation at 7,000 rcf, followed by five washes 

with RO water. Microparticles were then lyophilized, weighed, and stored at 4C.  

 

2.2 MICROPARTICLE CHARACTERIZATION 

The size and surface topography of PLGA microparticles were analyzed with SEM at 

1-10 kV (Hitachi S-4700) and stereo microscopy (Hirox KH-8700). Particle size and 

shape were also visualized with bright field microscopy (Nikon Eclipse E400). The 

microparticle surface charge was measured in water and phosphate buffer saline (PBS; 

Fisher Scientific) with dynamic light scattering (DLS; Malvern NanoSeries Zetasizer 

ZS90). DLS measurements were performed at 25C in disposable capillary cells 

(Malvern) using the backscattering detection at 90. The zeta potential was measured for 

20 successive runs. Data was analyzed using means and standard deviations of three 

measurements. 

 

2.3 SURFACE COATING OF MICROPARTICLES 

Poly-l-lysine (Sigma, PLL, MW ~150,000-300,000 Da) and gelatin from bovine 

(Sigma, bloom ~ 225-300) were physically adsorbed onto the surface of PLGA 

microparticles to increase cell-particle interactions. Briefly, 35 mg of microparticles was 

weighed and added to three centrifuge tubes for PLGA-Gel (PG), PLGA-PLL (P2), and 

PLGA-PLL/Gel (P2G) particles. All tubes were coated in Sigmacote® (Sigma) to 

minimize product loss. For PG particle formulations, 75 μl of a 0.32% w/v solution of 

gelatin in RO H2O was added, for a total of 240 μg of gelatin. P2 formulations received 

240 μl of a 0.1% w/v PLL solution, P2G particles 45 and 96 μl of gelatin and PLL stock, 
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respectively, for a total of 240 μg of protein at a ratio of 40/60 PLL/Gel. Samples were 

incubated at 37°C and rotated at 20 rpm for 4 hours. Particles were then centrifuged at 

4,696g for 20 minutes and washed 3 times with RO H2O. Microparticles were then 

lyophilized, weighed, and stored at 4°C. 

 

2.4 SURFACE COATING QUANTIFICATION   

To effectively determine the amount of PLL and gelatin adsorbed on the surface of 

PLGA microparticles, nuclear magnetic resonance (NMR) analysis was employed. 

During the washing of coated particles, the supernatant was collected for NMR analysis. 

The supernatant was frozen and lyophilized until constant weight was achieved. This 

product was then diluted in 700 μl of deuterium oxide (D2O) and analyzed using 1H 

NMR (INOVA 400 MHz FT/NMR, Varian, Inc.). Spectral data was collected and 

analyzed for the integral area under characteristic peaks for PLL and gelatin. The area 

under the characteristic peaks was used to calculate total protein content in the 

supernatant samples using a standard curve.  Percent adsorption efficiency was then 

determined using the following equation: 

 

%𝐴𝐸 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 − 𝑆𝑎𝑚𝑝𝑙𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑟𝑜𝑡𝑒𝑖𝑛
∗ 100%                      (1)  

 

2.5 CELL ATTACHMENT, PROLIFERATION, & QUANTIFICATION 

Human Umbilical Vein Endothelial Cells (HUVEC, Lonza) were maintained in 

Endothelial Growth Medium (PromoCell), supplemented with 2% v/v fetal calf serum 

(FCS), 1 μg/ml hydrocortisone, 0.1 ng/ml human epidermal growth factor, 1 ng/ml basic 
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fibroblast growth factor, 90 μg/ml heparin, and 1% penicillin-streptomycin in an 

incubator at 37°C and 5% CO2. Medium was changed regularly every 2-3 days and cells 

were subcultured at ~80% confluence according to manufacturer’s protocol. Cells were 

collected via trypsinization, centrifuged at 200 g for 5 min and resuspended in fresh 

media at the appropriate concentration for bioreactor addition. The bioreactors used in 

this study were sterile 50 ml bio-reaction tubes (CELLTREAT, Pepperell, MA) with a 

hydrophobic membrane cap facilitating the diffusion oxygen and CO2 into the 

bioreactors. Bioreactors were not tissue culture treated such that cells would not attach to 

the surface of the tube. Cells were seeded at a constant cell density of 20,000 cell/cm2 in 

bioreactor samples as well as T-75 control flasks. Microparticles were sterilized by UV 

for 15 minutes before commencing cell attachment. The cell-particle mixture was stirred 

continuously at 50 rpm in an incubator at 37°C and 5% CO2 for 24h, thereafter cells were 

no longer subject to stirring. At 4, 8, and 24h after initial seeding, particles were aspirated 

from their bioreactors and investigated for cell viability, proliferation, and cell loading 

capacity. Additionally, control flasks were trypsinized, collected, and subject to the same 

analysis.  Cell viability was determined by staining cells with calcein-AM (CAM) and 

bright field microscopy. Cell proliferation was determined by performing flow cytometry 

analysis in conjunction with a live cell assay using CAM staining.  Briefly, 200 μl of each 

bioreactor sample and control was aspirated and collected in 0.6 ml microcentrifuge 

tubes. CAM was added to each sample at a concentration of 2 μM, and incubated at room 

temperature for 30 minutes. Subsequently, samples were analyzed using a flow cytometer 

(BD Accuri C6 Plus, BD Biosciences). Gates were determined for each control (particles, 

cells, media) and data was analyzed to determine cell concentration, density, and 
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attachment efficiency.  Further, cells-particle samples were fixed with 4% 

paraformaldehyde and analyzed by SEM. Additionally, fixed samples were perforated 

with 0.1% v/v Triton X-100 in PBS and stained with 30 µl of 5 mg/ml 4’,6-diamidino-2-

phenylindole (DAPI) for 5 minutes as well as 205 µl of 6.6 µM tetramethylrhodamine 

isothiocyanate (TRITC, rhodamine phalloidin) for 30 minutes. Samples were washed 

with PBS, mounted, and dried under vacuum desiccation and subsequently visualized 

using confocal laser microscopy (TCS SP8, Leica Camera AG).  
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3. RESULTS & DISCUSSION 

3.1 PARTICLE CHARACTERIZATION 

Microparticles in this study were designed to reach a peak size in which the particles 

would reach a maximum surface area while not sacrificing cell binding ability. Initially, 

10% w/v PVA was used as the concentration for particle formulation, however, these 

microparticles never surpassed 40 μm in diameter. We attempted to alleviate this issue by 

decreasing the PVA concentration from 10% w/v to 1% w/v, which is known to increase 

particle size [3], as well as reducing the stirring time of particles after pumping the carrier 

and organic streams through the flow-focusing device. This resulted in a particle size 

increase of bare PLGA particles to 122 ± 40.4 μm (Table 1). The bare particles were 

spherical in shape and displayed a relatively uniform size for larger particles (Figure 1). 

SEM images indicate that the bare particles are indeed spherical and slightly porous, 

which is most likely due to evaporation of ethyl acetate prior to washing and evaporation 

of entrapped water during lyophilization. Zeta potential measurement of the bare PLGA 

particles was -26.9 mV and -16.7 mV in H2O and PBS, respectively. These values are 

lower in absolute value than those typically reported for PLGA [25, 26] which is most 

likely due to the extreme size of the microparticles which decreases the surface charge 

density.  Modifying the surface of polymeric particles, especially with extracellular 

matrix constituents or polycationic materials, is known to induce many alterations in the 

particles’ properties [2, 14, 19].  During the coating procedure, particles are coated in a 

37°C environment in a solution consisting of PBS. These conditions help facilitate 

coating through physical adsorption by reducing the strength of the polymer’s bonds, by 

bathing the particle in conditions closer to its glass transition temperature. This causes the 
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particle to associate with the proteins in solution by increasing the frequency at which 

end groups experience van der Waals interactions which induces adhesion of the protein 

molecule to the particle surface [27]. Additionally, this elevated temperature catalyzes 

degradation of PLGA particles due to hydrolysis [9]. As of a result of these phenomena, 

coated particles developed interesting architecture (Figure 1). The brightfield images of 

each coated particle, whether gelatin, PLL, or a combination of the two was used as 

coating, display a central section surrounded by a lighter area. This result suggests a few 

things about these particles. One, that the particles are coated in a relatively thin protein 

coating, causing an expansion in particle size (Table 1). Secondly, the particles most 

likely have undergone some level of degradation during the 1.5 hr incubation period at 

elevated temperature. Comparing the brightfield images (column A, Figure 1) of the 

PLGA particles compared to PG, P2, and P2G, the PLGA particles are black and devoid 

of light passing through whereas the coated particles are substantially lighter indicating 

that more light passing through the aperture and a less dense particle. Additionally, 

coated particles are much less regular in shape when compared to the bare PLGA 

particles, indicating that protein coating induces shape change in the particles. Comparing 

the SEM images in columns B, C, and D, the bare PLGA particles are more regular in 

shape and lack the degree of particle debris/degradation in the coated formulations. Most 

notable from column B, the act of rotating particles in an elevated temperature 

environment seems to induce particle deformation and breaking which is not seen in bare 

PLGA particles which are not subject to such forces. PLL coated PLGA particles 

especially experience this sort of degradation because much of the particles have 

fragmented into irregularly shaped chunks. 
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Table 1: Particle Characteristics. Average particle diameter is the mean value of 50 or 

more particles.  

Particle Type 
Average Particle 

Diameter 
No. of Particles/g 

No. of 

Particles/ml 

PLGA 122 ± 40.4 μm 1.05•10
6

 ± 0.193•10
6

 3,700 

PLGA-Gel 136 ± 42.1 μm 0.760•10
6

 ± 0.122•10
6

 3,000 

PLGA-PLL 156 ± 39.9 μm 0.503•10
6

 ± 0.133•10
6

 2,200 

PLGA-PLL/Gel  140 ± 47.0 μm 0.696•10
6

 ± 0.087•10
6

 2,800 

 

 

Figure 1: Microscope Images of Particles. (A) Light microscopic images of PLGA 

microparticles with and without adsorbed coating (10x); SEM images of each particle 

formulation at (B) 150x, (C) 500x, (D) 1,500x magnifications; (B, C) depict particle 

morphology, indicating porous structures and a rough surface for protein coated particles; 

(D) Single particle surface image comparing the roughness and porosity of each particle 

formulation. Coated particle (PG, P2, P2G) surfaces are rough and irregular indicating a 

coating has formed on the particle whereas PLGA particles are homogeneous and porous 

indicating a lack of such coating.   PG = PLGA-Gel; P2 = PLGA-PLL; P2G = PLGA-

PLL/Gel 

 A B C D 

PLGA 

    

PG 

    

P2 

    

P2G 
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Finally, it is quite apparent that physical adsorption of proteins to microparticles 

increases the surface roughness of the particles (column D). Particles coated with gelatin 

and PLL experienced a substantial size increase (Table 1). Size measurement was a 

crucial part of our investigation because cells were seeded at a constant density based on 

surface area. Due to the diameter increasing by the protein coating, coated particles had a 

larger surface area per particle. Thus, less of these particles were necessary to achieve the 

control area used in cell experiments.  

One of the notable changes when modifying microparticle surfaces is the zeta 

potential measurement. Zeta potential describes the electric potential between a particle 

surface and the suspension medium at the plane in which counter-ions to the particle 

surface do not move with the particle [28, 29]. All particles were measured for zeta 

potential in H2O and PBS. PBS was used to mimic in vivo conditions such as pH and ion 

concentration. For all coated particles, zeta potential increased in absolute value, whether 

in H2O or PBS, compared to bare PLGA particles (Figure 2).  Zeta potential values were -

27.9, -35.1, and -26.1 mV in H2O, and -23.4, -25.1, and   -19.9 mV in PBS for PG, P2, 

and P2G respectively. Interestingly, particles coated with PLL (P2) experienced the most 

negative zeta potential value, which is unusual for PLL coated materials [11, 30]. The 

zeta potential of gelatin coated particles was negative and higher than that measured for 

bare PLGA as well. When placed in PBS, all particles had a decrease in zeta potential, 

relative to when H2O is the suspension medium. This suggests that coating with proteins 

like gelatin and amino acid polymers like PLL increases the stability of PLGA 

microparticles, since a higher absolute value of zeta potential prevents particle 

aggregation and flocculation [31]. The PLL loading of P2 particles was 6.86 µg/mg 



22 

 

particles which is sufficiently low, given the extreme size of the particles, to prevent a 

positive zeta potential. Thus, the loading of coating solution on PLL conjugated particles 

is too low to completely cover the surface of the microparticles. 

 

 

 

Figure 2: Zeta Potential 

 Zeta potential for each particle formulation measured by dynamic light scattering (DLS) 

and electrophoretic mobility. Each sample was measured in both RO H2O and PBS, blue 

and grey bars, respectively. Error bars are mean ± standard deviation. 
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3.2 SURFACE MODIFICATION 

Particles fabricated from PLGA typically repel cells because of the hydro 

hydrophobic nature of the polymer [14, 32, 33], unless the particle surface is modified. 

To improve interactions between particles and cells, PLGA microparticles were coated in 

PLL, gelatin, or a mixture of both, and analyzed quantitatively using nuclear magnetic 

resonance (Table 2). Particles coated with gelatin, PG and P2G, experienced the highest 

total conjugation efficiency at 62.9% ± 4.53% and 76.8% ± 4.94%, respectively, while a 

conjugation efficiency of 30.6% ± 4.94% was observed for PLL coated particles. Given 

the conjugation efficiency, P2G particles, which are a 40/60 mix of PLL/Gelatin, had the 

highest coating density and therefore the most protein/poly-amino acid adsorbed. Thus, 

there must exist a synergistic adsorption effect for PLL and gelatin on the surface of 

PLGA microparticles which may translate to mixtures of proteins other than gelatin.  

 

Table 2: Adsorption Capacity of Microparticles. Particles were loaded with a uniform 

ratio of total protein mass to particle mass. P2G particles were prepared using a 60/40 

mixture of gelatin/PLL. Conjugation efficiency and protein density was determined using 

a standard curve prepared by NMR analysis. Protein density was calculated using the 

surface area per mg of bare PLGA particles. 

Particle 
Initial MassLoading 
 (μg/mg Particles) 

Total 

Conjugation 

Efficiency 

Coating Density  
(µg/cm2 

Particle) 

Adsorbed Coating 
 (µg/mg particles) 

PG 6.86 62.9 ± 4.53% 9.79 ± 0.72 4.19 ± 0.310 

P2 6.86 30.6 ± 1.51% 4.85 ± 0.194 2.08 ± 0.083 

P2G 6.86 76.8 ± 4.94% 12.0 ± 0.79 5.13 ± 0.338 
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3.3 CELL ATTACHMENT, PROLIFERATION, AND QUANTIFICATION 

  Particles were prepared using a basis surface area of 14 cm2 and cells were seeded 

at a constant cell density of 35,000 cells/cm2 for both controls and particle samples. 

Microscope images and flow cytometer measurements were taken at 0, 4 (Figure 3) and 

8h (Figure A.1). 

 

 

Figure 3: Microscopic Characterization of Cell-laden Particles.  

Fluorescent microscope images of cell-particle samples. Top row is images taken at 0h, 

or initial seeding, and bottom row is images taken at 4h post-seeding. Control images 

were taken in a 96 well plate, particle samples were aspirated from bioreactor tubes, 

stained with 2µM CAM, and plated on microscope slides.  

 

Images taken at 0h show viable cells fluorescing green, however, most cells are 

rounded and not clearly associated with particles, indicating attachment has not occurred. 

At 4h, cells attach to PLGA particles, but are clustered in aggregates indicating a higher 

affinity for cell-cell interactions rather than cell-particle binding. However, coated 

particle samples do not display clear cell aggregation. Cells attached strongly to P2 and 

P2G particles at four hours whereas PLGA and PG particles show some cell attachment 

mixed with cell aggregates, with many cells in the fluid surrounding the particles. This 

 Control PLGA PG P2 P2G 

      

0h 

     
      

4h 
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suggests that while cells are present in the samples they do not bind as well to bare PLGA 

and gelatin coated PLGA particles.  

Cell attachment to particles was further confirmed using confocal laser microscopy 

coupled with actin and nucleic staining (Figure 4). Cells were not observed in PLGA 

particles, however, PLGA particles physically adsorbed the phalloidin stain giving off a 

bright red fluorescence. Surface modified particles, PG, P2, and P2G, all were positive 

for cell attachment as confirmed by phalloidin and DAPI fluorescence on the surface of 

particles.  

 

  

Figure 4: Confocal Laser Microscopy. Microscopic images taken at 20x on a Leica TCS 

SP8 confocal laser microscope. (A) PLGA and PG particles, top row: DsRed and DAPI 

channels showing actin and nucleic staining; bottom row: light microscopic image of the 

same frame. PLGA particles showed no cells in the sample, but adsorbed phalloidin dye. 

(B) P2 and P2G particles, top row: DsRed and DAPI channels; bottow row: DsRed, 

DAPI, and light channels of particles.  

 

All surface modified particles displayed extensive cell attachment on the edges of the 

particle. The extent of cell spreading and attachment on surface modified particles is 

PLGA PG 

  

  
 

P2 P2G 

  

  
 



26 

 

confirmed through fluorescent microscopy (Figure 5). Images represent three-

dimensional renderings of z-stack compiled images. Cells were stained with calcein AM 

(CAM). The bottom row resembles a “heat map” of the fluorescent channel depicting the 

elevation of cells within the 3D rendering confirming that cells have attached and spread 

on the surface of the particles on the z-axis, or vertical direction. 

 

 

Figure 5: Characterization of Cells on Microparticles.  

3D rendering of P2 and P2G samples. From top: light microscopy 3D rendering, 

fluorescent channel 3D rendering, combined 3D rendering, fluorescent channel rendering 

with elevation gradient. Cells are shown as spreading along the edge of particles on the z-

axis confirming that cells have attached and begun to spread. 

P2 P2G 
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Cell-particle mixtures were analyzed using flow cytometry to quantify the extent of 

cell attachment to particles (Figure 6). SSC vs FSC plots resemble the shape and size of 

the particles and cells giving an indication to the difference in diameter as well as 

granularity of the samples. The FSC value indicates how much of the laser passes around 

the sample while the SSC value indicates how much of the laser beam is reflected off 

organelles and particulates in the cell and the matrix composing the core of the particles. 

Dot plots from flow cytometer are colored green for HUVECs and purple for particles 

(Figure 6a). PLGA, PG, and P2 particles all have a higher SSC value than cells, however, 

P2G samples are overlapped with HUVECs in the sample. This indicates that cells are 

strongly bound to P2G particles. The larger SSC value means that the particles reflect 

more laser than the cells suggesting that particles have a solid core whereas HUVECs 

have more empty space in their interior. Considering that cells, whether eukaryotic or 

prokaryotic, are composed of cytoplasm – a gel-like substance – and polymer 

microparticles are composed of a tight network of polymeric chains, it makes sense that 

SSC values are higher for microparticles as more of the laser should pass through the 

cell’s translucent cytoplasm.  

Flow cytometry data was further analyzed to assess the proliferative capacity of 

HUVECs bound to microparticles (Figure 6b, c). Cell populations were separated from 

particles using gates as shown in panel A of Figure 4. The data was correlated for change 

in cell density, expressed as cell/cm2, over 8 hours. All samples were initially seeded at 

20,000 cells/cm2 at 0h. Notably, P2G particles realized the largest increase in cell density 

at 4 hours, whereas PLGA and P2 decreased slightly and control and PG particles 

experienced a slight increase. At 8 hours, only PG particles increased while all other 
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particles formulations experienced a significant drop in cell density and control samples 

were virtually constant.  

 

Figure 6: Cell Proliferation and Quantification.  

(A) Flow Cytometry Analysis. Qualitative flow cytometry data for cells mixed with 

particles at 4h. Dot plots are color labelled as purple = particles; green = cells; M3 = 

Percentage of samples that are not cells SSC vs FSC graphs depict granularity, or surface 

roughness, compared to size of the sample. Particles consistently report a higher degree 

of granularity as well as a bigger size. FITC Count data shows number of events which 

report a certain fluorescence value – cells stained with CAM report higher values while 

particles report low values. However, some overlap is observed, especially in PG and 

P2G which indicates cells and particles are closely associated. SSC vs FITC data aids in 

determining the extent at which particles and cells are associated.  (B) Cell density over 

time; (C) Relative cell density compared to control at each time point. Cell density 

estimation determined from flow cytometer data. 
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Figure 6: Cell Proliferation and Quantification.  

(A) Flow Cytometry Analysis. Qualitative flow cytometry data for cells mixed with 

particles at 4h. Dot plots are color labelled as purple = particles; green = cells; M3 = 

Percentage of samples that are not cells SSC vs FSC graphs depict granularity, or surface 

roughness, compared to size of the sample. Particles consistently report more granularity 

as well as a bigger size. FITC Count data shows number of events which report a certain 

fluorescence value – cells stained with CAM report higher values while particles report 

low values. However, some overlap is observed, especially in PG and P2G which 

indicates cells and particles are closely associated. SSC vs FITC data aids in determining 

the extent at which particles and cells are associated.  (B) Cell density over time; (C) 

Relative cell density compared to control at each time point. Cell density estimation 

determined from flow cytometer data. 

 

3.4 DISCUSSION  

Endothelial cells are integral to maintaining homeostasis and repairing severely 

damaged tissues. They are responsible for lining blood vessels which deliver nutrients 

and oxygen, both critical components of cellular health and function – especially in tissue 

repair processes – as well as transport waste to the excretory system. Endothelial cells act 

as a barrier between the lumen of blood vessels, where erythrocytes are located, to the 

surrounding tissues by mediating the passage of white blood cells and other materials. 

Due to their extensive presence in the body – endothelial cells are found throughout the 
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entire circulatory system – endothelial cells have been investigated for their potential in 

tissue engineering [34]. However, much of the literature has not focused on endothelial 

cell delivery in tissue engineering, especially when using microparticles as a scaffold. 

Microparticles offer a unique solution for the regeneration of tissues as they are easily 

transportable and applied to virtually any tissue. Delivering cells via microparticles will 

provide a versatile vehicle for augmenting the regeneration of tissues. Additionally, 

modelling the microparticle system with HUVECs will produce a universal system for 

attachment of most any cell line.  

To investigate the capability of PLGA microparticles as a cell delivery vehicle of 

HUVECs, particles were fabricated at a size of more than 100 µm and coated with PLL, a 

cationic polymer, gelatin, a remnant of the extracellular matrix protein collagen, or a 

combination of both. HUVECs were cultured with microparticles in non-treated 

bioreactors for a facile and portable approach to attaching cells to a scaffold. 

Interestingly, a combination of both PLL and gelatin yielded the most cell attachment to 

particles, compared to bare and separately coated particles. Cationic polymers [35], like 

PLL, are known to induce cell association with coated surfaces through cationic 

interactions [36]. The plasma membrane surrounding cells is typically negatively 

charged, while PLL is positively charged due to the ε-ammonium group on the lysine side 

chain [37]. The cationic nature of PLL attracts cells at the plasma membrane viz 

electrostatic forces [38], the extent of which is pH dependent [39, 40]. Thus, coating the 

surface of biomaterials with PLL causes more cells to attach and proliferate [8]. After 

attachment, cells typically spread on a surface and use special protein domains to anchor 

themselves. However, PLL only participates in non-specific cationic adherence of cells 
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[38] whereas other molecules bind cells through integrins [41, 42]. Integrins are a class of 

transmembrane proteins that bind cells using cell-recognition motifs [43]. The motifs are 

comprised of specific amino acid sequences like RGD [44] in fibronectin and YIGSR in 

laminin [12, 46]. When integrins bind to these motifs the cell undergoes phenotypic 

changes that cause anchoring and spreading on the surface. Gelatin is believed it act on 

these integrin receptors as it is a derivative of collagen, an extracellular matrix protein 

which anchors cells together, however, since gelatin is in a degraded form it is not as 

effective and most likely has a lower concentration of integrin binding sequences. Quirk 

et al. demonstrated the effect of differing concentrations of PLL conjugated to GRGDS, a 

cell-recognition motif, on the extent of cell spreading using poly-lactic acid films. 

Conjugating PLL to GRGDS resulted in improved spreading of cells and was comparable 

to cells grown in tissue culture plates [22]. Plasma polymerization is another technique to 

functionalize the surface of scaffolds for cell attachment [5, 23, 24, 47, 48].  Plasma 

polymerization requires special machinery to apply a plasma gas coating to the scaffold, 

which increases fabrication cost. Allyl amine is a typical compound for plasma surface 

treatment of bioactive scaffolds to increase cell binding. Bible et al. demonstrated that 

plasma deposition of allyl amine on the surface of PLGA particles improved cell 

attachment to microparticles compared to a coating of only fibronectin or PLL [24]. 

However, this process requires a plasma reactor capable of gasifying a compound and 

subsequently depositing it on the surface of a scaffold, which typically requires a 

propriety device developed in situ.  

Interestingly, PG particles only coated with gelatin did not bind cells well compared 

to other particle formulations (Figure 3). Considering gelatin is a derivative of collagen, 
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there should be some remnants of integrin binding domains in its amino acid 

configuration. However, PG particles had a negative zeta potential (Figure 2), thus 

indicating that the surface of these particles carries a negative charge. The plasma 

membrane of cells also carries a negative charge, and consequently should repel the 

surface of the PG particles. P2G particles, which are coated in both PLL and gelatin, 

attached cells very well, most likely due to the cationic charge of PLL attracting cells and 

the amino acid sequencing of gelatin enabling anchoring and spreading of cells once they 

are in proximity to the particle surface. P2 particles, coated only with PLL, also saw 

distinct cell association with the particle surface, however, PLL is known to be cytotoxic 

[22, 37, 49]. In a parallel investigation, we studied the ability for PLL to attach MDA-

MB-231 breast cancer cells over 7 days (Figure A.2). These cancer cells lost viability 

after 3 days in culture in PLL only coated particles, suggesting that the use of only PLL is 

not suitable for cellular attachment on scaffolds meant for tissue engineering.  

Microparticles can fabricated as spheres, disks, and rods [50]. In this investigation, 

only spheres were analyzed for cell binding potential, however, rods have the advantage 

of maintaining the same surface area as a sphere but having a more intense curvature. 

Cells like to associate with surfaces that have intense curvature as this aids in spreading 

as well as mimics the environment present in the body. Additionally, only HUVECs were 

investigated for binding potential. Each cell line will have unique results when assessed 

for binding potential to PLGA particles. Each tissue in the human body has its own 

spectrum of cells each with different concentrations of integrins as well as varying 

composition of these integrin proteins which effect their binding potential to bioactive 

scaffolds. To account for these variations, particles can be modified with different 
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extracellular matrix constituents or various cationic polymers to optimize attachment of 

each cell type. PLGA particles can be copolymerized with other functional polymers such 

as polyethylene glycol (PEG) [6, 32, 51] or polyethylene imine (PEI) [35] to aid in cell 

association for delivery to tissues in vivo.  

Further analysis is necessary to assess the potential of these microparticles cultured 

with cells to regenerate tissue. In vivo or ex vivo studies should be conducted to assess 

therapeutic potential of PLGA microparticles to remediate blood vessel damage as well 

as induce vascularization and angiogenesis in ischemic tissues. Additionally, particles 

should be fabricated as different shapes, such as rods and disks, to assess the optimum 

shape for cell attachment. Other cell lines should be investigated and compared 

quantitatively to determine the extent at which these particles can bind a range of cell 

lines as well as gain insight into the binding domains across various cells. Lastly, 

modifying the microparticle surface with various extracellular matrix proteins and 

cationic polymers and assessing their binding affinities for cells, especially HUVECs, 

would aid in optimizing particle formulation for maximum tissue recovery.  
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4. CONCLUSION 

In summary, PLGA microparticles functionalized with PLL and gelatin successfully 

attached HUVEC cells, maintained cell viability, and enabled proliferation. This proves 

that a simple fabrication method (Figure A.3) of microparticles coupled with facile 

physical adsorption is capable of effectively binding cells for therapeutic use as well as 

manufacturing large particles with sizable control. This study demonstrates that HUVEC 

cells can be bound to microparticles without the use of complicated machinery, like 

plasma polymerization, and surface modification requiring expensive materials, such as 

purified and sterilized fibronectin or laminin. These results can be further illustrated by 

applying these microparticles cultured with HUVEC cells to mice models and assessing 

their potential for therapeutic recovery of ischemic tissues.  

In addition to physical adsorption for protein coating, chemical conjugation was 

investigated as a method to modify particles with protein, like gelatin. The bicinchoninic 

acid (BCA) assay is a quick and versatile tool for quantifying protein, like fibronectin, 

collagen, or gelatin, in a sample. This quantification is important data because accurate 

analysis of total protein adsorbed or chemically bound to a particle provides an 

interpretation into how cells respond to certain concentrations of protein. Too much or 

too little adsorbed protein can drastically change cell phenotype leading to unhealthy 

cells. Additionally, theoretical modelling and simulation of cell signaling mechanisms 

requires precise and accurate data to be valid. Thus, paper II describes a method for 

correcting N-hydroxysuccinimide (NHS) in the BCA assay.  
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II. CORRECTION IN BICINCHONINIC ACID (BCA) ABSORBANCE ASSAY 

TO ANALYZE PROTEIN CONCENTRATION 

ABSTRACT 

Conducting the bicinchoninic acid (BCA) assay directly after a coupling reaction 

using (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) (EDC) and N-

hydroxysuccinimide (NHS) chemistry produces significant errors. Here we present a 

correction for the quantification of gelatin in the supernatant (SN) following gelatin 

conjugation to polymer microparticles using EDC and NHS chemistry. Following the 

conjugation reaction, supernatants (SNs) from the gelatin-microparticle formation 

reaction are treated with BCA assay reagents and quantified for the percentage of 

unbound gelatin in the solution. NHS was found to interfere with the BCA assay reagents 

and is dependent on incubation time. It is found that the large concentration (500 g/ml) 

of NHS in the conjugation reaction interferes with the sensitivity of gelatin present in 

SNs. The interference from NHS requires a careful analysis to distinguish the BCA 

background absorbance from the sample absorbance. Using an NHS control solution can 

correct NHS interference and thus decrease the expensive iterations in gelatin 

quantification and enable accurate analysis of gelatin content. The accuracy of gelatin 

quantification is further improved by reducing the BCA assay incubation time to 

approximately 20 min, compared to the recommended 30 min. This re-assessment of 

BCA assay is important to avoid misestimating biases in bioconjugation processes. 
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1. INTRODUCTION 

Bioconjugation is a driving force behind discoveries in life sciences, through the 

development of new therapeutics, drug targets, and diagnostics [1-4]. One significant 

impact of bioconjugation chemistry is in the quantification of total protein concentration 

that serves as a key variable for process development and quality control. The total 

protein release in the sample supernatant gives an estimate of unbound or secreted 

proteins during a bioconjugation process. Total protein quantification calls for an 

accurate, sensitive, robust and cost-efficient method. Despite substantial improvements in 

commonly used bioassays, quantitative measurements of bioconjugation still face 

difficulties from unexpected interferences [5-8].  For example, carbodiimide 

bioconjugations using 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDC) and N-

hydroxysuccinimide (NHS) are often used for water-soluble protein bioconjugates with 

polymeric backbone [9-12]. However, little attention has focused on identifying the 

quantity of protein being conjugated to the surface of microparticles while unreacted 

reagents such as EDC and NHS may cause interference during the quantification assay 

[13-15]. The bicinchoninic acid (BCA) assay is a cost-effective and is highly selective 

method for determining protein concentrations, which significantly reduces the effect of 

interfering substances compared to the Lowry or Biuret protein assays [16].  

Our findings suggest that when measuring a protein-based polymer material, such as 

gelatin, both the NHS concentration and incubation time in BCA assay must be reduced 

from the standard protocol procedure in order to minimize the effect of NHS on the 

absorbance measurement.  
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2. MATERIAL & METHODS 

2.1 PREPARATION OF GELATIN SUPERNATANT SAMPLES 

Gelatin SN Samples used for BCA analysis were prepared from an EDC/NHS 

conjugation procedure [17]. EDC/NHS conjugation was used because it is a simple and 

effective method to bind a protein to a substrate. The reaction simply reacts a carboxylic 

acid (-COOH) group to an amine group (-NH2) forming an amide bond. Briefly, gelatin 

from bovine (Sigma-Aldrich) was conjugated to the surface of PLGA and PLGA-PEG 

microparticles by coupling primary amines of gelatin with carboxyl groups of PLGA to 

form amide bonds (NHS and Sulfo-NHS Instructions, Thermo Scientific). Particles were 

suspended at 10 mg/ml in an aqueous activation buffer:  0.1 M 2-

(morpholino)ethanesulfonic acid (MES; Sigma-Aldrich) and 0.5 M NaCl (Fisher 

Scientific) with an adjusted pH of 6.0. Activation of carboxyl groups on the PLGA 

microparticle surface was accomplished through the successive additions of EDC 

(Thermo Scientific) and NHS (Thermo Scientific) to yield an amine-reactive NHS ester. 

Final concentrations of EDC and NHS in each reaction mixture were 0.333 mg/ml and 

0.5 mg/ml, respectively.  After increasing the mixture pH above 7.0, 200 μl of a 0.37% 

(w/v) gelatin protein solution was added to the reaction mixtures resulting in 740 μg of 

gelatin initially added, which was based on a 1.5:1 protein to particle surface area ratio. 

The mixture was shaken (Fisherbrand™ Multi-Platform Shaker, Fisher Scientific) at 450 

rpm for 2 h at room temperature. After 2 h, particles were separated by microfiltration 

using a 500 l microcentrifuge filter (Amicon) capable of filtering out 100 kDa 

molecules. The device was centrifuged at 14,000 g for 10 min and was used three times 

for a total sample volume of 3 ml. This sample was used subsequently in the BCA Assay.  
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2.2 BCA ASSAY  

To determine the protein concentration in SN samples, a modified version of the BCA 

Assay was used. First, gelatin protein standards were created in PBS to reflect the 

conditions of SN samples as well as to model the absorbance behavior of the samples. 

The unknown concentrations of SN samples were prepared in 1 and 50 times dilution. 

Bovine serum albumin (BSA) of 2000 g/ml was used as a positive control. Each sample 

and standard of 25 µl were added to individual wells with three replications in a 96 well 

plate. A working reagent ratio of 8:1 was used such that 200 µl of BCA working reagent 

was added to each well. Absorbance was read at 562 nm and 37°C in a microplate reader 

(Synergy 2) at varying intervals throughout the course of the investigation. The PBS 

blank was subtracted from the absorbance measurements of all individual standard and 

unknown samples. A gelatin standard curve was prepared by plotting each gelatin 

concentration in g/ml versus its average blank-corrected 562 measurements to 

determine the gelatin concentration of unknown samples.  

The absorbance kinetics of varying concentrations of NHS was investigated to 

compare the kinetics trend of the SN samples to approximate the concentration of NHS in 

the SN samples. Mixtures of 500, 400, 300, 200, and 100 μg/ml of NHS were prepared in 

PBS. The NHS samples were prepared in a 96 well plate using the BCA Assay method 

described previously and absorbance was measured every minute for 2 h at 37°C.  

Additionally, gelatin standards were created with EDC and NHS concentrations the 

same as that used in the conjugation reaction procedure. Data acquired from the BCA 

protein assay were analyzed to determine protein concentration at each data point. The 
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data were further processed to determine conjugation percentage of protein, where 

conjugation percentage is defined by the following equation: 

 

𝐶𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛 % =
𝑇𝑜𝑡𝑎𝑙 𝐺𝑒𝑙𝑎𝑡𝑖𝑛 − 𝑆𝑁 𝐺𝑒𝑙𝑎𝑡𝑖𝑛

𝑇𝑜𝑡𝑎𝑙 𝐺𝑒𝑙𝑎𝑡𝑖𝑛
× 100%                              (2) 

 

To calculate protein concentration, all samples were blank (PBS) corrected. 

Additionally, SN samples were “NHS corrected” by subtracting the NHS blank that 

contained no gelatin (after subtracting the PBS only blank).  

 

2.3 BCA ASSAY CORRECTED BY PRECIPITATION OF GELATIN  

To confirm the concentration of gelatin in supernatant samples, a portion of the 

supernatant was treated with the Compat-Able Protein Assay kit and subsequently 

analyzed with the BCA Assay. Briefly, 50 μl of each supernatant sample were transferred 

into a 1.7 ml microcentrifuge tube. Then 500 μl of Compat-Able Protein Reagent 1 was 

added and the solution stood undisturbed for 5 min. Next 500 μl of Compat-Able Protein 

Reagent 2 was added and the solution was centrifuged at 10,000 g for 10 min. The 

resultant supernatant was aspirated and discarded, and the protein pellet was resuspended 

in 50 μl of PBS by vortexing and sonication. Additionally, standards containing a known 

concentration of gelatin and standards with gelatin and a fixed NHS concentration were 

prepared and treated as described above. All samples, after pellet resuspension, were 

analyzed using the standard BCA assay protocol.  
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2.4 STATISTICAL ANALYSIS  

Statistical analysis was performed using the Student’s t-test by calculating mean and 

standard deviation with at least three independent experiments. Results were considered 

significant for p values of < 0.05. 
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3. RESULTS & DISCUSSION 

3.1 NHS CONCENTRATION AFFECTS BCA-BASED GELATIN 

QUANTIFICATION 

 

To our knowledge, up to now no statistically significant data has been provided in the 

literature indicating how protein mixed with NHS responds to the BCA working reagent 

over time. To determine an appropriate NHS concentration and incubation period for 

measuring the unknown gelatin concentration, a kinetics test was conducted on a variety 

of controls as well as the unknown SN samples at 30 min intervals between 0 to 2 h 

(Figure 1). BSA was used as a positive control in conjunction with NHS as a means to 

correct for NHS interference. As it is seen in Figure 1, BSA (▬) has a much stronger 

absorbance (~3  0.14) than NHS (▷; ~2.25  0.26) or gelatin (○; ~0.95  0.38) that 

allows BSA to have looser incubation time limits than that of gelatin.  

 

Figure 1: BCA Assay Kinetics. Absorbance rate measurement of bovine serum albumin 

(BSA) protein, gelatin with NHS, gelatin alone, NHS alone, and sample SNs. Data was 

taken every 30 seconds for 2 h. Test was conducted at 37°C throughout its entirety. 

Arrow indicates point of interest at ~20 min where gelatin and NHS responses are equal. 
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Additionally, BSA has a much steeper absorbance rate than NHS or gelatin, which 

suggests that BSA may be incubated longer for accurate estimations. This is not the case 

for gelatin alone and SNs. In fact, the slopes for gelatin alone and SN curves are flatter. 

The absorbance of NHS surpassed that of only gelatin (arrow), as well as the SNs’ 

absorbance, before 30 min indicating a strong interference from NHS. To test this 

hypothesis, an additional kinetics study was conducted by varying the concentration (0-

500 g/ml) of NHS to determine the minimum NHS concentration that would eliminate 

the background noise and whose BCA absorbance is lesser than unknown SNs (Figure 2). 

Our results suggest that a concentration of 100 μg/ml NHS coincides with the 

concentration of NHS within the SNs. The SN absorbance is lower than the NHS 

absorbance until approximately 30 min (Figure 2) suggesting that an accurate correction 

is dependent on incubation time.  

 

Figure 2: BCA Assay Kinetics of NHS. Data was acquired every 30 s for 2 h and 

incubated at 37°C for the entire duration. NHS concentrations range from 100-500 µg/ml.  
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To test the effect of incubation time further, the samples were read for absorbance 

every minute for 45 min in future experiments. To confirm the impact of NHS 

concentration again, as well as determine an appropriate incubation time, gelatin 

standards were prepared with 100 μg NHS/ml and absorbance was measured using the 

BCA protein assay in addition to the SN samples (Figure 3). The SN samples correlated 

similarly with the standards and measured above the blank NHS (100 μg/ml of NHS).  

The incubation time was another contributing factor. SN samples maintained a similar 

slope to that of the standard prepared at 125 g/ml gelatin up to 30 min after which it 

matched with the 250 g/ml gelatin standard curve. We confirmed this concentration as 

follows. 

 

 

Figure 3: BCA Assay Kinetics of Gelatin Standards with Fixed NHS Concentration. Data 

was acquired every minute for 45 min and incubated at 37°C for the entire duration. 

Black shapes represent gelatin standards mixed with a fixed concentration of NHS (100 

µg/ml). Red shapes indicate SN samples after EDC/NHS conjugation. Gelatin 

concentration ranges from 0-750 µg/ml.  
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3.2 BCA ASSAY CORRECTED WITH GELATIN PRECIPITATION USING 

COMPAT-ABLE™ PROTEIN ASSAY  

 

To verify the sensitivity of BCA-based gelatin quantification, gelatin was precipitated 

in pellets using the Compat-Able™ Protein Assay. The purpose of the kit is to remove 

any interfering substances from the pellet. The SN samples and gelatin standards were 

precipitated, dissolved in PBS and BCA working reagent, incubated for 2 h at 37°C, and 

measured for absorbance (Figure 4). This resulted in a concentration of 121.7 ± 15.44 and 

166.3 ± 27.40 g/ml gelatin in PLGA SN and PLGA-PEG SN, respectively. 

Additionally, the mixture of 100 μg/ml NHS, after being treated with the precipitating 

reagents, recorded an absorbance similar to that of the PBS blank. Using these results, we 

matched the concentration calculated through the precipitation method with the sample 

incubation time that estimated a similar concentration.  Absorbance data were analyzed to 

determine gelatin concentration at each time point from Figure 3. After correcting for 

NHS interference, it was found that using an incubation time of 20 ± 2 min, the 

concentration of PLGA SN was 119.0 ± 20.44 μg/ml gelatin and the concentration in 

PLGA-PEG SN was 168.5 ± 27.51 μg/ml gelatin (Figure 5). By utilizing the NHS 

correction in the BCA assay, the conjugation percentage of the SN samples was 

calculated at 50.71 ± 10.10% and 31.76 ± 10.41% for PLGA SN and PLGA-PEG SN, 

respectively (Table 1). A comparison of the effect of the incubation time on the 

calculated conjugation percentage was examined (Figure 6). Adjusting the incubation 

time, at 37°C, from 30 to 20 min provided a 23% difference in calculated conjugation 

percentage. This correlates to a calculated conjugation percentage of 50.7% and 62.4% at 

20 and 30 min, respectively for PLGA SN. The data at 20 min corresponds to the 

concentration and conjugation percentage determined using the precipitation assay, which 
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indicates why adjusting the incubation time is vital in protein estimation procedures. The 

data at 20, 30, and 45 min have relatively large standard deviations because data is the 

average of three independent experiments which have widely varying conjugation 

percentages due to minor variations in experimental conditions such as pH, particle mass, 

or gelatin standard concentration. The error bars at 5 min are relatively small because at 

this time the BCA assay has not had sufficient time to saturate the sample with color and 

create significant distinctions across different concentrations of protein.  

 

 

 

Figure 4: Precipitation Assay.  Gelatin standard curve data derived after precipitating 

gelatin protein from PBS solution using Compat-Able Protein Assay Kit. After 

precipitation, samples were diluted in sample volume used and vortexed to dissolve 

pellet. All samples were incubated for 2 h at 37°C and measured immediately using BCA 

assay.  
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Figure 5: BCA Assay Incorporating NHS Correction. All standards and samples were 

incubated at 37°C for 20 min and followed the standard BCA assay. Data represent blank 

corrected absorbance.  SN samples were further corrected by subtracting the absorbance 

of a 100 μg/ml NHS in PBS mixture. 

 

 

Table 1: Percent Protein Conjugation in SN Sample after NHS Correction. Concentration 

was calculated using a standard curve constructed from absorbance measurements of 

blank-corrected gelatin standards. Total mass was determined by multiplying 

concentration by SN volume. Total gelatin used in the experiment was 740 μg. All 

samples were incubated at 37°C for 20 min and subsequently measured for absorbance at 

562 nm using the BCA assay.  

Sample 
SN Concentration 

Precipitated (μg/ml) 
SN Concentration 

BCA Assay (μg/ml) 
Conjugation % 

PLGA SN 121.7 ± 15.44 119.0 ± 20.44 50.71 ± 10.10 

PLGA-PEG SN 166.3 ± 27.40 168.5 ± 27.51 31.76 ± 10.41 
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Figure 6: Effect of Incubation Time on Protein Estimation. Results represent average 

calculated conjugation percentage of three experiments after 5, 20, 30, and 45 min of 

incubation at 37°C for PLGA (■) and PLGA-PEG (●) SNs. Error bars represent mean ± 

s.d.  

 

It is thus important to check how extreme the conjugation percentage is distorted over 

varying incubation time. Finally, conjugation percentages were verified using the 

precipitation assay. 

 

3.3 DISCUSSION 

Conducting the assay on a sample containing NHS proposes several problems [18, 

19]. NHS reduces the BCA reagent in the same manner as proteins, but the effect is not 

additive [18]. Additionally, NHS interference is dependent on incubation time, pH, 

protein concentration, and protein composition due to the nature of the BCA assay [20]. 

The BCA assay is protein specific in that different proteins will produce different levels 

of absorbance [6, 16]. For coupling of gelatin on the surface of poly(lactic-co-glycolic) 
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acid (PLGA) microparticles, the standard amine coupling includes a three-step reaction 

with EDC/NHS chemistry. Upon application of the BCA protein assay, it was found that 

the SN samples reported absorbance measurements much higher than standards of known 

concentration (Figure 7a). The undiluted sample measured an absorbance value almost 

twice as large as the highest protein standard, however, a 50 times dilution (50x dil.) of 

the sample led to an absorbance value within the standards’ range. These results were 

used to calculate the conjugation efficiency of the EDC/NHS conjugation reaction (Table 

2). Sample concentrations were calculated using a best-fit curve correlation derived from 

the standards’ data (Figure 8). The total amount of gelatin used in the experiment was 25 

mg, however, the lowest calculated amount of gelatin in the supernatant was 90 mg, 

almost four times as high. To ensure that the tested sample was not an outlier, EDC/NHS 

reaction was performed without gelatin. The supernatant of the conjugation sample was 

collected and absorbance was measured (Figure 7b). This EDC/NHS control (without 

gelatin) showed higher absorbance than the standards and SNs. Thus, we hypothesized 

that NHS must be interfering with the BCA reaction [18]. 

 

Table 2: Percent Protein Conjugation of SN Sample 

Dilution 
SN Concentration 

(μg/ml) 
SN Vol (ml) SN Gelatin (μg) Total Gelatin (μg) Conjugation % 

1 5001 ± 70.34 18 90030 ± 1266 25,000 -260.1 ± 5.06 

2 5736 ± 54.89 18 103200 ± 1976 25,000 -313 ± 7.90 

5 9543 ± 102.8 18 171800 ± 9253 25,000 -587 ± 37.01 

10 16230 ± 105.1 18 292100 ± 18910 25,000 -1068 ± 75.66 

50 61630 ± 41.77 18 1109000 ± 37600 25,000 -4337 ± 150.4 
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Figure 7: Initial BCA Assay Results.  (A) BCA Assay results with gelatin standards (0-

2000 µg/ml) and supernatant samples. All samples were incubated at 37°C for 2 h. SN = 

undiluted supernatant sample. 50x Dil = SN diluted at a 50:1 PBS:SN ratio. (B) BCA 

Assay results with standards and samples incubated at 37°C for 30 min. Control consists 

of a “blank” EDC/NHS conjugation reaction that contained no gelatin protein or PLGA 

particles. SN = undiluted supernatant sample. 
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Measurements of conjugation samples following the standard procedure like the BCA 

assay are challenging. A plethora of interferences can lead to an erroneous composition 

of the sample supernatant. If one or several of the interfering factors happen(s) to have an 

impact on measurement accuracy, this biasing effect(s) evolve gradually without any 

indication in the signal-over-time-curve, leading to significant errors [21, 22]. To detect 

such errors, thorough method qualification over time must be followed to conclude the 

total protein determination in bioconjugation engineering. There is thus a substantial need 

for refined analytical protocols that allow for taking such factors into account, yet without 

increasing operator workload beyond a reasonable extent. Against this backdrop, the aim 

of this study was to evaluate and illustrate the impact of NHS on gelatin quantification 

via the BCA assay, as well elucidate a rapid and generally applicable method to 

compensate for the biasing effects. 

 

Figure 8: Gelatin standard curve using BCA assay (37C/ 2h incubation). 
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The incubation time to accurately estimate gelatin concentration in SN samples varied 

significantly between PLGA SN and PLGA-PEG SN after initial analysis. However, 

upon application of the suggested modification to the BCA assay protocol, the PLGA-

PEG SN estimation was satisfactory after 20 min of incubation time. The incubation time 

varied for PLGA-PEG SN samples initially due to PLGA-PEG particles being aspirated 

during washing and being present in the PLGA-PEG SN. These particles are saturated 

with NHS esters that are bound to carboxylic acid groups on either the gelatin protein or 

particles themselves [23]. This NHS ester hydrolyzes within minutes to several hours 

depending on the pH of the solution [24]. When the ester bond hydrolyzes, the NHS 

concentration in the SN sample increases which causes a higher absorbance measurement 

to be read leading to lower conjugation percentages and a skewed determination of 

necessary incubation time. Preventing particle aspiration into the SN is of paramount 

importance to accurate protein concentration estimation.  

The BCA Assay gives an overestimated value when a sample contains NHS. The 

sample emits a much darker purple color than any of the standards, even when it is 

known that the sample has a lower concentration of protein. Quantitatively, the measured 

absorbance of the samples containing NHS is larger than any of the standards. When 

calculating the concentration of the sample using the standard curve correlation, the 

sample protein concentration is estimated far past the range of the standard curve. When 

calculating total protein content in the sample (multiplying calculated concentration by 

total supernatant volume) the result is significantly higher than the original starting 

amount. The inaccuracy in the results is due to the interactions between the protein, NHS, 

and the BCA assay reagents. Multiple mechanisms are believed to induce the strong 
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interference of NHS with the BCA assay. One of the proposed mechanisms is that NHS 

directly reduces the cupric ion (Cu2+) present in the BCA working reagent into the 

cuprous ion (Cu+) which participates in the colorimetric chelation reaction [25]. Another 

proposed mechanism is an esterification reaction between NHS and free protein in the 

sample, which is part of the protein conjugation reaction [23]. This esterification reaction 

is thought to prevent free protein in the sample from reducing the Cu2+ ion to the Cu+ ion 

and subsequently block the colorimetric reaction. This effect is more pronounced at 

higher protein concentrations (Figure 4). For this reason, the NHS interference in the 

assay is not additive and is dependent on protein concentration. The reaction kinetics in 

response to the BCA working reagent of NHS and gelatin differ (Figure 2), which creates 

the issue with appropriate incubation time. Additionally, the ability for gelatin to induce a 

color response to the BCA reagent is significantly low which creates even more difficulty 

in correcting for NHS interference (Figure 2). This weak response to the BCA reagent is 

due to the low content of cysteine, cystine, tryptophan, and tyrosine amino acids in 

gelatin, which are known to reduce the Cu2+ ion [26-28]. Since NHS interference 

increases with time and varies depending on protein concentration, a unique method must 

be employed to correct samples being tested after an EDC/NHS reaction. The method 

proposed for correcting NHS interference is to perform the BCA Assay using standards 

composing of the protein being investigated as well as creating an NHS blank. Following 

20 min incubation time and absorbance measurements at 562 nm, the NHS absorbance 

must be subtracted from all unknowns before calculating concentrations using the 

standard curve.  
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There are other methods such as a precipitation assay being a useful method for 

removing interfering substances. However, the precipitation assay has the potential to 

produce abnormal results and requires several iterations to realize a meaningful result. 

Additionally, with low concentrations, the protein pellet formed is so small that it can 

easily be lost during the precipitation procedure. Additionally, this assay adds a 

significant amount of work to the researcher because all standards and experimental 

samples must be precipitated and then analyzed using the quantitative assay in question. 

The Bradford method is another example.  However, there are other 

proteins/substances that do not respond well to the Bradford method and are better 

analyzed using the BCA assay. Gelatin is one of the proteins that does not have a strong 

response to the Bradford method, or rather the Coomassie reagent, unless significant 

alterations to the assay’s protocol are made.  

This report is the first time an analysis has been conducted on the response of 

different concentrations of NHS to the BCA assay and the effect NHS has on the BCA 

assay. This is important because it shows that certain substances can interact with the 

assay in such a way that the interference can go undetected. This is because when a 

sample subject to the BCA assay consists of both protein and NHS, there are competing 

reactions between NHS and the protein to reduce the cupric ion to the cuprous ion. This 

competing nature results in a masking of the actual nature of the protein since NHS will 

inhibit the reduction of the cupric ion by binding to the protein in an esterification 

reaction, but also reducing the cupric ion to cuprous. This phenomenon has been 

reported, however, accurate and detailed corrections for this phenomenon have not been 

thoroughly investigated until now.  
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4. CONCLUSIONS 

The BCA assay is subjected to immense interference by NHS due to Cu2+ reduction 

as well as esterification with free protein in the sample such that even a concentration of 

100 μg/ml induces large deviations. It is important to note that when conducting the BCA 

assay after a conjugation reaction involving NHS, NHS concentration in the sample is 

less than that originally used in the reaction. Using an NHS blank in tandem with the 

BCA assay standards provides a suitable correction in protein concentration estimation. 

Additionally, adjusting incubation time of the sample to approximately 20 min at 37°C 

and subtracting the NHS blank provides an accurate estimation of protein in the sample.  
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 SECTION 

2. CONCLUSIONS 

In summary, these investigations have achieved the following outcomes: (1) synthesis 

of biodegradable PLGA microparticles more than 100 µm in size, (2) successful 

attachment of HUVEC cells to the surface of these particles, and (3) determining a 

plausible correction for NHS interference in the BCA assay for protein quantification. 

These achievements are important in the field of tissue, biological, and chemical 

engineering, as well as in chemistry. They offer new methodologies for the formulation 

of bioactive, polymeric materials, as well as provide a new approach to accurately 

determining the extent of surface modification of these materials. These findings will 

help future researchers to develop improved models in cellular transport for augmenting 

tissue response as well as reliable assessment of the characterization of bioactive 

scaffolds and other materials.  
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3. FUTURE WORK 

In the future, this research can be extrapolated for in vivo analysis of cellular delivery 

via microparticle transports. Currently, this research will be extended to an ex vivo model 

consisting of skin tissue samples obtained from The Dermatology Center in Rolla, MO 

under the supervision of Dr. William V Stoecker in collaboration with the Phelps County 

Regional Medical Center. Microparticles will be applied to these skin tissue samples and 

investigated for wound repair augmentation compared to control wound recovery 

processes. Further, mice or rat models will be used to assess the in vivo potential of these 

microparticles transports. Additionally, other tissues, such as cardiac, bone, or cartilage, 

could be assessed for repair augmentation using this microparticle system.  

Research is currently in progress on polymeric coatings to protect and incorporate 

cell-covered microparticles for deployment in medical centers and rural or unpopulated 

areas. Development of a protective polymeric sheath will enable these devices to be 

transported easily and safely as well as used immediately under any crisis. This will be 

especially useful in emergency medical situations – emergency medical technicians 

(EMTs) for example – or in burn victims right at the scene of an incident. Producing 

technologies of this kind is important, especially in burn victims, as fibrotic scarring and 

irreparable damage can happen quickly.   
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APPENDIX 

 

 

Figure A.1: HUVECs on microparticles at 8h. HUVEC cells have noticeably started 

to stop associating with particles and not attach as well across all formulations. However, 

cells still maintain viability. 

 

 

 

Figure A.2: PLGA-PLL (P2) particles seeded with MDA-MB-231 breast cancer cells. 

At 4, 8, and 24 hours, cells are noticeably attached to particles and viable, indicated by 

green fluorescence. At 72h, many cells attached to particles do not fluoresce indicating 

that these cells have lost viability and are undergoing apoptosis. 
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Figure A.3: Overview of microparticle synthesis setup with flow-focusing device. 

Two syringes are connected to tygon tubing through a needle, which is threaded through 

a glass pasteur pipet. One 10 ml syringe and one 5 ml syringe is used, the former 

containing a 1% PVA carrier stream and the latter containing the organic stream 

comprised of PLGA and ethyl acetate. The organic stream tubing is threaded to the neck 

of the pipet to facilitate formation of droplets whereas the carrier stream is left at the 

mouth of the pipet.  
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