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Introduction
• Bridge Deterioration (2017 ASCE Report)

39% and 15% of 614,387 bridges
in the U.S. are more than 50 years
and 40 to 49 years, respectively. 

• Main Cause of Deterioration
Steel corrosion
Monitoring and prevention

 Half-cell potential measures the 
potential difference between 
steel and reference electrode.

 Corrosion can be prevented by 
introducing cathodic protection. https://metallisation.com/app

lications/ cathodic‐protection‐
of‐steel‐in‐concrete/

https://www.pressherald.com/2016/
10/11/bath‐viaduct‐project‐begins‐
to‐divert‐traffic‐for‐months/



Introduction
• The current practice of visual inspection

is time-consuming, traffic disruptive, and 
subjective, leading to inconsistent 
reporting.

• A hyperspectral camera can potentially 
supplement visual inspection with 
quantifiable and reliable imagery. 
It can be used to characterize physical 
and chemical features (e.g., concrete 
crack and steel corrosion).



Introduction
• Applications of hyperspectral imaging in 

construction materials and structures are 
limited. 

• Most researches focused on recycled 
concrete aggregate control, concrete 
drilling core, concrete compressive 
strength.

• Corrosion and carbonation induced 
concrete degradation has never been 
systematically studied before.



INTRODUCTION
• This project aims to 

Develop an open-source catalogue of concrete 
and steel surfaces and their spectral/spatial 
features through hyperspectral imaging.

Develop/train a multi-class classification or 
regression classifier through machine learning.

Validate the classifier as a decision-making tool 
for the assessment of concrete crack and 
degradation processes, in-situ concrete 
properties, and corrosion process in steel 
bridge.



Hyperspectral Imaging
• The Method

Hyperspectral imaging is based on light 
reflectance from an exposed surface (long and 
narrow like a ‘line’) of concrete or steel 
members. As a hyperspectral camera moves in 
a direction perpendicular to the ‘line’, the entire 
surface of a structural member can be scanned. 
For each pixel in the scanned area, spectral 
analysis is made to determine spectral 
signatures of the scanned surface, such as 
characteristic wavelength at absorption peaks. 
These features, uniquely associated with certain 
materials/chemical bonds, can be used to 
identify the chemicals generated during 
corrosion process.



Hyperspectral Imaging
• Example Images in Agriculture Application

https://www.google.com/search?q=hyperspectral+imaging+principle&client=firefox‐b‐1‐
ab&tbm=isch&source=iu&ictx=1&fir=YPRSxCEbscaj7M%253A%252C9FJ4kfE_mrjmRM%252C_&usg=AFrqEzd1XFXXtgMYq7
hoTH_rVWInuIl71w&sa=X&ved=2ahUKEwiqrNqMoubcAhVSjqQKHfJSC7gQ9QEwBXoECAUQBg#imgrc=_UStnno6WrlxWM:



Camera setup at optimal measurement distance

Imaging as camera moves at constant speed

Hyperspectral image processing with reflectance calibration

Machine learning for interesting feature extraction

Classification of structural condition from reference imagery

Hyperspectral Imaging
• The Flowchart of Structural Condition 

Assessment with Hyperspectral Imaging



Hyperspectral Imaging
• Characteristic Spectral Feature of Various 

Types of Materials (from Jet Propulsion)



Co-aligned Dual VNIR-SWIR Camera
• Specifications

The airborne sensor package measures 
approximately 10.7” x 8.2” x 6.5” in size and 
weighs approximately 6.25 lb.

Spectral range
 400-1000 nm (VNIR)
 900-2500 nm (SWIR)

Max frame rate
 330 Hz (VNIR)
 >100 Hz (SWIR)



Co-aligned Dual VNIR-SWIR Camera
• Focus Distance Selection

Focus of imagers set at 4 ft. NOTE: airborne 
lenses are designed for infinity focus.

Hyperspectral scans of high contrast targets 
taken at 4 ft, 5 ft and 6 ft

 Images zoomed in to show the quality of focus 
at vertical edges

Metric: best focus = 1 transition pixel from white 
to dark

VNIR images show “good” focus for 4 ft, 5 ft 
and a little worse for 6 ft

SWIR images show a quicker loss of focus than 
VNIR. For sharp SWIR imagery, it is recommend 
to remain within 6” of optimal focus distance.



• VNIR Lens Focused at ~4 Ft

Target distance = 4ft
~ 1 transition pixel

Target distance = 5ft
~1+ transition pixel

Target distance = 6ft
~2 transition pixels

Co-aligned Dual VNIR-SWIR Camera



• SWIR Lens Focused at ~4 Ft

Target distance = 4ft
~1 transition pixel

Target distance = 5ft
~2+ transition pixels

Target distance = 6ft
~3 transition pixels

Co-aligned Dual VNIR-SWIR Camera



Laboratory Tests
• Corrosion Test Setup

The bottom ¼ height of each 36 cm × 18 cm × 9 
cm specimen was immersed in salt solution.

Accelerated corrosion test was carried out by 
applying a constant current to steel bars with a 
current density of 500 µA/cm2 until the mass 
loss of the steel bars reached 2%. 

Steel bars with impressed current were 
corroded, resulting in concrete cracking and 
appearance of corrosion
dust due to increasing 
volume of corrosion 
products.



Laboratory Tests
• Hyperspectral Imaging Setup with a VNIR 

Camera
The camera was set up 2 m above the concrete 

specimens.
The camera scanned at a constant speed of 

0.127 m/s. 
For the VNIR camera, 

both the exposure time 
and the frame period 
are 0.167 s.

Pixel size ≈ 2.25 cm



Laboratory Tests
• Reflectance Spectra of Representative 

Pixels on the Top Surface of Specimen
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Laboratory Tests
• Reflectance Spectra of Representative 

Pixels on the Side Surface of Specimen
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Laboratory Tests
• Reflectance Summary at Characteristic 

Wavelengths
Top surface

Side surface

Reflectance
Wavelength Concrete Corrosion Products

510 nm 0.48 0.16
890 nm 0.46 0.35

Reflectance
Wavelength

Dry 
Concrete 

Wet 
Concrete

Corrosion 
Products

510 nm 0.37 0.28 0.39
890 nm 0.33 0.29 0.59



Three-span Pedestrian Bridge
• Visual Inspection on Top Deck Surface

Cracks observed
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Three-span Pedestrian Bridge
• Visual Inspection on

Mid-span of the Bridge 
with Severe Deterioration

 Side view


Concrete delamination

Steel bar corrosion

Bottom-up view



Three-span Pedestrian Bridge
• Bridge Deck Markup for Nondestructive Tests



Preliminary Tests of the Bridge
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Experimental Plan
• Influence of Key Operation Parameters

Determine the pixel sizes corresponding to 
various measurement distances and the optimal 
exposure time and frame rate.

Evaluate the detection precision and sensitivity 
using standard samples with known material 
composition and grain sizes.

Compare reflectance spectra from various 
samples to understand the influence of the 
parameters under investigation. 



Experimental Plan
• 1st Set of Tests

Small plain concrete slabs with various water-
to-cement ratios of 0.4, 0.5, and 0.6 will be cast 
and cured for 28 days, and subjected to 
carbonation for various exposure periods (thus 
carbonation depths). 

Hyperspectral image will be taken, and the 
depth of carbonation will be determined by 
phenolphthalein.

The surface reflectance spectra at each pixel of 
an image will be related to the extent of 
carbonation. 



Experimental Plan
• Concrete Degradation due to Carbonation

Normal concrete contains 25% of calcium 
hydroxide (Ca(OH)2), while carbonated concrete 
generates calcium dioxide (CaCO3). 

Absorption peak around 1450 nm in normal 
concrete is hardly seen in degraded concrete.

Concrete
degraded 
by CO2

Normal 
concrete

Arita, Jun, et al. "Assessment of concrete degradation with hyperspectral remote sensing." 
22nd Asian Conference on Remote Sensing, Vol. 5. 2001.



Experimental Plan
• Concrete Ingredients

Processed with different algorithms at various 
curing ages (0,1, 3, 5, 7, 14, and 28 days):
 1: 460 nm-iron oxide; 2: 1400 nm – hygroscopic water
 3: 1780 nm – hardener; 4: 1930 nm – liquid water
 5: 2225 nm – clay; 6: 2309 nm – calcium
 7: 2395 nm – hardener 



Experimental Plan
• 2nd Set of Tests

Steel reinforcing bars embedded in slab 
specimens will be impressed with electrical 
current to attain various levels of corrosion. 

The reflectance spectra will be obtained during 
the whole accelerated corrosion tests.

The reflectance spectra obtained on the surface 
of the slabs will be related to the degree of steel 
corrosion (chemical change on the surface of 
the specimens). 



Experimental Plan
• Main spatial and spectral features will be 

extracted from the obtained images. The 
imagery will be divided into a large training 
set and a small validation set.

• Hyperspectral imaging classification 
models will be built based on the training 
set and verified by the validation set.



Concluding Remarks
• Hyperspectral imaging obtains a reflectance 

spectrum of each pixel to characterize physical 
defects or chemical features of structural 
degradation.

• Preliminary tests indicated different 
characteristic wavelengths at location of 
wet/dry concrete, corrosion rust, and crack.

• The characteristic features can be mapped 
over the entire area of an image to understand 
the degradation extent of specimens.

• Classification models can be built to predict 
the degree of concrete degradation.



Acknowledgement
• Financial support for this INSPIRE UTC project is 

provided by the U.S. Department of Transportation, 
Office of the Assistant Secretary for Research and 
Technology (USDOT/OST-R) under Grant No. 
69A3551747126 through INSPIRE University 
Transportation Center (http://inspire-utc.mst.edu) 
at Missouri University of Science and Technology. 
The views, opinions, findings and conclusions 
reflected in this publication are solely those of the 
authors and do not represent the official policy or 
position of the USDOT/OST-R, or any State or other 
entity.


