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ABSTRACT 

 

The applications of Li-ion batteries require higher energy and power densities, 

improved safety, and sophisticated battery management systems. To satisfy these 

demands, as battery performances depend on the network of constituent materials, it is 

necessary to optimize the electrode structure. Simultaneously, the states of the battery 

have to be accurately estimated and controlled to maintain a durable condition of the 

battery system. For those purposes, this research focused on the innovation of 3D 

electrode via additive manufacturing, and the development of fast and accurate physical 

based models to predict the battery status for control purposes. Paper I proposed a novel 

3D structure electrode, which exhibits both high areal and specific capacity, overcoming 

the trade-off between the two of the conventional batteries. Paper II proposed a macro-

micro-controlled Li-ion 3D battery electrode. The battery structure is controlled by 

electric fields at the particle level to increase the aspect ratio and then improve battery 

performance. Paper III introduced a 3D model to simulate the electrode structure. The 

effect of electrode thickness and solid phase volume fraction were systematically studied. 

Paper IV proposed a low-order battery model that incorporates stress-enhanced diffusion 

and electrolyte physic into a Single Particle model that addresses the challenges of 

battery modeling for BMS: accuracy and computational efficiency. Paper V proposed a 

single particle-based degradation model by including Solid Electrolyte Interface (SEI) 

layer formation coupled with crack propagation. Paper VI introduced a single-particle-

based degradation model by considering the dissolution of active materials and the Li-ion 

loss due to SEI layer formation with crack propagation for LiMn2O4/Graphite battery.  
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SECTION 

    

1. INTRODUCTION 

       

Li-ion battery is an energy storage device that operates by converting the 

chemical energy into electrical energy. The typical battery includes two electrodes, a 

separator, and the electrolyte. For the electrode, it has a positive side, i.e. cathode, and a 

negative side, i.e. anode. The electrode normally contains active materials, binders, and 

conductive materials. The cathode active material typically is one type or mixed materials 

of Lithium Cobalt Oxide (LiCoO2), Lithium Iron Phosphate (LiFePO4), Lithium 

Manganese Oxide (LiMn2O4), or Lithium Nickel Manganese Cobalt Oxide 

(LiNiMnCoO2/NMC) on an aluminum current collector. The anode active material 

commonly uses graphite materials on a copper current collector as a full-cell or lithium 

metal as a half-cell. The binder typically uses a polyvinylidene fluoride (PVDF) or a 

copolymer polyvinylidene fluoride–hexafluroropropylene (PVDF-HFP) to hold the 

battery structure. A conductive material is also needed, typically a high-surface-area 

carbon black, to increase the conductive of electrodes. The two electrodes are isolated by 

the microporous separator film immersed with the electrolyte. The electrolyte can be 

categorized into three types: liquid electrolytes, gel-polymer electrolytes, and ceramic 

(i.e. solid-state) electrolytes. Liquid electrolytes are the solutions of a lithium salt in 

organic solvents and the electrolyte is mostly absorbed into the electrodes and separator; 

gel-polymer electrolytes are typically films of PVDF-HFP and a lithium salt; ceramic 

electrolytes refer to inorganic, solid-state materials that are ionically conductive. 
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The battery is operated by reversible Li-ion exchange in an intercalation process, 

a reaction where Li-ions are reversibly removed or inserted into the active material 

without a significant structural change to the host. For example, during discharging, Li-

ions inside the anode active material diffuse to the particle surface of the active material 

where they transfer from the solid-phase to electrolyte-phase. They then travel inside the 

electrolyte based on the mechanism of diffusion and migration to the cathode particles 

and insert inside the cathode active material. Meanwhile, electrons released in the anode 

travel through the external circuit to generate a flow of current, and vice versa during 

charging. 

The Li-ion battery market has grown over $30 billion in two decades since 1999, 

and it has rapidly become the standard power source in the markets and is applied to an 

increasing range of applications, such as personal electric devices, electric vehicles, 

drones, and satellites. The widespread use of Li-ion batteries is due to the high specific 

energy (Wh/kg) and energy density (Wh/L), long cycle life, a broad temperature range of 

operation, and cost-effectiveness with flexible shape design.  In the next decade, a higher 

energy and power density is still required for those applications. On the other hand, the 

Li-ion battery will degrade during cycling and may be damaged during over-

discharge/charge or over-temperature conditions, which requires a management system to 

detect the battery status and avoid such damages. 

In order to further improve the battery performance, besides developing new 

materials, it is necessary to enhance battery performance via optimizing battery electrode 

structures because they significantly affect the transport of species and their reactions. 

Paper I developed a novel hybrid 3D structure electrode via extrusion-based additive 
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manufacturing, which exhibits both high areal and specific capacity, thus overcoming the 

trade-off between the two of the conventional laminated batteries. In addition, 

conventional battery paste components were used optimally to fit the additive 

manufacturing process, which eliminates the need for the complicated solvent preparation 

process required for typical additive manufacturing processes in battery applications. 

Using a CR2032 coin cell, the general assembly problem that occurs at the 3D structured 

electrodes was solved, which means that the proposed hybrid 3D structure can be easily 

added to the existing lamination structure. Paper II further developed a micro-controlled 

Li-ion 3D battery electrode based on the hybrid 3D structure. The 3D structure can be 

further controlled by applied electric fields at the particle level to increase the aspect ratio 

and improve battery performance. The effect of the applied electric field on electrode 

particles was studied based on the increase of porosity and surface area, and the battery 

performance with and without well-controlled 3D structure were also compared. 

Electrochemical tests show that the new electrodes exhibit superior performances, which 

is due to a high aspect ratio 3D structure and ordered particle structures. In Paper III, a 

three-dimensional simulation framework was developed for 3D Li-ion battery structures. 

The model coupled the porous theory for electrolyte potential with the solid phase 

potential based on a 4th order approximation equation for the solid phase concentration. 

This model can be applied to an arbitrary structure, and provide a guideline for the design 

of 3D electrode structures and can assist in the optimization of 3D structures for energy 

storage systems. 

As the usage of Li-ion battery becomes more pervasive, increased concerns about 

their safety have become more critical. Consequently, a Battery Management System 
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(BMS) is used to optimize storage capacity and balance the various systems to satisfy 

functional requirements and prevent catastrophic failures. To achieve these goals through 

a BMS, identification of the battery status is extremely important. Therefore, advanced 

sensing and monitoring technologies are required to accurately predict the state of the 

battery and track the physical parameters. Paper IV developed a low-order battery model 

that incorporates stress-enhanced diffusion and electrolyte physics into a modified Single 

Particle (SP) model that addresses two important challenges of battery modeling for 

BMS: accuracy and computational efficiency. The developed model improves accuracy 

by including the potential drop in the electrolyte based on the predicted Li-ion 

concentration profile along the entire electrode thickness, and by including the enhanced 

diffusivity due to diffusion-induced stress. Incorporating analytical solutions into a 

conventional SP model eliminates the need to sacrifice calculation efficiency. The 

voltage prediction by the proposed model is more accurate than the conventional SP 

model. Compared to complex physics-based battery models, the proposed model 

significantly improves the computational efficiency of various discharge scenarios, 

including constant current, the Dynamic Stress Test, and the Highway Fuel Economy 

Test. Integrating mechanical responses into the single particle model not only increases 

model accuracy, but also makes it applicable to develop models for next-generation high 

energy density batteries.  

Accurately and quickly predicting the State of Health (SOH) of a Li-ion battery is 

another important function in a BMS. Battery performance declines over time due to 

irreversible physical and chemical changes that naturally occur until the battery can no 

longer be used. Battery SOH is a measure of the state of a battery’s condition compared 
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to its initial condition, which is represented by the capacity of the battery after certain 

charge-discharge cycles. For instance, when the battery capacity in electric vehicles 

reaches 80% of its initial capacity, the battery is no longer considered usable. Therefore, 

SOH estimation is an essential component of a BMS for a variety of energy storage 

systems. Paper V developed a single particle-based degradation model by including Solid 

Electrolyte Interface (SEI) layer formation, coupled with crack propagation due to the 

stress generated inside the particles of the active materials. This low-order model quickly 

predicts capacity fade and voltage profile changes as a function of cycle number and 

temperature with considerable accuracy, allowing for the use of on-line estimation 

techniques. Li-ion loss due to SEI layer formation, increase in battery resistance, and 

changes in the electrodes’ open circuit potential operating windows are examined to 

account for capacity fade and power loss. Despite its low-order implementation, the 

model proposed in this paper provides quantitative information regarding SEI layer 

formation and crack propagation, as well as the resulting battery capacity fade and power 

dissipation. In the Paper VI, an SP model for a LiMn2O4/Graphite battery was developed 

by including the key degradation mechanisms: (1) Mn dissolution in the cathode and (2) 

Li-ion loss due to SEI layer formation in the anode coupled with mechanical degradation 

mechanism. The model proposed in this paper provides quantitative information 

regarding Mn dissolution and Li-ion loss as well as the resulting battery capacity fade. 
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PAPER 

     

 

I. A HYBRID THREE-DIMENSIONALLY STRUCTURED ELECTRODE FOR 
LITHIUM-ION BATTERIES VIA 3D PRINTING 

    
 
 

ABSTRACT 

      

 New hybrid 3D structure electrodes with a high aspect ratio are fabricated 

through extrusion-based additive manufacturing to achieve high mass loading. This new 

3D printed battery exhibits both high areal and specific capacity, thus overcoming the 

trade-off between the two of the conventional laminated batteries. This excellent battery 

performance is achieved by introducing a hybrid 3D structure that utilizes the benefits of 

the existing laminated structure and three-dimensional interdigitated structure. In 

addition, conventional battery paste components are used optimally to fit the additive 

manufacturing process, which eliminates the need for a complicated solvent preparation 

process required for a typical additive manufacturing process for battery applications. 

Using the CR2032 coin cell, the general assembly problem that occurs at the 3D 

structured electrodes is solved, which means that the proposed hybrid 3D structure can 

easily be added to the existing lamination structure. This innovative design and 

fabrication process demonstrates the high areal energy and power density, which is a 

critical requirement for energy storage systems in transportation and stationary 

applications. 
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1. INTRODUCTION 

    

Despite remarkable advancements in Lithium Ion Batteries (LIBs), during the past 

several decades, a higher energy and power density is still required for portable devices, 

transportation, and stationary applications.[1-3] In order to satisfy these demands, besides 

developing new materials, it is necessary to enhance battery performance via optimizing 

battery electrode structures because they significantly affect the transport of species and 

their reactions.[4,5] In general, gravimetric capacity (mAh˖g-1) is one of the most utilized 

metrics in LIB studies as it describes the capacity that a material can deliver. However, in 

practice, the actual amount of materials in an electrode determines the energy and power 

of a LIB. Accordingly, high mass loading is another important requirement for various 

applications. One simple strategy for achieving high mass loading is the addition of more 

materials, which means increasing the thickness of electrodes. Unfortunately, this 

approach limits the transport of ions and electrons, resulting in poor power performance 

and bad utilization of materials.[4] A better option is to make electrodes smartly, so that a 

more facile transport of the species will be possible.[6,7] Conventional modern batteries, 

which are based on laminated composite electrodes, are fabricated via a paste casting 

process that involves mixing the constituent materials and coating them onto a current 

collector. In a composite electrode structure, the electrode thickness, porosity, and mass 

loading are the key factors for increasing areal capacity (mAh˖cm-2) and maximizing 

usage of materials. After a certain thickness, however, the electrode shows poor power 

performance.[4]  
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Three-dimensional (3D) batteries have been considered to be a new solution for 

improving battery performance.[3,6,7] Battery electrodes with 3D nanoarchitectures have 

been successfully synthesized for almost two decades.[8-16] Some of the nano-

manufacturing methods (e.g., lithography tools) are expensive and time-consuming. 

However, additive manufacturing has several advantages, as compared to other 

manufacturing tools; because it can provide an inexpensive and flexible manufacturing 

process that includes more complex geometry designs and a wider selection of 

materials.[17,18] Therefore, the additive manufacturing technique appears to be a very 

promising method for fabricating 3D battery structures.[7, 19-22] However, the 

preparation of the proper composition and rheology of paste is demanding because of 

several requirements, including preventing clogging of the nozzles, promoting a bond 

between each filament, and keeping the controlled feature geometry after deposition.[23-

25] For LIB applications, in particular, the use of paste chemical components is a critical 

factor in battery performance, since more binders inside the paste would decrease ionic 

and electronic conductivity. In this respect, conventional tape casting pastes have the 

advantage that they do not mix unnecessary components in pastes, which has been 

commercially used for LIB fabrication for decades. 

Currently, 3D structures are being thoroughly studied for LIB applications, but 

most of these studies are focused on microbatteries.[7, 19-22] Further, a strategy of 

adopting the advantages of the conventional laminated structure and the 3D digital 

structure has not been considered. In this paper, a novel hybrid 3D structured electrode 

was developed to overcome the limitations of conventional laminated composite 

electrodes via an extrusion-based additive manufacturing technique. The principal goal of 
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this work was to utilize the out-of-plane dimension of the 3D structured electrode, so that 

power and energy density could be further enhanced with short ion transport distances 

and an increased surface area as compared to the conventional laminated structure. The 

rheology of the conventional tape casting paste with different solids loadings (SL) was 

tested for the reliability of printing onto a controlled hybrid 3D feature of an electrode, 

without adding unnecessary chemical components. 

 

2. MATERIALS AND METHODS 

 

2.1. MATERIALS AND PASTE PREPARATION 

In this work, a LiMn2O4 (LMO) paste was used to fabricate a hybrid 3D structure 

electrode. Two different solids loading pastes were prepared by first mixing 85.5 wt% 

LMO powder  (MTI, 13 μm) with 6.5 wt% carbon black (CB, Alfa Aesar) and 8 wt% 

Polyvinylidene fluoride (PvdF, Sigma-Aldrich), and that was then dispersed in N-Methyl-

2-pyrrolidone solvent (NMP, Sigma-Aldrich) for 30% SL and 15% SL paste, 

respectively. The paste was mixed with a SpeedMixer (FlackTeck Inc) at 2000 RMP for 

20 minutes at room temperature. The paste rheology was measured by a viscometer 

(Brookfield model HB) equipped with a CAP-52Z cone spindle at 25 oC. The viscosity 

(η) was recorded as a function of RMP (0.5-5) which corresponded to the shear rate (10-

1000 s-1) logarithmically, and the shear stress was calculated based on measured viscosity 

and shear rate.  
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2.2. ELECTRODE FABRICATION AND CELL ASSEMBLY AND TEST 

An Extrusion Freeform Fabrication (EFF) system was used (Figure 1) to deposit 

the paste in a 3D structure. An aluminum foil piece (5 cm × 5 cm) was fixed on a 

substrate heated to 120 oC prior to printing, which was used as a current collector after 

assembly. The deposition system was a home-built extrusion-based additive 

manufacturing system, which consisted of a motion subsystem, a real-time control 

subsystem, and extrusion devices, which were controlled by Labview 2012 software. The 

system contained three linear axes, Daedal 404 XR (Parker Hannifin, Rohnert Park, CA) 

driven by three stepper motors (Empire Magnetics, Rohnert Park,CA) and was able to 

print up to three different materials. In this research, a single extruder was used to extrude 

the LMO paste.  

 

 

Figure 1. Extrusion Freeform Fabrication machine overview. 
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Figure 2. (a) Microscope image of printed hybrid 3D structure and (b) demonstration of 
hybrid 3D structure. 

 

The paste was loaded into a 50 cc plastic syringe (EXELint) with a 200 μm nozzle 

(EFD Inc), and extruded with 100 N extrusion force onto a substrate that moved along the 

XY-axes. The hybrid 3D structure consisted of two parts: a base part and a digital 

structure part (Figure 2). 

 First, a base layer was printed to cover the current collector as a conventional 

laminated structure and the thickness of this base layer was optimized to yield the highest 

specific capacity (without 3D structure). Next, a digital structure, with a different number 

of layers, was printed on the top of the base layer to increase the specific surface area. All 

the fabricated structures were examined via scanning electron microscopy (SEM, Hitachi 

S4700). 

A CR2032 coin cell (Wellcos Corp) was used to assemble a battery (Figure 3) in 

an argon-filled glove box (Mbraun). LMO was used as a cathode, Li foil as an anode, and 

commercial PP/PE/PP membrane (Celgard) as a separator; the battery was filled with 

liquid electrolyte 1M LiFP6 EC:DMC 1:1 (Sigma-Aldrich). 

 

(a)                                                               (b) 
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Figure 3. A CR2032 coin cell assembly with hybrid 3D structure cathode, lithium foil, 
separator, and electrolyte. 

 

The electrochemical behavior of the assembled batteries was measured from 3 V 

to 4.2 V by using a battery testing station (IVIUMnSTAT, Ivium Tech). The specific 

capacity and areal capacity were measured under a 0.1 C-rate, and then the cycling 

performances were conducted with 0.1C, 0.2C, 0.5C, and 1C per three cycles. Battery 

impedance was also measured via an electrochemical impedance spectroscopy (EIS) at 

3.5 V open circle voltage.  

 

3. RESULTS AND DISCUSSION 

 

3.1. PASTE CHARACTERISTICS 

For additive manufacturing process, the paste properties, such as viscosity and 

shear stress, are important for obtaining a controlled shape after deposition. In contrast, 

the conventional tape casting pastes do not require high viscosity to free-stand after 

casting.[9-13]. To find the optimal paste for the processing, two batches of paste with 

15% and 30% SL were first investigated for conventional tape casting process and EFF 

process. The rheology test results (Figure 4) indicated that both of the pastes exhibited a 
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shear-thinning behavior, which guaranteed that they could be extruded and controlled by 

the extrusion process. Also, the viscosity (101 ~ 103 Pa.s) and standoff shear stress (1.3 × 

105 Pa) of the 30% SL paste were approximately 10 times larger than the viscosity (100 ~ 

102 Pa.s) and the standoff shear stress (2 × 104 Pa) of the 15% SL paste. Therefore, the 

30% SL paste was able to provide greater strength for the printed filaments without any 

collapse. Though it will be discussed in detail in Section 3.3.1, 30% SL was chosen for 

the additive manufacturing process in this work because SL itself has less impact on 

battery performance. 

 

 

Figure 4. Paste viscosity and shear stress as a function of shear rate. 
 

3.2. ELECTRODE STRUCTURES 

After printing, the size of the printed cathode had a foot area of 10 × 10 mm2. The 

thickness of the printed cathode and the width of the 3D structures were measured to 

investigate the possibility of collapse of the deposited layer (Figure 5a). The height of 
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one layer was approximately 190 μm and the width of two combined nearby filaments 

was 600 μm. As the layer numbers increases, the height increases linearly, but the width 

remains almost constant. Then, after drying, the microstructures of the hybrid 3D 

structure and the conventional structure were studied using SEM. All the structures in 

Figures 5b-f, including the hybrid structure (b), the laminated structure (c), the enlarged 

base layer (d) and the enlarged digital layer (e), and the enlarged laminated structure, 

show that the spinel LMO particles are uniformly mixed with the carbon black and the 

PvdF. This clearly shows that there is no significant difference in the particle-level 

structure inside the cells from the two different fabrication methods. 

 

3.3. ELECTROCHEMICAL PERFORMANCE 

3.3.1. Battery Capacities. First, to study the effect of SL on battery performance, 

and to find the optimal thickness of the base layer, only the conventional laminated 

structures were cast with 15% SL paste and 30% SL paste with different thickness from 

~100 μm to ~400 μm. As shown in Figure 6, the battery performance of both electrodes 

generally exhibited similar behavior: (1) the specific capacity decreased after its 

maximum value (110 ± 5 mAh˖g-1) at 160 μm, and (2) the areal capacity continued to 

increase to the maximum value (3.5 ± 0.08 mAh˖cm-2) at 370 μm. This indicated that the 

SL of the paste did not significantly affect battery performance. Thus, a 30% SL solution 

was used for the hybrid 3D structures because the 30% SL paste significantly increased 

standoff stress, which, as discussed in the rheology results, provided sufficient strength to 

maintain the controlled shape after deposition. 
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Figure 5. (a) Height and width of the printed filaments as a function of layer numbers, (b-
f): SEM image of (b) the hybrid 3D structure, (c) the laminated structure, (d) the 3D 

printed base layer (zoomed-in), (e) the 3D printed digital structure (zoomed-in), and (f) 
the laminated structure (zoomed-in). 

 
 

(c)  

 

(d)  

 

(e)  

 

(a)  

 

(b)  

 

(f)  
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Figure 6. Comparison of specific capacity and areal capacity as a function of cathode 
thickness for conventional laminated structure with different solid loading. 

 

 Next, as shown in Figures. 7, the conventional laminated structure and the hybrid 

3D structure were compared by specific capacity, areal capacity, and volume capacity. In 

the case of specific capacity (Figure 7a), the conventional laminated structure (LS) 

exhibited a maximum value (110 ± 5 mAh˖g-1) at 160 μm, and then decreased as the 

thickness increased further. 

 However, the hybrid 3D structure (HS) showed a higher value (117 ± 6 mAh˖g-1) 

than that of LS, even though it is much thicker (370 μm vs. 160 μm). As the case of LS, 

the specific capacity of HS was decreased from its maximum value as the thickness of 

electrode increased, which was attributed to the transport delay in the transportation of li-

ions, in particular, the particles near the current collector are not effectively utilized at 

higher thickness.  

On the other hand, as the thickness increased, the areal capacity of the LS 

continuously increased up to the maximum value (3.5 ± 0.08 mAh˖cm-2 at 370 μm), 
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which is much smaller than the maximum of HS, 4.5 ± 0.3 mAh˖cm-2 at 270 μm as shown 

in Figure 7b.  

In Figure 7a and 7b, an asterisk indicates the value of the printed base layer ((190 

μm thickness). Its specific capacity is the range of values similar to the LS, but its areal 

capacity is higher than value of the LS at the same thickness. The printed base of 190 μm 

showed an areal capacity similar to that of 270 μm LS. 

For very thick (490 μm), the areal capacity of the HS is almost the same as for the 

maximum value, while the LS value continues to increase with thickness. This is the 

result of competition between the increased mass loading and reduced specific capacity 

as the thickness increases. 

 As shown in Figure 7c, the volumetric capacities decreases as the electrode 

thickness increases after reaching the maximum value, similar to the case of specific 

capacity (Figure 7a). The HS has a maximum volume capacity (180 mAh˖cm-3) of up to 

80% greater than the conventional structure (100 mAh˖cm-3) in the thickness (270 μm) 

providing the maximum value in both cases.  

In conclusion, first, the specific capacities of both HS and conventional LS are 

within a reasonable range of the specific capacities of LMO material (90-120 mAh˖g-1) 

[8, 26], and the areal capacities and volumetric capacities of the LS are similar to those of 

LMO half-cells [27, 28]. Also, as the electrode thickness increases, the areal capacities 

and volumetric capacities increase. By contrast, the areal capacity of HS is much higher 

than the values in literature. This means the new hybrid 3D structure (HS) can achieve 

high areal capacity without compromising specific capacity. 
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Figure 7. Comparison of conventional laminated structure and printed hybrid 3D 
structure as a function of cathode thickness (a) Specific capacity, (b) areal capacity, and 

(c) Volumetric capacity. 
 

3.3.2. Voltage Profile and Cycling Performance. Figure 8 shows the first and 

second voltage profile during charge/discharge of the two best cells out of conventional 

laminated structure (LS) and 3D hybrid structures (HS) of different thickness, as 

discussed in Section 3.3.1. Those thickness are 160 μm and 270 μm for LS and HS, 

respectively. As shown in 8a, the specific capacity of HS in this cell is higher than that of 

LS in the first cycle, but similar in the second.  However, as shown in 8b, the HS shows a 

(a)   

 

(b)   

 

(c)   
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much higher areal capacity even in the second cycle, which is consistent with the 

conclusion of the previous section.  

In order to study their cycle performance, each cell was cycled 3 times with 0.1C, 

0.2C, 0.5C, and 1C, and then finally 8 cycles further with 0.1C again as shown in Figure 

9a. Except for the first three cycles of HS, all have stable performance with a slight 

decrease in capacity. As expected, capacity is reduced at high C-rates due to a high ohmic 

resistance. However, the HS still shows higher areal capacity than the LS even at high C-

rates. For instance, it shows about 1.5 times the areal capacity at the HS (0.83 mAh˖cm-2) 

than at the LS (0.59 mAh˖cm-2) at 1C. After returning to the low 0.1C, both cells show 

stable performance, while still the HS (3.38 mAh˖cm-2) shows 2.6 times the specific 

capacity of the LS (1.30 mAh˖cm-2). Compared with the last value of the first 0.1C cycle 

group, the HS showed about a 6.9% capacity decrease during the second 0.1C cycle 

group, which is a reflection of cumulative deterioration caused by side reactions such as 

Mn dissolution; this is slightly higher than the fading in the LS (4.9%), which may be 

related to higher surface area. Thereafter, the HS exhibits the similar capacity fade rate to 

the LS, which is 0.5% fade per cycle.  

A higher surface areas can lead to more side reactions, such as more interface 

layer formation [29] or dissolution of active materials [30]. That is why we observed a 

larger capacity fade in the first three cycles of the HS compared to the LS. However, a 

high surface area does not necessarily mean a higher capacity fade rate for two reasons: 

(1) protective layers are formed to slow the side reactions after initial formation, even if it 

is not completely stable until the of its life; (2) the benefit of a short diffusion path and 

facile diffusion of the 3D structure can reduce ion accumulation inside active materials, 
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and correspondingly reduced stress level, which causes less mechanical failures, such as 

cracks, that directly accelerate chemical side resections due to the increase interface. As 

an evidence, we observed fast capacity reduction for the first three cycles in the 3D 

structures, but after 12 cycles, they show a fade rate of 0.5% per cycle, similar to the 

conventional laminated structures. The coulombic efficiency of both HS and LS is 

stabilized after a small drop between different C-rates and shows similar values as shown 

in Figure 9b. 

 

Figure 8. 1st (solid line) and 2nd (dash line) cycles (a) specific charge/discharge capacity 
and (b) areal charge/discharge capacity. 

 

Figure 9. (a) Cycling performance with 0.1C, 0.2C, 0.5C, 1C and 0.1C of 30% SL 
conventional structure (160 μm) and printed hybrid 3D structure (270 μm), and (b) 

coulombic efficiency. 
 

(a)   (b)   

(a)   (b)   
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3.3.3. Power and Energy Density. In Figure 10, the areal energy and power 

densities of conventional laminated structures with/without optimized thickness, printed 

hybrid 3D structures, and other recently reported reference values for 3D structured LIBs 

are plotted.[8,10,14,21,31-39] As marked with a green square (Figure 10), the energy 

density and power density of our conventional laminated structure increased as the 

electrode thickness increased, and the optimal thickness showed a power density similar 

to that of the cell, which was a half cell with a synthesized LMO nanotube cathode.[8] 

The hybrid 3D structure LMO batteries, printed on the base layer, showed a 64.6 J˖cm-2 

energy density with a 2.3 mW˖cm-2 power density. These values are quite outstanding in 

the aspect of both energy and power density, as compared to other materials systems. In 

particular, this is very promising when we consider that the theoretical capacity of our 

LMO is not high enough, as compared to the materials in references LiCoO2,[10,37,38] 

NiSn-LiMn2O4,[39] and LiFePO4 [21]. 

 

 

Figure 10. Comparison of the energy and power densities of our conventional laminated 
structure and a printed hybrid 3D structure, with reference data. 
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3.3.4. Impedance Analysis. In order to further study the electrochemical behavior 

of the printed hybrid 3D structure, an electrochemical impedance spectroscopy test was 

conducted with an optimized conventional structure and a printed hybrid 3D structure.  

 
 

 

Figure 11. Comparison of impedance with the conventional laminated structure and 
printed hybrid 3D structure. 

 

The Nyquist plots for the two samples were plotted (Figure 11). The original data 

were fitted by a circuit diagram model of R(CR)(CRW)W.[40] The high-frequency 

intercept at the Z′ axis corresponded to the ohmic resistance, Re, which represented the 

resistance of the electrolyte, and the semicircle in the middle-frequency range indicated 

the charge transfer resistance, Rct.[41] The Warburg impedance, Zw, related to a 

combined effect of the diffusion of li-ions on the electrode/electrolyte interfaces, which 

corresponded to the straight sloping line at the low-frequency end.[42]  It can be seen that 

both cells had a similar (8 Ω) ohmic resistance, but the semicircle of the printed hybrid 

3D structure was smaller than that of the conventional laminated structure. From the 

fitted impedance parameters, the charge transfer resistance, Rct, of the printed hybrid 3D 

structure (Rct ≈ 19.6 Ω) was smaller than that of the conventional laminated structure 
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(Rct ≈ 62.6 Ω), indicating that inserting and de-inserting li-ions for the printed hybrid 3D 

structure were easier than for the conventional laminated structure.[42—44] This means 

that the hybrid 3D structured electrode greatly enhanced the transport of li-ions. 

 

4. CONCLUSIONS 

 

In this study, a novel hybrid 3D structure electrode is, for the first time, proposed 

that can achieve high battery performance, such as high areal energy and power density. 

The proposed structure utilizes the advantages of digital structure (i.e. high aspect ratio) 

to break through the limitation posed by the conventional laminated structure, which can 

be applied to large scale battery formats. An extrusion-based additive manufacturing 

method is used to fabricate this hybrid 3D structure by using the conventional solution, 

which resolves the typical challenges in preparing solutions for the extrusion process. 

The results indicate that significantly enhanced areal energy and power densities can be 

achieved with the hybrid 3D structure. The hybrid 3D structure LiMn2O4 battery shows 

superior performances (117.0 mAh˖g-1 and 4.5 mAh˖cm-2), in terms of specific capacity 

and areal capacity. More importantly, compared to the conventional structure, the hybrid 

3D structure was more efficient and had much higher li-ions utilization, which presents a 

new possibility for preparing an electrode with excellent electrochemical performance 

(64.6 J˖cm-2 energy density with 2.3 mW˖cm-2 power density). This work resolved 

fabrication, solution preparation, and assembly issues for a scaled up 3D battery via the 

extrusion-based additive manufacturing method. It demonstrated that the proposed 3D 

structures provide a high specific surface area and quick responses, which are the key 
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challenges in the area of materials science involving two interfaces (e.g., solid and liquid) 

and their kinetic reactions. The results can be further applied to other areas related to 

reactions at interfaces, including other energy storage systems, energy conversion 

systems, and sensors. 
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II. MACRO-/MICRO-CONTROLLED LITHIUM-ION 3D BATTERY VIA 3D 
PRINTING AND ELECTRIC FIELD 

 
 

ABSTRACT 

 

This paper presents a new concept for making battery electrodes that can 

simultaneously control macro-/micro-structures and help address current energy storage 

technology gaps and future energy storage requirements. Modern batteries are fabricated 

in the form of laminated structures that are composed of randomly mixed constituent 

materials. This randomness in conventional methods can provide a possibility of 

developing new breakthrough processing techniques to build well-organized structures 

that can improve battery performance. In the proposed processing, an electric field (EF) 

controls the microstructures of manganese-based electrodes, while additive 

manufacturing controls macro-3D structures and the integration of both scales. The 

synergistic control of micro-/macro-structures is a novel concept in energy material 

processing that has considerable potential for providing unprecedented control of 

electrode structures, thereby enhancing performance. Electrochemical tests have shown 

that these new electrodes exhibit superior performance in their specific capacity, areal 

capacity, and life cycle. 

 

1. INTRODUCTION 

 

Although remarkable advances have been made in lithium ion batteries (LIBs) 

during the past several decades, higher energy and power densities are still required for 
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portable devices, transportation, and stationary applications. [1-3] Even though 

gravimetric capacity is one of the most utilized metrics in measuring LIB performance, 

the amount of materials in an electrode actually determines the energy and power of the 

LIB. Thus, the requirement for a high tap density is of considerable importance for 

various applications. The conventional strategy towards a high tap density is to add more 

material to a higher packing density. While an increase in the volume fraction of an 

active material improves the transport of lithium ions and electrons on the solid phase, it 

impedes the transport of lithium ions in an electrolyte. For this reason, increasing packing 

density is not always desirable. An alternative strategy would be to add more materials by 

increasing the thickness of the electrodes. This approach, however, limits the transport of 

ions and electrons, resulting in poor power performance and inefficient utilization of 

materials. The goal of this paper is to present a means for circumventing these challenges 

to conventional structures through a new concept for electrode structures, based on 

macro-micro-controlled three-dimensional (3D) electrodes that can facilitate the transport 

of the species. An optimized 3D structure permits a facile transport of ions, via a short 

diffusion path with an enhanced electrochemical reaction, through a higher interface area. 

(Figure. S1). For this reason, 3D structured electrodes are considered to have a huge 

potential for improving battery performance. [3-7]  

Recently, an extrusion-based additive manufacturing process has been proved to 

provide many advantages compared to other additive manufacturing technologies, such 

as aerosol jet and ink jet printing. Not only is it inexpensive and flexible enough to 

fabricate more complex geometry designs, but it can be applied to a wider selection of 

materials with a high mass loading. [8, 9] In particular, the extrusion-based additive 
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manufacturing technique appears to be a very promising method for fabricating 3D 

battery electrode structures. [5, 7, 10-13] Unfortunately, the preparation of a proper 

composition of paste for the extrusion process is rather demanding because of the need to 

prevent clogging of the nozzles, promote a bond between each filament, and keep a 

controlled feature geometry after extrusion. [14-16] In addition, for LIB applications, the 

chemical components in a paste can significantly affect battery performance. For 

instance, additional binders for improving mechanical integrity would decrease ionic and 

electronic conductivity.  

Another approach that could improve battery performance is to deploy well-

organized individual particles in an electrode. Modern batteries are fabricated by casting 

randomly mixed slurries onto current collectors. These randomly distributed particles 

(active particles or additive particles) easily agglomerate to form weak spots that can 

cause a bottleneck in the electrochemical reaction. Also, particles can become an isolated 

group within the network and, consequently, this isolated group does not perform its 

essential duty, but hinders the transport of species instead.  Further, because a random 

structure may create a long path for transport, a well-organized structure will provide 

better responses and superior performance, as compared to a randomly distributed 

structure. Battery electrodes, with controlled structures at the micro/nano level (such as 

nanotubes and 3D nanostructures), have been synthesized based on a top-down approach 

that includes the use of lithography tools, but these are expensive and time-

consuming.[17-25] An opposite approach is to fabricate structures, via a bottom-up 

approach using chemical or physical reactions. In particular, utilizing an electric field 

(EF) is an effective approach because it is easily implemented and it provides a long-
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range effect of electrostatic interactions.[26-29] It has been found that an EF could 

efficiently manipulate particles in a colloidal slurry, including a “chain effect” by moving 

and rotating particles in a slurry under an external EF.  

This paper details a new innovative approach for fabricating 3D structured 

electrodes, in which three-dimensional features can be simultaneously controlled at the 

macro-micro-levels (which the conventional manufacturing process cannot do). The 

proposed process integrates the extrusion-based additive manufacturing process for 

macro-control and an EF for micro-control. This is a new unique method for 

manufacturing battery electrodes that has the potential for providing synthetic control of 

materials architectures, such as particle network, geometries, and integration. This could 

lead to transformational enhancement of key energy storage parameters that include 

capacity, energy density, and life cycle. 

 

2. RESULTS 

 

2.1. SOLIDS LOADING IMPACT 

Constituent materials should be organized to promote high conductivity, robust 

mechanical strength, a high specific area, and superior battery performance. To achieve 

these, two aspects must be simultaneously considered, including shaping the structure 

and the corresponding battery functionality. To shape target structures, via an extrusion-

based additive manufacturing process, many factors should be considered, including the 

impact of the electrode’s constituent materials, solids loading (SL) (volumetric ratio of 

solids in a solution) to prevent clogged nozzles, bonding strength between each filament, 



33 
 
and features to be retained after extrusion. These features can all be characterized by two 

key physical properties of paste, viscosity and shear stress. For battery function, a large 

amount of active material would contribute to higher capacity, together with appropriate 

amounts of a conductive material and binder. However, excessive amounts of an additive 

material could interfere with species transportation. To understand and determine the 

fundamental requirements for the slurry, first, the effect of SL on battery fabrication and 

performance were studied based on the conventional structures without any geometric 

control. Six LiMn2O4 (LMO) pastes, with different SLs, were prepared from 10% to 35% 

(in 5% increments, Table S1). Rheology test results (Figure 1a) indicated that all of the 

pastes exhibited a shear-thinning behavior, implying that they could be extruded and 

controlled by the extrusion process. The effect of SL was that the viscosity increased with 

increasing SL, and the 30% and 35% SL pastes (103 Pa.s and 105 Pa) showed two orders 

of magnitude higher in viscosity and stress than the 10% SL paste did (10 Pa.s and 103 

Pa). This high viscosity was related to the prevention of the collapse of a 3D extruded 

structure, which will be discussed later.  

To determine the relationship between the SL and mass loading (ML) (weight of 

active materials in a unit electrode foot area), conventional structures with 160 μm 

electrode thickness were examined. As shown in Figure 1b, a linear relationship was 

observed between paste SL and electrode ML. By increasing the SL from 10% to 35%, 

the ML increased 2.8 times and achieved 0.028 g/cm2. For LIB applications, in general, a 

higher ML was required to increase energy density. When the structure was too dense, 

however, the transport of lithium ions in the electrolyte was hindered, as described 

earlier. Therefore, there is an optimal SL due to the trade-off between the transport 
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properties of the solid and electrolyte phases. Figures 1c and 1d show battery cycling 

performance with different SLs. A 10% SL produced the lowest mass loading (0.01 

g/cm2) and a very low specific capacity (40 mAh/g). This poor specific capacity (from 

the 10% SL) could be caused by poor percolation of the electrode (Figure S2c), while the 

high SL paste could cast a dense electrode (Figure S2d). As evidenced, Figure S1b shows 

a high charge transfer resistance (200 Ω) of the 10% SL cast electrode, compared to other 

high SL cases. The 30% SL showed a maximum specific capacity of 98 mAh/g, while the 

35% SL showed a lower capacity of 85 mAh/g. For coulombic efficiency (Figure 1d), all 

samples exhibited good performance.  A quick change in the coulombic efficiency was 

observed when the C-rate changed, but it quickly stabilized. This was caused by a 

residual concentration gradient inside particles caused by the previous cycling. In 

summary, by considering both paste properties and battery performance, the 30% SL was 

selected for the fabrication of macro-micro controlled electrodes (to be discussed later). 

 
2.2. MACRO-CONTROLLED 3D STRUCTURE 

The proposed extrusion-based additive manufacturing process is shown in Figure 

2. Figures 2a and 2c depict the actual system and a schematic diagram, respectively, 

while Figures 2b and 2d show the electric field process (described in the next section). 

This extrusion process was used to fabricate a macro-controlled 3D structure (a hybrid 

3D structure composed of a digital structure on a conventional laminated structure). 

Figure 2e shows one example of printed 3D electrodes. A macro-controlled hybrid 3D 

structure was systematically studied in the authors’ previous work [5]. In this paper, a 

verification test was first conducted to compare the conventional and micro-macro-

controlled structures. This macro-controlled 3D structure was fabricated by adding an 
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interdigitated 3D structure on the top of a conventional laminate structure (160 μm), 

making the total electrode thickness 270 μm. The thickness of the conventional cell used 

for the comparison was also 270 μm. Then, each cell was cycled at rates of 0.1C, 0.2C, 

0.5C, 1C, and 0.1C, with five cycles per each C-rate. 

 

 

Figure 1. Solids loading (SL) impact on (a) paste rheology, (b) mass loading, (c) specific 
capacity, and (d) coulombic efficiency in a range of 10% SL to 35% SL. 

 

As shown in Figure 3, the cycling test showed that the areal capacity of the 

macro-controlled 3D structure reached 3.1 mAh/cm2, which was 1.7 times higher than 

that of the conventional structure. In addition, as expected, the capacity reduced at high 
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C-rates due to high ohmic resistance. For coulombic efficiency, in general, both 

structures had a stabilized value, but a small variation in C-rates after the initial formation 

cycle (shown in Figure 3b). During the first five cycles, in particular, the structures 

showed a lower coulombic efficiency. This was related to chemical side reactions during 

the formation cycle. For instance, like the Solid Electrolyte Interphase (SEI) layer in the 

anode, a thin film formed on the cathode particles’ surface, called Solid Permeable 

Interface, SPI layer. In general, this process consumes the active lithium ions and 

solvents and causes gas evolution that builds up pressure inside the cell, causing 

significant capacity fade. For this reason, the inside of the battery is not stable and might 

show a lower coulombic efficiency during the first few cycles. This phenomenon was 

also observed during the first few cycles in our previous experiments [5].  

 

 

Figure 2. Illustration of (a and c) additive manufacturing system, (b and d) electric field 
treatment process, and (e and f) macro-micro controlled structure. 
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Figure 3. Cycling performance of a conventional structure and macro-controlled 3D 
structure (a) areal capacity and (b) coulombic efficiency. 

 

As described earlier, maintaining a 3D structure after extrusion is critical for gaining 

the benefits of the structure. In this work, to prevent the collapse of an extended 3D 

structure, a hot plate (HP) was used as an external heating source to accelerate drying. 

Figure 4 shows cross sections of two electrodes, without (Figure 4a) and with (Figure 4b) 

an HP. As shown in Figure 4a, the 3D structure without the HP did not keep the desired 

interdigitated structure but collapsed into an uncontrolled shape. The contour plots, 

marked on the images, represented the boundaries of each electrode and clearly showed 

the differences in the final fabricated structures. To contrast them, each line was 

overlapped in those figures and, when the two electrodes were compared by ImageJ 

software, a 29% difference was measured between the contour lengths. By considering 

the same length in the plane, this meant that a 29% reduction in the outer surface area 

occurred because of the collapse. This 3D structure collapse was related to the drying 

speed of the paste. When it was naturally dried, without an HP, the collapse happened 

very slowly in the air (i.e., within approximately 6 to 10 hours), but with an HP, the 

electrodes could be partially dried and solidified within 1 minute, and dried completely 

(a) (b) 
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within 10 minutes. Thus, the use of an HP (or another type of heating source) is a good 

option for accelerating the drying process during fabrication to construct a well-

controlled 3D structure. 

 

2.3. MICRO-CONTROLLED STRUCTURE 

As described earlier, a well-ordered internal structure is another way to enhance 

battery performance. The remaining question, concerning materials processing, is how to 

fabricate an electrode with a controlled internal structure. In this work, an EF was used. 

Figures 2b and 2d show the setup used for processing by applying an EF to create 

organized nanostructures in an electrorheological fluid, composed of particles dispersed 

in a slurry. The dispersed particles tend to line up and form a chain parallel to the applied 

EF. Such behavior can be attributed to electric polarization interaction, a pairwise dipolar 

interaction between particles. Particles, with the same polarization direction, will repel 

each other if they remain on a plane that is perpendicular to the EF, but the interaction 

becomes attractive when the two particles shift and are relative to each other by one 

radius. [26-29] Figures 5a and 5b show a simple demonstration of this chaining process 

for battery materials. A slurry of LMO particles in an N-methyl-2-pyrrolidone solvent 

(NMP) was cast on a glass substrate, and then an EF was applied, along the vertical 

direction (as shown in the figure). The images were first captured by a stereo microscope 

(Amscope Inc.) while the particles were randomly distributed on a glass substrate without 

an applied EF (Figure 5a). Then, when an EF was applied, the particles moved toward the 

current collector and, finally, rearranged as “chains” (Figures 5b and S3). 
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Figure 4. Effect of a hot plate on electrode geometry: (a) without a hot plate and (b) with 
a hot plate. Each contour plot represents the boundary of the structure. For comparison, 

the contour plots are overlapped, as shown in both (a) and (b) above. 
 

 

Figure 5. Effect of an electric field on LMO powder (a) without EF and (b) with EF. 
SEM images of electrodes (c) with EF and (d) without EF, Gray level profiles (e, f) of the 

lines shown in the SEM images, Gray level distribution (g) of two samples, and Pore 
distribution after an adjustment of color threshold for the electrodes (h) with EF and (i) 

without EF. 
 

Although these results confirmed the responsive behavior of battery materials to 

an EF, the viscosity of slurry for practical battery electrodes was high. One important 
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question that needed to be answered concerned the mobility of particles in high viscosity 

slurry. To answer this question, conventional structure electrodes were fabricated with 

and without an EF. To compare these electrodes, the Brunauer–Emmett–Teller (BET) test 

was administered for surface area, Scanning Electron Microscopy (SEM) analysis was 

conducted for surface morphology, and X-Ray Diffraction (XRD) measurements were 

made for microstructure orientation. The surface area of particles in electrodes is one of 

the critical factors that determine battery performance. From the BET test, it was found 

that the surface area of the electrode under an EF was found to be about twice that of the 

electrode without EF. The measured surface areas were 3.5 m2/g and 1.7 m2/g, 

respectively. Next, to visualize the difference, SEM images with different orientations 

were taken. As shown in Figures 5c, 5d, S4, S5, it was difficult to distinguish them by 

appearance alone. For further analysis, a graphical interpretation was made by using 

ImageJ software (a common approach for porosity analysis) [30]. For this, the images 

were cropped to remove label bars, and adjusted to maximum and minimum brightness 

and contrast. To identify the pores, a threshold value of 70 gray level was selected by 

observing the sharp drop in line profiles, which represented the pore boundary (Figures 

5c, 5d, 5e, 5f). This value was confirmed with a dozen of pores and then used to measure 

the areal porosity of the whole binary images (Figure 5g). This analysis showed that the 

electrode with an EF had more porosity (8.5%) than the electrode without EF (3.9%), as 

illustrated in Figures 5h and 5i. This result was consistent with the conclusion obtained 

from the BET test.  

Another interesting piece of evidence, concerning the responsive behavior of 

battery materials to an EF, was obtained from an XRD measurement. The XRD test was 
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performed for electrodes without EF and with EF (at different applied voltages) at 

different drying times. A maximum applied voltage (10 kV) was selected that would 

avoid sparks during the process that could cause damage to the electrodes. For 

comparison, half of the maximum voltage (5 kV) was also applied. Additionally, based 

on a hypothesis that drying time will affect the microstructure, different drying times (3 h 

and 6 h) were compared. When the applied EF was turned off before the electrode was 

fully dried, a Brownian motion might break the formed structures because of the EF 

effect. Based on a rough estimation, the electrodes were partially dried in 3 hours and 

fully-dried in 6 hours. On the other hand, when an HP was used, the drying time was 1 

minute for half drying and 10 minutes for full drying. 

For XRD measurement, each sample was tested based on two forms, including a 

form of the whole electrode itself and as the powder after breaking the same electrode. 

Samples with 0 V without an HP were used as the control group. The peaks 

corresponding to the control group (shown in Figure 6a) are well matched with the 

reported values in the literature [31,32]. At a low voltage (5 kV) with a short drying time 

(3 h) and 0V with HP samples, the peaks were the same as the control sample. However, 

the peaks in <111>, <311>, and <222> were missing for long periods of time from 

electrode samples with high applied voltages. A possible reason for this was a preferred 

orientation of the particles under the applied EF. In order to confirm this, the measured 

electrodes were broken into a powder and measured by XRD again. For all samples, the 

missing peaks showed up again (Figure 6b), indicating that there was no longer any 

preferred orientation. These series of XRD measurements proved that when the applied 
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EF was too small, or the drying time was too short, the EF effect could not be expected. 

This supported the proposed reason for the missed peaks above.  

Next, four samples with conventional structures (no EF, 5 kV/3 h, 5 kV/6 h, and 

10 kV/3 h) were assembled into half-cells to examine the effect of EF on battery 

performance. As shown in Figures 6c and 6d, the electrodes with 10 kV/3 h and 5 kV/6 h 

showed higher capacities than those of the electrodes without an EF and with 5 kV/3 h. 

Hence, the samples effectively-treated by an EF (Figure 6c) showed improved results. 

For the coulombic efficiency (Figure 6d), all of the samples showed similar values of 

around 95% to100%. 

 

2.4. MACRO-MICRO CONTROLLED STRUCTURE 

As the final goal, both macrostructure (additive manufacturing process) and 

microstructure (electric field process) were controlled simultaneously. For the 

macrostructure control, a 270 μm hybrid 3D electrode, which showed the best 

performance in the previous section, was constructed. Next, an EF with 10 kV was 

applied to those hybrid electrodes. For comparison, some of the hybrid electrodes were 

not applied with an EF. Then, the cells were cycled at different C-rates (0.1C, 0.2C, 0.5C, 

1C, and 0.1C), with five cycles per each C-rate (shown in Figure 7a). All samples showed 

stable performance, along with slight decreases in capacity. As expected, the capacity 

was reduced at high C-rates due to high ohmic resistance. However, the sample with an 

EF showed greater areal capacity than the sample without an EF did, even when C-rates 

were high. For instance, the areal capacity of the sample with an EF (0.76 mAh.cm-2) was 

about 1.21 times that of the sample without EF (0.63 mAh.cm-2) at 1C. After returning to 
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the low 0.1C, both cells showed stable performances, but the one with an EF (3.38 mAh 

cm-2) showed 7% more areal capacity than the one without EF (3.18 mAh cm-2). The 

columbic efficiency of both samples (with and without EF) was stabilized after a small 

drop between different C-rates, but they showed similar values, as shown in Figure 7b. 

 

 

 

 
Figure 6. XRD results obtained from electrodes under different conditions: (a) electrode 
film samples and (b) electrode power samples, and (c) and (d) cycling performance with 

different conditions. 
 

Nyquist plots were made for both samples (Figure 7c). The original data were 

fitted with a circuit diagram model of R(CR)(CRW)W.[33] The high-frequency intercept 

at the Z′ axis corresponded to the ohmic resistance, Re (which represented the resistance 

(a) (b) 

(c) (d) 
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of the electrolyte), and the semicircle in the middle-frequency range indicated the charge 

transfer resistance, Rct.[34] The Warburg impedance, Zw, was related to a combined 

effect of the diffusion of lithium ions on the electrode/electrolyte interfaces, which 

corresponded to the straight sloping line at the low-frequency end.[35]  It can be seen that 

both cells had a similar (7 Ω) ohmic resistance, but the semicircle of the EF-processed 3D 

structure was smaller than that of the 3D structure without an EF. From the fitted 

impedance parameters, the charge transfer resistance, Rct, of the 3D printed and EF 

processed 3D structure (Rct ≈ 100 Ω), was smaller than that of the 3D printed without the 

EF (Rct ≈ 150 Ω). This indicated that the (de)intercalation process for the EF-processed 

3D structure was easier than that for the sample without the EF.[35-37] This indicated 

that the EF-processed electrode greatly enhanced the transport of lithium ions. 

The cyclic voltammetry curves with EF (Figure 7d) and without EF (Figure 7e) 

indicated that both of the samples had the same polarization values of around 3.8, 4.1, 

and 4.2 V, which was reasonable because the EF process did not affect the chemical 

properties (Figure 6b). In addition, when the two different scan rates (from 0.025 to 0.25 

mVs-1) were compared, both samples had similar shapes when the scan rate was lower 

than 0.25 mVs-1. The sample with an EF showed a more symmetrical shape at a high scan 

rate, which meant that the sample with an EF had better rate capability than the sample 

without EF did. As shown in Figure 7f, the voltage profile of four different configurations 

of the 3D printed batteries with the same thickness of 270 μm were compared; they 

included (1) no controlled structure (i.e., without HP and EF); (2) macro-controlled 

structure (i.e., without EF); (3) micro-controlled structure (i.e., without HP); and (4) 

macro-micro controlled structure (i.e., with HP and EF). 
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As discussed earlier, the process using an HP improved the external 3D structure 

morphology, while the EF process increased the particle order inside the electrode. The 

sample with an HP provided 30% more surface area than the sample without HP did and, 

similarly, the applied EF doubled the surface area of the electrode. For the battery 

responses for those cells, first, four samples showed a very similar voltage drop, 

indicating that the ohmic drop was not significantly affected by the fabrication process. 

Next, as compared to the conventional structure (1.8 mAh/cm2), the capacity increased to 

2.8 mAh/cm2 with additive manufacturing (no controlled structure). However, this 

capacity was lower than that of the macro-controlled structure with 3.1 mAh/cm2. By 

micro-controlling, the capacity increased farther to 3.3 mAh/cm2, indicating that micro-

control had more impact than macro-control did. Finally, the macro-micro controlled 

structure showed the best performance (3.5 mAh/cm2) by simultaneously utilizing the 

advantages of a 3D structure and electronically ordered particles.  

 

3. DISCUSION AND CONCLUSIONS 

 

A well-known disadvantage of the additive manufacturing process is that the 

three-dimensional printing process takes a long time to mass-produce filaments printed in 

the x-y direction, and then to print layer-by-layer in the z-direction. Thus, compared to 

slurry casting (casting any thickness at one time), the time required for printing the 

structure will increase with increased cell area, thickness, and structure resolution. 
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Figure 7. Comparisons of the performance of structures with and without EF of (a) 
cycling with 0.1C, 0.2C, 0.5C, 1C, and 0.1C; (b) coulombic efficiency; (c) impedance 

and cyclic voltammetry; (d) with EF; and (e) without EF; (f) voltage profile comparison 
of the four configurations. 

 

(b) (a) 

(c) (d) 

(e) (f) 
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For example, from our experimental setup (without applying an electric field), a 

270 μm thickness, with a 1x1 cm2 area on a laboratory scale, took 5 minutes for casting, 

while the extrusion-based printing required about 10 minutes with a 200 μm nozzle size. 

On the other hand, post-processing was more important and time-consuming from the 

point of view of the entire manufacturing processing time. Typical casting electrodes 

required a long drying time in an oven (usually overnight), at 100-130 °C. In contrast, our 

printing system that contained a heated substrate of 120 °C allowed the samples to be 

dried quickly within 10 minutes. To compare the two processes, thermogravimetric 

analysis was performed at 120 °C with a small piece of the 3D sample (50 mg) and a cast 

sample (30 mg). As shown in Figure 8, the cast sample took about 40 minutes to dry, 

while the printed sample did not lose weight during the measurement. This clearly 

demonstrated that our proposed additive manufacturing method can save more time 

during the post-processing phase than the conventional method can.  

This study proposes a novel multi-scale process to fabricate 3D structure 

electrodes via combining additive manufacturing and an electric field process. The 

influence of the processing parameters on a particle network has been clarified in order to 

improve the quality of electrode structures. The effects of solids loading on paste 

properties and battery performance were carefully studied initially. Higher SLs increased 

the paste viscosity and stress that were needed to control the macro-shape after extrusion 

via extrusion-based additive manufacturing, and to increase mass loading. Based on these 

two sets of experiments, the 30% SL paste was found to be the optimal loading with high 

viscosity (103 Pa.s) and high specific capacity (92 mAh/g). The macro-controlled 3D 

structure showed that the hybrid 3D structure could attain a high areal capacity (3.1 
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mAh/cm2) and double the areal capacity (as compared to a conventional laminated 

structure). Further, the effect of using a heating source during printing was studied. It was 

found that the heating source accelerated solidification of a printed electrode and then 

helped to retain its shape before solidification was complete. It was also observed that the 

heating source did not affect the chemical in the electrode materials, and the well-

controlled shape was able to improve battery performance (approximately 60%) by 

increasing the surface area of the electrode, as compared to the conventional structure 

(Fig. 3a).  

 

 
Figure 8. Thermal gravity tests of the 3D printed sample and conventional cast sample. 

 
 

For the microstructure aspect, the applied EF ordered the internal structure of the 

electrode through a “chain effect” that manipulated particles, so that the surface of the 

electrode increased approximately 200%. The effect of the applied EF was also 

systematically studied with different EFs and duration times. It was observed that the 

maximum EF (10 kV) with 3 hours, or a medium EF (5 kV) with 6 hours, would cause 

the particles to be in a preferred orientation order. Electrochemical performance tests of 
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the samples showed that a higher EF with rapid drying would improve battery 

performance by approximately 7% (Figure 6).  

Finally, a macro-micro-controlled 3D structure was fabricated, and comparisons 

were made for battery performances between 3D structure samples with no EF and a 

maximum EF with an HP. The results indicated that the performance of a macro-

controlled 3D structure could be further improved via manipulating the microstructures. 

Further characterization, including impedance and cyclic voltammetry tests, indicated 

that the sample with an EF enhanced the transport of lithium ions and had a better 

capability rate than the sample without an EF did. Voltage profiles from the four different 

fabrication conditions showed that the macro-micro-controlled structure showed 21%, 

16%, and 7% more areal capacity than a structure with no control, a macro-controlled 

structure, and a micro-controlled structure, respectively (Fig. 7f). The proposed control of 

extruded structures, with a well-organized distribution of energy materials, demonstrated 

more superior properties and advantages than structures with randomly distributed 

materials.  

 

4. METHODS 

 

4.1. MATERIAL PREPARATION 

A LiMn2O4 (LMO) paste was used to fabricate the electrodes. The paste was 

prepared by first mixing 85.5 wt% of LMO powder  (MTI, 13 μm) with 6.5 wt% of 

carbon black (CB, Alfa Aesar) and 8 wt% of Polyvinylidene fluoride (PVDF, Sigma-

Aldrich). This was then dispersed in the N-methyl-2-pyrrolidone solvent (NMP, Sigma-
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Aldrich) for different solids loading. The paste was mixed with a SpeedMixer (FlackTeck 

Inc) at 2000 RMP for 20 minutes at room temperature.  

 

4.2. ELECTRODE FABRICATION 

An extrusion-based additive manufacturing system was used to extrude the paste 

into a 3D structure. An aluminum foil piece was fixed on a substrate, prior to printing, 

which was then used as a current collector after assembly. The extrusion-based additive 

manufacturing system was a home-built system consisting of a motion subsystem, a hot 

plate, extrusion devices, and power supply for the EF. The paste was loaded into a 10 ml 

plastic syringe with a 150 μm nozzle (EFD Inc), and extruded with 80 psi extrusion 

pressure onto the substrate that moved along the XY-axes. First, a base layer was printed 

to cover the current collector as a conventional laminated structure. Next, a digital 

structure was printed on top of the base layer to increase the specific surface area. After 

printing, a voltage of 10 kV, which was the maximum voltage without a spark, was 

applied at a distance of 1.25 cm for 10 minutes. A hot plate (at 120 oC) was used to 

remove solutions quickly. The conventional structures were cast by using a doctor blade 

on an aluminum foil, followed by EF processing. EFs were applied at a distance of 1.25 

cm from the top of the electrode with variable applied voltages and different duration 

times. 

 

4.3. MATERIALS CHARACTERIZATION 

 The morphologies of an EF-treated sample were characterized with a Scanning 

Electron Microscopy (SEM, Hitachi S4700) by using secondary electrons at 15kV 
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accelerating voltage. The SEM images were cropped to remove label bars and were 

adjusted to the same brightness and contrast by using ImageJ software. A threshold value 

of the gray level, representing the boundary of pores, was found to be 70 by observing a 

dozen of pores. This value was used for areal porosity measurements. The X-ray 

diffraction (Philips X-Pert Diffractometer) test was used to detect the particle orientation 

caused by the applied EFs. The whole electrode samples and their broken powder 

samples were compared through XRD tests. 

 

4.4. ASSEMBLY 

A CR2032 coin cell (Wellcos Corp) was used to assemble a battery in an argon-

filled glove box (Mbraun). LMO was used as a cathode, Li foil as an anode, and 

commercial PP/PE/PP membrane (Celgard) as a separator; the battery was filled with 

liquid electrolyte 1M LiFP6 EC:DMC 1:1 (Sigma-Aldrich).  

 

4.5. ELECTROCHEMICAL MEASUREMENTS 

The electrochemical behavior of the assembled coin cells was measured from 3 V 

to 4.2 V by using a battery testing station (IVIUMnSTAT, Ivium Tech). The specific 

capacity and areal capacity were measured under a 0.1 C-rate, and then the cycling 

performances were conducted with 0.1C, 0.2C, 0.5C, 1C, and back to 0.1C for five 

cycles. Battery impedance was measured via an electrochemical impedance spectroscopy 

(EIS) at 3.5 V open circle voltage, and the cyclic voltammetry curves were measured at 

0.025-0.25 mV˖s-1.  
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III. ENHANCED BATTERY PERFORMANCE THROUGH 3D STRUCTURED 
ELECTRODES: EXPERIMENTAL AND MODELING STUDY 

 
 

ABSTRACT 

 

Three-dimensional (3D) electrode structures have the potential to significantly 

improve lithium-ion battery performance, such as power and energy density, but due to 

the complexity of geometries caused by the scale expansion, a precise understanding of 

the relationship between battery physics and structures is required. In this work, a novel 

hybrid 3D structure is investigated to deeply understand the advantages of the 3D 

structure and to provide a guideline for design optimization. Experimental observation 

from an extrusion-based 3D structure is incorporated into a 3D electrochemical model 

based on porous theory with a 4th order approximation for solid phase concentration. A 

systematic study focused on the impact of electrode tap density (thickness and volume 

fractions) on 3D battery performance is conducted. Experimental and simulation results 

show that the proposed 3D hybrid structure exhibits higher specific capacity and area 

capacity than conventional electrode structures. This is found to be due to the uniformly 

distributed concentration within the electrode, even at thicker electrodes. Parametric 

metrics are introduced to provide the physical insight of 3D hybrid structure and the 

limiting factor for battery responses, and eventually a guideline for design optimization 

for more general 3D geometries.  
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1. INTRODUCTION 

 

Advanced Lithium-Ion Batteries (LIBs) are one of the key solutions to the 

challenges associated with pollution and transportation energy costs to replace 

conventional fuels with cost-competitiveness. The development of an advanced battery 

with a reduction in its cost requires optimal battery design, which allows for minimizing 

unnecessary components that increase both weight and cost. In order to optimize battery 

design, besides developing new materials, it is necessary to enhance battery performance 

via optimizing battery electrode structures to promote the transport of species and their 

reactions.[1-5] Although the gravimetric capacity is one of the most utilized metrics in 

LIB studies as it describes the capacity that a material can deliver, the actual amount of 

materials in an electrode determines the energy and power of the LIB. Therefore, a high 

tap density is another important requirement for various applications.  

Adding more material is one simple method for achieving high tap density, which 

can be fulfilled by increasing the thickness or volume fraction of electrodes. 

Conventional laminated composite electrodes are fabricated via a tape casting process 

that involves mixing the constituent materials and casting them onto a current collector. 

Tap density increases with increasing electrode thickness, however, the electrode exhibits 

lower power performance after a certain thickness. This is due to the limitation of 

transport of ions resulting in bad utilization of materials.[1] A better way to increase tap 

density without sacrificing power is to fabricate electrodes that can allow a more facile 

transport of the species.[2-5] Three-dimensional (3D) batteries have been considered to 

be a new solution for this approach. Currently, 3D structure batteries confirmed that the 
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3D electrode structure can efficiently improve the utilization of material.[5-11] In our 

previous work, a novel hybrid 3D electrode structure was developed to enhanced areal 

energy and power densities by overcoming the tradeoff between specific capacity and 

areal capacity.[5]  

Compared to experiments, optimal battery design via modeling is the most 

effective way in terms of processing time and cost. Modeling tools for these purposes, 

however, must include appropriate design elements and must be accurate in predicting. A 

LIB can be decomposed into scales of three different lengths: meso-, micro-, and nano-

scale. The kinetics and transport phenomena at the micro-/nano-scales must be linked to 

the mesoscale perspective, including electrode geometry, porosity, and thermal behavior. 

In recent decades, researchers have developed computational models to simulate the 3D 

structure based on non-porous electrode theory as a thin film model.[12-16] Those 

models can accurately account for geometry in nano-/micro-scale (particle-level) 

modeling, but are computationally expensive to consider the mesoscale (cell-level) 

battery structure. To simulate batteries in mesoscale, the pseudo-2D (P2D) model [17] 

has been widely used in predicting battery performance. This model relies on the 

continuum-based porous electrode theory, in which active particles are modeled via a 

homogenized P2D approach. This model is also able to study different active material 

composition effects on power and energy performance [18] and mechanical stress in the 

particles when the cell is subjected to a mechanical load.[19] This method is, however, 

limited to the study of homogenized systems, and therefore it cannot account for the 

effects of the geometry of the electrode on battery cell performance. Another 

mathematical model in 1D called Single Particle model [20] is the reduced order model 
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based on the P2D with an analytical expression for solid phase concentration. Although 

those models are also not able to capture the non-uniform geometry on a large scale, they 

are able to predict the solid phase concentration accurately without non-uniform electrode 

geometry information. By combining the P2D model and SP model, the battery 

performance with a non-uniform geometry should be able to be accurately simulated.[21] 

In this paper, a 3D model has been developed based on the porous electrode 

theory to solve transport and kinetics problems of arbitrary 3D electrode structures by 

using a fourth order analytical solution to solve the solid phase diffusion problem. This 

model has been validated with experimental observations, and a case study of the effect 

of thickness on battery performance provides a better understanding of the benefits of 3D 

structures compared to conventional laminated structures. Numerical simulation results 

include detailed electrochemical behaviors at the geometric effects on the battery cell 

performance, such as solid phase concentration distribution, voltage profiles, and specific 

capacity. Further, the limiting factors of electrode structure were introduced and 

guidelines for determining optimal parameters were investigated. 

 

2. EXPERIMENT AND SIMULATION METHOD 

 

2.1. MATERIALS PREPARATION, ELECTRODE FABRICATION AND TEST 

In this work, a LiMn2O4 (LMO) paste was used to fabricate the electrodes. A 30% 

solids loading paste was prepared by mixing 85.5 wt% LMO powder  (MTI, 13 μm) with 

6.5 wt% carbon black (CB, Alfa Aesar) and 8 wt% Polyvinylidene fluoride (PvdF, 

Sigma-Aldrich) in N-Methyl-2-pyrrolidone solvent (NMP, Sigma-Aldrich).  
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An extrusion-based additive manufacturing system was used to extrude the paste 

into a 3D structure. An aluminum foil piece was fixed on a substrate heated to 120 oC 

prior to printing, which was used as a current collector after assembly. The paste was 

loaded into a plastic syringe with a 200 μm nozzle, and extruded onto a substrate that 

moved along the XY-axes. The hybrid 3D structure consisted of two parts: a base part 

and a digital structure part (Figure 1a). First, a base layer was printed to cover the current 

collector as a conventional laminated structure and the thickness of this base layer was 

optimized to yield the highest specific capacity (without 3D structure). Next, a digital 

structure, with a different number of layers, was printed on the top of the base layer to 

increase the specific surface area.  

 

 

Figure 1. (a)  Microscope image of printed hybrid 3D structure and (b) A CR2032 coin 
cell assembly with hybrid 3D structure cathode, lithium foil, separator, and electrolyte. 

 

A CR2032 coin cell was used to assemble a battery (Figure 1b) in an argon-filled 

glove box. LMO was used as a cathode, Li foil as an anode, and commercial 

PP/PE/PP membrane as a separator; the battery was filled with liquid electrolyte 1M 

LiFP6 EC:DMC 1:1 (Sigma-Aldrich). The electrochemical behavior of the assembled 

batteries was measured from 3 V to 4.2 V. The specific capacity and areal capacity were 

measured under a 0.1 C-rate. 

(a)  (b) 
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2.2. CONTINUUM ELECTROCHEMICAL MODEL FOR LI-ION BATTERIES 

A 3D half-cell model was used in this paper, the mass and charge conservation 

equations and the corresponding boundary conditions in the solids phase were applied to 

the electrode region as shown in Figure 2. Similarly, the governing equations related to 

the mass and charge conservation, and their boundary conditions in the electrolyte phase 

were applied to the electrode and separator regions. All those governing equations were 

derived from the porous electrode theory.  

 

 

Figure 2. (a) Illustration of cell with porous electrode, (b) 3D hybrid structure and (c) 
conventional structure. 

 

2.2.1. Transport In Solid Phase. Inside the active material of each electrode, the 

solid phase Li-ion concentration can be described by Fick’s law in a spherical coordinate, 

 

 (a) 

 (b)  (c) 
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where cs,j is the solid phase Li-ion concentration, t is time, r is the radial coordinate, Ds,j 

is the solid phase diffusion coefficient, and the subscript j = p/n denotes the 

positive/negative electrode. The boundary condition for Eq. 1 is: 
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where Rj is the particle radius and Jj is the Li-ion molar flux density on the active material 

surface. 

In this work, a 4th order polynomial approximation is used to consider the solid 

phase concentration, which has been well established based on volume-averaging 

assumption. The solid phase concentration can be described as [20] 

 

𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡) = 𝑎𝑎(𝑡𝑡) + 𝑏𝑏(𝑡𝑡) �
𝑟𝑟2

𝑅𝑅𝑗𝑗2
� + 𝑐𝑐(𝑡𝑡)�

𝑟𝑟4

𝑅𝑅𝑗𝑗4
� (3) 

 

By substituting the polynomial approximation in Eq. 3 to Eq. 1, the coefficients 

a(t), b(t), and c(t), respectively, are 

 

𝑎𝑎(𝑡𝑡) =
39
4
𝑐𝑐𝑠𝑠,𝑗𝑗,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝑡𝑡) − 3𝑅𝑅𝑗𝑗𝑞𝑞𝑠𝑠,𝑗𝑗,𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) −

35
4
𝑐𝑐𝑠𝑠,𝑗𝑗,𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) (4a) 

 

𝑏𝑏(𝑡𝑡) = −35𝑐𝑐𝑠𝑠,𝑗𝑗,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝑡𝑡) + 10𝑅𝑅𝑗𝑗𝑞𝑞𝑠𝑠,𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) + 35𝑐𝑐𝑠𝑠,𝑗𝑗,𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) 

 

(4b) 
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𝑐𝑐(𝑡𝑡) =
105

4
𝑐𝑐𝑠𝑠,𝑗𝑗,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝑡𝑡) − 7𝑅𝑅𝑗𝑗𝑞𝑞𝑠𝑠,𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) −

105
4

𝑐𝑐𝑠𝑠,𝑗𝑗,𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) (4c) 

where cs,j,surf is the particle surface concentration, cs,j,avg is the average solid phase 

concentration, and qs,j,surf is the average solid phase flux.  

Using the boundary conditions in Eq. 2 after substituting the polynomial 

approximation in Eq. 3 into Eq. 1, the following ODEs are obtained to describe the 

average solid-phase concentration and average solid-phase flux, respectively: 

 

𝑎𝑎𝑐𝑐𝑠𝑠,𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋, 𝑡𝑡)
𝑎𝑎𝑡𝑡

= −
𝐽𝐽𝑝𝑝(𝑋𝑋, 𝑡𝑡)

3𝑅𝑅𝑝𝑝
 (5) 

 

𝑎𝑎𝑞𝑞𝑠𝑠,𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋, 𝑡𝑡)
𝑎𝑎𝑡𝑡

= −30
𝐷𝐷𝑠𝑠,𝑝𝑝

𝑅𝑅𝑝𝑝2
𝑞𝑞𝑠𝑠,𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋, 𝑡𝑡) −

45
2𝑅𝑅𝑝𝑝2

𝐽𝐽𝑝𝑝(𝑋𝑋, 𝑡𝑡) (6) 

where X is the coordinate (x, y, and z) inside 3D electrode as shown in Fig. 2.  

Then, the particle surface concentration inside the cathode can be expressed as 

 

𝑐𝑐𝑠𝑠,𝑝𝑝,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝑋𝑋, 𝑡𝑡) = 𝑐𝑐𝑠𝑠,𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋, 𝑡𝑡) +
8𝑅𝑅𝑝𝑝
35

𝑞𝑞𝑠𝑠,𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋, 𝑡𝑡) −
𝑅𝑅𝑝𝑝

35𝐷𝐷𝑠𝑠,𝑝𝑝
𝐽𝐽𝑝𝑝(𝑋𝑋, 𝑡𝑡) (7) 

 

The Li-ion molar flux density is related to the individual electrodes overpotential 

through the Bulter-Vomer kinetics 
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𝐽𝐽𝑝𝑝(𝑋𝑋, 𝑡𝑡) = 𝑘𝑘𝑝𝑝𝑐𝑐𝑠𝑠,𝑝𝑝,𝑚𝑚𝑎𝑎𝑚𝑚𝑐𝑐𝑒𝑒0.5 �1 −
𝑐𝑐𝑠𝑠,𝑝𝑝,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝑋𝑋, 𝑡𝑡)
𝑐𝑐𝑠𝑠,𝑝𝑝,𝑚𝑚𝑎𝑎𝑚𝑚

�
0.5

�
𝑐𝑐𝑠𝑠,𝑝𝑝,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝑋𝑋, 𝑡𝑡)
𝑐𝑐𝑠𝑠,𝑝𝑝,𝑚𝑚𝑎𝑎𝑚𝑚

�
0.5

× �𝑒𝑒𝑒𝑒𝑒𝑒 �
0.5𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂𝑝𝑝(𝑋𝑋, 𝑡𝑡)� − 𝑒𝑒𝑒𝑒𝑒𝑒 �−
0.5𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂𝑝𝑝(𝑋𝑋, 𝑡𝑡)�� 

(8a) 

 

For the lithium electrode at x = Ls+Lp 

 

𝐽𝐽𝐿𝐿𝐿𝐿(𝑡𝑡) = 0.025�𝑐𝑐𝑒𝑒,𝑠𝑠(𝑋𝑋, 𝑡𝑡) �𝑒𝑒𝑒𝑒𝑒𝑒 �−
0.5𝐹𝐹
𝑅𝑅𝑅𝑅

Φ𝑒𝑒,𝑠𝑠(𝑋𝑋, 𝑡𝑡)�

− 𝑒𝑒𝑒𝑒𝑒𝑒 �
0.5𝐹𝐹
𝑅𝑅𝑅𝑅

Φ𝑒𝑒,𝑠𝑠(𝑋𝑋, 𝑡𝑡)�� 

(8b) 

where kp is the reaction rate constant, ce is the electrolyte concentration, R is the universal 

gas constant, T is the ambient temperature, and ηj is the reaction overpotential defined as 

ηp = Φs,p − Φe,p – Up, where Φs,p is the solid-phase potential, Φe,p is the electrolyte phase 

potential, and Up is the open-circuit potential (OCP), which, in general, is a function of 

cs,p,surf . 

 

2.2.2. Transport In Electrolyte. The Li-ion concentration in the electrolyte phase 

changes due to the changes in the gradient diffusive flow of Li-ions. The equation is 

based on the porous electrode theory.[17] 

 

𝜖𝜖𝑘𝑘
𝜕𝜕𝑐𝑐𝑒𝑒,𝑘𝑘(𝑋𝑋, 𝑡𝑡)

𝜕𝜕𝑡𝑡
=

𝜕𝜕
𝜕𝜕𝑋𝑋

�𝐷𝐷𝑒𝑒𝑠𝑠𝑠𝑠,𝑘𝑘
𝜕𝜕𝑐𝑐𝑒𝑒,𝑘𝑘(𝑋𝑋, 𝑡𝑡)

𝜕𝜕𝑋𝑋
� + 𝑎𝑎𝑘𝑘(1 − 𝑡𝑡+)𝐽𝐽𝑘𝑘(𝑋𝑋, 𝑡𝑡) (9) 
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where k=p/s for cathode and separator, respectively, and Js(X,t) = 0. εk is the liquid phase 

volume fraction, Deff,k is the effective diffusion coefficient, Deff,k = Dk(εk)brug, brug is the 

Bruggman coefficient, ak is the specific surface area of electrode, t+ is the transference 

number in the electrolyte. The boundary condition are: 

1. Fluxes of the ions are zero for all time at the current collector (x = 0 and x = Lp+ 

Ls) 

 

−𝐷𝐷𝑒𝑒𝑠𝑠𝑠𝑠,𝑝𝑝
𝜕𝜕𝑐𝑐𝑒𝑒,𝑝𝑝(𝑡𝑡)
𝜕𝜕𝑋𝑋

�
𝑚𝑚=0

= 0 (10a) 

−𝐷𝐷𝑒𝑒𝑠𝑠𝑠𝑠,𝑠𝑠
𝜕𝜕𝑐𝑐𝑒𝑒,𝑠𝑠(𝑡𝑡)
𝜕𝜕𝑋𝑋

�
𝑚𝑚=𝐿𝐿𝑝𝑝+𝐿𝐿𝑠𝑠

=
𝐽𝐽𝐿𝐿𝐿𝐿(𝑡𝑡)
𝐹𝐹

 (10b) 

where Lp is cathode thickness and Ls is separator thickness. 

The Li-ion concentration in the electrolyte phase changes due to the changes in the 

gradient diffusive flow of Li-ions. The equation is same as in the porous electrode theory  

2. Continuity of the flux and concentration of the electrolyte at the electrode-

separator interface 

 

−𝐷𝐷𝑒𝑒𝑠𝑠𝑠𝑠,𝑝𝑝
𝜕𝜕𝑐𝑐𝑒𝑒,𝑝𝑝(𝑡𝑡)
𝜕𝜕𝑋𝑋

�
𝑚𝑚=𝐿𝐿𝑝𝑝

= −𝐷𝐷𝑒𝑒𝑠𝑠𝑠𝑠,𝑠𝑠
𝜕𝜕𝑐𝑐𝑒𝑒,𝑠𝑠(𝑡𝑡)
𝜕𝜕𝑋𝑋

�
𝑚𝑚=𝐿𝐿𝑝𝑝

 (11) 

 

𝑐𝑐𝑒𝑒,𝑝𝑝(𝑡𝑡)�
𝑚𝑚=𝐿𝐿𝑝𝑝

= 𝑐𝑐𝑒𝑒,𝑠𝑠(𝑡𝑡)�
𝑚𝑚=𝐿𝐿𝑝𝑝

 

 

(12) 
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The initial condition for Eq. 9 is 

 

𝑐𝑐𝑒𝑒,𝑘𝑘(𝑋𝑋, 0) = 𝑐𝑐𝑒𝑒,𝑘𝑘,0 (13) 

 

The specific electrode surface area, ap, can be expressed in terms of the liquid 

phase volume fraction in cathode, εp, as 

 

𝑎𝑎𝑝𝑝 =
3�1 − 𝜖𝜖𝑝𝑝�

𝑅𝑅𝑝𝑝
 (14) 

 

2.2.3. Electrical Potentials. Charge conservation in the solid phase of each 

electrode can be described by Ohm’s law 

 

𝜎𝜎𝑒𝑒𝑠𝑠𝑠𝑠,𝑗𝑗
𝜕𝜕2Φ𝑠𝑠,𝑗𝑗(𝑋𝑋, 𝑡𝑡)

𝜕𝜕𝑋𝑋2
= 𝑎𝑎𝑗𝑗𝐹𝐹𝐽𝐽𝑗𝑗(𝑋𝑋, 𝑡𝑡) (15) 

 

The boundary conditions at the current collectors as a function of applied current 

density, I 

 

−𝜎𝜎𝑒𝑒𝑠𝑠𝑠𝑠,𝑝𝑝
𝜕𝜕Φ𝑠𝑠,𝑝𝑝(𝑡𝑡)
𝜕𝜕𝑋𝑋

�
𝑚𝑚=0

= 𝐼𝐼 (16) 

−𝜎𝜎𝑒𝑒𝑠𝑠𝑠𝑠,𝑝𝑝
𝜕𝜕Φ𝑠𝑠,𝑝𝑝(𝑡𝑡)
𝜕𝜕𝑋𝑋

�
𝑚𝑚=𝐿𝐿𝑝𝑝

= 0 (17) 
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where the current density I is related to the applied current, iapp, and the electrode foot 

area, A, as I = iapp /A, and keff,k is the effective conductivity as a function of electrolyte 

concentration keff,k = kj(εj)0.5. Combining Kirchhoff’s law with Ohm’s law in the 

electrolyte phase yields 

 

𝑘𝑘𝑒𝑒𝑠𝑠𝑠𝑠,𝑘𝑘
𝜕𝜕2Φ𝑒𝑒,𝑘𝑘(𝑋𝑋, 𝑡𝑡)

𝜕𝜕𝑋𝑋2
−

2𝑘𝑘𝑒𝑒𝑠𝑠𝑠𝑠,𝑘𝑘𝑅𝑅𝑅𝑅(1 − 𝑡𝑡+)𝜕𝜕2 ln 𝑐𝑐𝑒𝑒,𝑘𝑘(𝑋𝑋, 𝑡𝑡)
𝐹𝐹𝜕𝜕𝑋𝑋2

�1 +
𝑎𝑎 ln𝑓𝑓+
𝑎𝑎 ln 𝑐𝑐𝑒𝑒,𝑘𝑘

� = 𝐼𝐼 (18) 

 

Since the boundary conditions of Φe,k is arbitrary. Set Φe,k(0, y, z, t) = 0 at the 

positive electrode current collector interface. The remaining boundary conditions follow 

from continuity of Φe,k  

 

𝑘𝑘𝑒𝑒𝑠𝑠𝑠𝑠,𝑘𝑘
𝜕𝜕Φ𝑒𝑒,𝑘𝑘(𝑋𝑋, 𝑡𝑡)

𝜕𝜕𝑋𝑋
−

2𝑘𝑘𝑒𝑒𝑠𝑠𝑠𝑠,𝑘𝑘𝑅𝑅𝑅𝑅(1 − 𝑡𝑡+)𝜕𝜕 ln 𝑐𝑐𝑒𝑒,𝑘𝑘(𝑋𝑋, 𝑡𝑡)
𝐹𝐹𝜕𝜕𝑋𝑋

�1 +
𝑎𝑎 ln 𝑓𝑓+
𝑎𝑎 ln 𝑐𝑐𝑒𝑒,𝑘𝑘

��
𝑚𝑚=0

= 0 

(19a) 

 

𝑘𝑘𝑒𝑒𝑠𝑠𝑠𝑠,𝑘𝑘
𝜕𝜕Φ𝑒𝑒,𝑘𝑘(𝑋𝑋, 𝑡𝑡)

𝜕𝜕𝑋𝑋

−
2𝑘𝑘𝑒𝑒𝑠𝑠𝑠𝑠,𝑘𝑘𝑅𝑅𝑅𝑅(1 − 𝑡𝑡+)𝜕𝜕 ln 𝑐𝑐𝑒𝑒,𝑘𝑘(𝑋𝑋, 𝑡𝑡)

𝐹𝐹𝜕𝜕𝑋𝑋
�1 +

𝑎𝑎 ln 𝑓𝑓+
𝑎𝑎 ln 𝑐𝑐𝑒𝑒,𝑘𝑘

��
𝑚𝑚=𝐿𝐿𝑝𝑝+𝐿𝐿𝑠𝑠

= 𝐽𝐽𝐿𝐿𝐿𝐿(𝑡𝑡) 

(19b) 

 

−𝑘𝑘𝑒𝑒𝑠𝑠𝑠𝑠,𝑝𝑝
𝜕𝜕Φ𝑒𝑒,𝑝𝑝(𝑡𝑡)
𝜕𝜕𝑋𝑋

�
𝑚𝑚=𝐿𝐿𝑝𝑝

= −𝑘𝑘𝑒𝑒𝑠𝑠𝑠𝑠,𝑠𝑠
𝜕𝜕Φ𝑒𝑒,𝑠𝑠(𝑡𝑡)
𝜕𝜕𝑋𝑋

�
𝑚𝑚=𝐿𝐿𝑝𝑝

 (20) 
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The parameters used in the simulation are listed in Table 1, the battery geometry 

information, such as particle radius, electrode thickness, and volume fractions, are based 

on experiments and physical parameters, such as diffusivity and conductivity, are based 

on common material properties. 

 

Table 1. Model parameters used in simulation studies. 

 

3. RESULTS AND DISCUSSIONS 

 

3.1. ELECTROCHEMICAL PERFORMANCE 

The battery performance for the conventional structure (CS) and the 3D hybrid 

structure (HS) were compared at different electrode thickness. In the case of specific 

capacity (Figures 3a and 3b), the CS exhibited a maximum value (110 ± 5 mAh˖g-1) at 

160 μm, and then decreased as the thickness increased further. However, the HS showed 

Parameter Value Description 

brug 1.5 Bruggeman coefficient 
Ce,k,0 2000 Initial electrolyte concentration (mol m-3) 
Cmax, pos 22860 Positive maximum concentration (mol m-3) 
De 7.5×10-11 Diffusion coefficient in electrolyte (m2s-1) 
Ds,p 2.5×10-15 Solid-phase Li diffusivity, positive electrode (m2s-1) 
 F 96487 Faraday’s constant (C mol-1)  
i0 0.85 Constant flux for half-cell 
I Variable Applied current density (A m-2) 
ks,p 3.8 Solid phase conductivity (S m-1) 
kp 2×10-6 Reaction rate coefficient, cathode (m2.5mol-0.5s-1) 
Lp Variable Cathode thickness (m) 
Ls 30×10-6 Separator thickness (m) 
R 8.314 Universal gas constant (J mol-1 K-1)  
Rp 13×10-6 Particle radius, positive electrode (m) 
t+ 0.363 Cationic transport number 
εp 0.24 Positive electrode porosity 
εs 1 Separator porosity 
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a higher value (117 ± 6 mAh˖g-1) than that of the CS, even though it was much thicker 

(370 μm vs. 160 μm). As the case of CS, the specific capacity of the HS was decreased 

from its maximum value as the thickness of electrode increased. On the other hand, as the 

thickness increased (Figures 3a and 3c), the areal capacity of the CS continuously 

increased up to the maximum value (3.5 ± 0.08 mAh˖cm-2 at 370 μm), which was much 

smaller than the maximum of HS, 4.5 ± 0.3 mAh˖cm-2 at 270 μm as shown in Figure 3a 

and 3c. This was the result of a competition between the increased mass loading and the 

reduced specific capacity as the thickness increases. 

 

Figure 3. Comparison of conventional structure and printed 3D hybrid structure: (a) 
specific capacity and areal capacity as a function of cathode thickness, voltage profile at 

different electrode thickness as a function of specific capacity, and (c) voltage profile as a 
function of areal capacity. 

 (b)  (a) 

 (c) 
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3.2. VERIFICATION 

The 3D model was first verified with P2D model [17] in term of the voltage 

profile and solid phase surface concentration at cathode-separator and cathode-current 

collector (C.C.) interface, respectively. As shown in Figures. 4a and 4b, the voltage 

profile of the 3D model were well matched with the ones from P2D model at the end of 

discharge with errors smaller than 0.3%, and the increase of voltage error at the end of 

discharge could due to the 3D model had a faster voltage drop after 3.7V compare to the 

P2D model. For the solid phase surface concentration as shown in Figures. 4c and 4d, the 

cs,surf  of 3D model at two interfaces were agreed well with P2D model with maximum 

300 mol/m2 (2%) difference. This indicated that by combining the 4th order 

approximation equation for solid phase concentration with P2D model is enable to extend 

the model into three dimensional with ignorable errors. 

 

3.3. IMPACT OF SOLID PHASE DIFFUSION AND ELECTROLYTE 
TRANSPORTATION 

 
Solid phase diffusion in the active material particles and the electrolyte 

transportation are two important factors determining the reactions in the 3D electrode and 

battery performance. To evaluate the characteristic time of relative intercalation and 

electrolyte transport to the discharge time, two parameters Sc and SS can be introduced for 

solid phase diffusion and electrolyte transport, respectively. [22] In this work, those two 

parameters were extended to study the effect of thickness and solid phase volume fraction 

in conventional and 3D electrodes as shown in Figures 5a and 5b. 

For the conventional structure, the Sc is the ratio of diffusion time to discharge 

time 
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𝑆𝑆𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑅𝑅𝑝𝑝2𝐼𝐼

𝐷𝐷𝑠𝑠,𝑝𝑝𝐹𝐹�1 − 𝜀𝜀𝑝𝑝�𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚,𝑝𝑝𝑐𝑐𝑠𝑠𝑙𝑙𝑝𝑝𝑐𝑐𝑠𝑠
 (17) 

 

 

Figure 4. Comparison of P2D and 3Dof (a) voltage profile, (b) voltage difference 
between P2D and proposed 3D model and (b) solid phase surface concentration at 

cathode-separator and cathode-current collector interfaces. 
 

The Ss is the ratio of electrolyte transport time to discharge time  

 

𝑆𝑆𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 =
�𝑙𝑙𝑠𝑠𝑒𝑒𝑝𝑝 + 𝑙𝑙𝑝𝑝𝑐𝑐𝑠𝑠�𝐼𝐼𝐼𝐼

𝐷𝐷𝑒𝑒𝑠𝑠𝑠𝑠,𝑝𝑝𝐹𝐹�1 − 𝜀𝜀𝑝𝑝�𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚,𝑝𝑝𝑐𝑐𝑠𝑠𝑙𝑙𝑝𝑝𝑐𝑐𝑠𝑠
 (18) 

 
 

(a) (b) 

(c) (d) 
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For 3D structure, an average length for cathode is used and Eqs. 17 and 18 can be 

rewired as: 

 

𝑆𝑆𝑐𝑐,3𝐷𝐷 =
𝑅𝑅𝑝𝑝2𝐼𝐼(2𝑎𝑎 − 1)

𝐷𝐷𝑠𝑠,𝑝𝑝𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚,𝑝𝑝𝑐𝑐𝑠𝑠�1 − 𝜀𝜀𝑝𝑝�𝐹𝐹�𝑎𝑎𝑙𝑙𝑝𝑝𝑐𝑐𝑠𝑠,1 + (𝑎𝑎 − 1)𝑙𝑙𝑝𝑝𝑐𝑐𝑠𝑠,2�
 (19) 

 

where n is the number of fingers in the 3D structure and lpos,1 is the thickness of finger 

structure and lpos,2 is the base structure, w is the length of electrode. 

 

𝑆𝑆𝑠𝑠,3𝐷𝐷 =
�𝑎𝑎�𝑙𝑙𝑝𝑝𝑐𝑐𝑠𝑠,1 + 𝑙𝑙𝑠𝑠𝑒𝑒𝑝𝑝� + (𝑎𝑎 − 1)�𝑙𝑙𝑝𝑝𝑐𝑐𝑠𝑠,2 + 𝑙𝑙𝑠𝑠𝑒𝑒𝑝𝑝��𝐼𝐼𝐼𝐼

𝐷𝐷𝑒𝑒𝑠𝑠𝑠𝑠,𝑝𝑝𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚,𝑝𝑝𝑐𝑐𝑠𝑠�1 − 𝜀𝜀𝑝𝑝�𝐹𝐹�𝑎𝑎𝑙𝑙𝑝𝑝𝑐𝑐𝑠𝑠,1 + (𝑎𝑎 − 1)𝑙𝑙𝑝𝑝𝑐𝑐𝑠𝑠,2�
 (20) 

 

The current density can be calculated based on theoretical capacity with applied 

C-rate  

 

𝐼𝐼 =
𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝
𝐴𝐴

=
𝑄𝑄𝑐𝑐�1 − 𝜀𝜀𝑝𝑝�𝜌𝜌𝜌𝜌𝐶𝐶𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒

𝐴𝐴
=
𝑄𝑄𝑐𝑐�1 − 𝜀𝜀𝑝𝑝�𝜌𝜌𝐴𝐴𝑙𝑙𝑝𝑝𝑐𝑐𝑠𝑠𝐶𝐶𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒

𝐴𝐴
 (21) 

 

where Qc is the theoretical battery capacity, ρ is the active material density, V is the 

electrode volume.  

According to Doyle et al [22], in case of Sc>>1, it means the diffusion in the solid 

phase is the limiting factor for battery performance, and in case of Ss >>1, the 

transportation concentration variation is the limiting factor. In this study, the Sc and Ss 

were compared with different volume fraction from 0.3 to 0.6 and different cathode 
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thickness from 160 to 500 μm. Both of Sc and Ss is the limiting factor (>>1) with variable 

thickness and volume fraction; the increase of Sc and Ss value means the solid phase 

diffusion or electrolyte transportation is a more critical factor. As shown in Figure 5c, the 

value of Sc was independent of the cathode thickness and volume fraction for both 

conventional and hybrid 3D structure. This is due the Sc is only limited by particle radius, 

Rp, and solid phase diffusion coefficient, Ds,p (Eqs. 17 and 19) and independent from 

electrode geometry by considering the applied current (Eq. 21). The electrolyte 

transportation is limited by electrode geometry and depended on the volume fraction and 

electrode thickness (Eqs. 18 and 20). As shown in Figure 5d, the Ss value increased 

nonlinearly as a function of volume fraction and linearly as a function of electrode 

thickness. The Ss value was detailed in Figures 5e and 5f, for a variable thickness with 

0.55 volume fraction and a variable volume fraction at 270μm thickness. Comparing the 

Ss of conventional and 3D hybrid structure, it can be seen that the 3D hybrid structure was 

able to improve the electrolyte transportation and more efficient at a thick thickness 

(maximum reduce 33%) and approximately reduce 12% at any volume fraction. This 

analysis explained how the 3D hybrid structure could improve the battery performance at 

a thicker thickness and can be further used to optimize the design of 3D structures. 

 

3.4. 3D SIMULATION OF CONVENTIONAL AND HYBRID 3D STRUCTURE 

The 3D computational model was validated with experimental results for the 

voltage profile of hybrid 3D structure and conventional structure at 270 μm thickness as 

shown in Figure 6a. Based on the geometry changes, the simulation was able to capture 

the transportation and diffusion in electrolyte and electrode region. The changes lead to a 
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different termination speed in the voltage profile, and the simulation results were able to 

capture the capacity change due to the modified geometry and generally agreed with 

experimental observation.  

 

 

Figure 5. Schematic diagram of (a) conventional structure and (b) 3D hybrid structure; (c) 
Sc as a function of volume fraction and cathode thickness, (d) Ss as a function of volume 

fraction and cathode thickness, (e) Ss as a function of thickness with 0.55 volume fraction, 
and (f) Ss as a function of volume fraction at 270μm thickness. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 6. Comparison of (a) voltage profile with simulation and experimental results and 
(b) specific capacity as a function of electrode thickness. 

 

The 3D model was used to compute the capacity change for 3D hybrid and 

conventional structure as a function of cathode thickness and compared with 

experimental results. As shown in Figure. 6b, the simulation was able to capture the 

capacity decrease with the increasing of electrode thickness from 160 to 490 μm. The 

simulation for conventional structure showed similar capacity change at 160 and 270 μm 

as experimental observation, and the capacity quickly decreased in the simulation could 

due to the limitation of electrolyte transportation as mentioned above. The experimental 

data showed less decreased capacity should thank the porous electrode where the 

electrolyte transportation might not be limited ideally as it in the simulation. For the 

hybrid 3D structure, the simulation agreed well with experimental results at 270 and 370 

μm. The capacity decrease due to increased thickness showed less critical phenomena 

than experiments at 490 μm, which indicated that a better controlled 3D structure could 

further improve the battery performance.  

The distribution of solid phase concentration and electrolyte concentration for 3D 

hybrid and conventional structures at different thickness were compared as shown in 

(a) (b) 



75 
 
Figure 7. The concentration gradient increased with increased thickness for both of 3D 

hybrid and conventional structure. For the conventional structure from 160 to 490 μm, the 

solid phase concentration difference between electrode-separator interface and electrode-

C.C interface increased from 594 to 16900 mol/m3; the electrolyte concentration 

difference between the electrode-C.C interface and separator-li foil interface increased 

from 240 to 3312 mol/m3. Comparing the conventional structure, the 3D hybrid structure 

(Figures 7a to 7d) can reduce 96%, 95% and 46% of the solid phase concentration 

difference at 270 μm, 380 μm and 390 μm, respectively; it, as show in Figures 7e to 7g, 

also can reduce 8%, 19%, and 21% of the electrolyte concentration difference at 270 μm, 

380 μm and 390 μm, respectively. It confirmed that the 3D structure could improve the 

transportation of ions inside electrolyte and then enhance the utilization of active 

materials. To obtain a clear idea about the advantages of 3D hybrid structure, a case of 

flux distribution is plotted at 270 μm as shown in Figure 7i, and the size of the arrow 

indicated the logarithm scale of flux inside the structure. It can be observed that the flux 

of 3D hybrid structure at the electrode-separator interface is stronger (5 times), then 

gradually decreasing toward electrode-c.c. interface and finally became similar to the flux 

of conventional structure.  

Based on the concentration distribution, a stress distribution also can be 

compared. For the case of a spherical particle, the stress tensor contains two independent 

components: radial stress σr and tangential stress σt.  

 

𝜎𝜎𝑟𝑟(𝑟𝑟) =
2Ω𝑗𝑗𝐸𝐸𝑗𝑗

3�1 − 𝜈𝜈𝑗𝑗�
(

1
𝑅𝑅𝑗𝑗3

� 𝑐𝑐(𝑟𝑟, 𝑡𝑡)
𝑅𝑅𝑗𝑗

0
𝑟𝑟2 𝑎𝑎𝑟𝑟 −

1
𝑟𝑟3
� 𝑐𝑐(𝑟𝑟, 𝑡𝑡)
𝑟𝑟

0
𝑟𝑟2 𝑎𝑎𝑟𝑟) (22) 
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𝜎𝜎𝑟𝑟(𝑟𝑟) =
Ω𝑗𝑗𝐸𝐸𝑗𝑗

3�1 − 𝜈𝜈𝑗𝑗�
(

2
𝑅𝑅𝑗𝑗3

� 𝑐𝑐(𝑟𝑟, 𝑡𝑡)
𝑅𝑅𝑗𝑗

0
𝑟𝑟2 𝑎𝑎𝑟𝑟 −

1
𝑟𝑟3
� 𝑐𝑐(𝑟𝑟, 𝑡𝑡)
𝑟𝑟

0
𝑟𝑟2 𝑎𝑎𝑟𝑟 − 𝑐𝑐(𝑟𝑟, 𝑡𝑡)) (23) 

where �̃�𝑐  is the concentration change from the initial value, νj is the Poisson’s ratio, and Ej 

is the Young’s modulus of active materials. [23] 

 The stress is considering the maximum stress at partcile surface (r = Rp), then the 

radial stress σr is zero, and then the Eq. 23 can be rewrite based the concentration 

analytical equations (Eqs. 5 and 7) as 

 

𝜎𝜎𝑟𝑟�𝑅𝑅𝑝𝑝� =
Ω𝑝𝑝𝐸𝐸𝑝𝑝

9�1 − 𝜈𝜈𝑝𝑝�
�3𝑐𝑐𝑠𝑠,𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) − 3𝑐𝑐𝑠𝑠,𝑝𝑝,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝑡𝑡)� (24) 

 

One case at 270 μm, as shown in Figure 7j, is used to compare the stress 

distribution. It can be observed that the maximum gradient of 3D hybrid structure (16 

GPa) is slightly smaller than the one of the conventional structure (19 GPa). It is more 

important that the stress distribution is followed the pattern of the solid phase 

concentration, which leads to a uniformed distribution. 

 

4. CONCLUSIONS 

 

In this work, a 3D computational model based on the porous electrode theory with 

a 4th order analytical expression for solid phase concentration is developed to simulate the 

3D battery electrode structure on a large scale. The results from the 3D model are 

compared with experimental observations based on voltage profile and capacity with 
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different electrode structure and thickness, it shows the capability of the 3D model to 

predict the voltage profile and capacity change with a 3D geometry. 

 

   

Figure 7. Comparison of concentration distribution (mol/m3) as a function of 
thickness of solid phase concentration at (a) 160 μm, (b) 270 μm, (c) 380 μm, and (d) 490 
μm; electrolyte concentration (mol/m3)at (e) 160 μm, (f) 270 μm, (g) 380 μm, and (h) 490 

μm; (i) Flux distribution and (j) tangential stress distribution (GPa) of the 270 μm 
thickness electrodes. 

 

(a)            (b)                                               (c)                                            (d) 

(e)            (f)                                                (g)                                            (h) 

(i) (j) 
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It is also found that the solid phase concentration gradient in the electrode 

structure plays an important role in the transport of the species, and the 3D structure 

would reduce the concentration gradient. An analytical method is also developed to 

determine the limiting factor in diffusion and electrolyte transportation. It found that the 

thickness and volume fraction are key factors in the battery structure design to determine 

battery performance. This model developed in this work can be defined as a guideline for 

future parameter determination and is able to be used to optimize the 3D electrode 

structure design. 
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IV. A SINGLE PARTICLE MODEL FOR LITHIUM-ION BATTERIES WITH 
ELECTROLYTE AND STRESS-ENHANCED DIFFUSION PHYSICS 

 
 

ABSTRACT 

 

A low-order battery model has been developed that incorporates stress-enhanced 

diffusion and electrolyte concentration distribution into a modified single particle model. 

This model addresses two important challenges of battery modeling for Battery 

Management Systems: accuracy and computational efficiency. The developed model 

improves accuracy by including the potential drop in the electrolyte based on the 

predicted li-ion concentration profile along the entire electrode thickness, and by 

including the enhanced diffusivity due to diffusion-induced stress. Incorporating 

analytical solutions into a conventional single particle model eliminates the need to 

sacrifice calculation efficiency. The voltage prediction by the proposed model is more 

accurate than the conventional single particle model. Compared to complex physics-

based battery models, the proposed model significantly improves the computational 

efficiency of various discharge scenarios, including constant current, the Dynamic Stress 

Test, and the Highway Fuel Economy Test. Integrating mechanical responses into the 

single particle model not only increases model accuracy, but also makes it applicable to 

develop models for next-generation high energy density. 
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1. INTRODUCTION 

 

Lithium Ion Batteries (LIBs) have the advantages of higher energy and power 

density, as compared to other rechargeable batteries, and are presently regarded as a core 

technology for energy storage and supply for Electric Vehicles (EV) and Hybrid Electric 

Vehicles (HEV) [1, 2]. However, as the usage of LIBs becomes more pervasive, 

increased concerns about their safety has become more critical. Consequently, a Battery 

Management System (BMS) is used to optimize storage capacity and balance the various 

systems to satisfy functional requirements and prevent catastrophic failures [3, 4]. In 

order to achieve these goals through a BMS, identification of the battery status is 

extremely important [5]. Therefore, advanced sensing and monitoring technologies are 

required to accurately predict the state of the battery and track the physical parameters. 

However, current sensing and monitoring technologies that rely heavily on voltage, 

current, and temperature are not sufficient to accurately predict the batteries’ State of 

Charge (SOC) and State of Health (SOH). For this reason, a battery physical model is 

typically used in battery control and management systems, so that the internal battery 

status can be determined more accurately [6-9]. High-fidelity electrochemical models are 

ideal for detailed analysis of battery phenomena, but are too computationally intensive to 

use efficiently in BMS [3]. This has led to efforts to reduce the complexity of the 

electrochemical battery models. For example, the electrochemical model that was 

proposed by Doyle et al. [10] was reduced to a form suitable for a BMS [3, 11, 12]. 

However, for those simplified models, the process of identifying the model parameters, 

which is needed to construct these models, is difficult. One well-known simplified model 
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is the Equivalent Circuit Model (ECM), which describes battery dynamic behavior as a 

voltage source and a series of resistors and capacitors [13]. The common method for 

identifying ECM parameters is to use tests such as the Hybrid Power Pulse 

Characterization (HPPC) test [14]. However, these tests suffer from excessive 

measurement noise and lack of accurate initial estimates [15]. Most of all, the ECM 

model has limited prediction capability as it does not consider the electrochemical 

phenomena behind the battery performance [16]. The Single Particle (SP) model strikes 

the necessary balance between the electrochemical and equivalent circuit models. The SP 

model is described by a small series of ordinary differential equations, but it is derived 

directly from comprehensive electrochemical models, so it maintains many important 

battery characteristics explicitly. The SP model assumes that both electrodes are 

composed of spherical particles of the same shape and size, and the current distribution is 

uniform across both electrodes. Thus, each electrode can be approximated by a single 

spherical particle. The mass balance of li-ions in the intercalated particles of the electrode 

active material is described by Fick’s law. One important drawback of the SP model is 

that it does not adequately describe the battery dynamics at high C-rates due to the 

absence of the electrolyte physics, even though it adequately describes the general 

charge-discharge behavior of the battery.[16-20].  

In order to overcome this challenge, different approximations have been proposed 

for coupling the SP model with the electrolyte contribution by using different polynomial 

equations with various orders [21-25]. In general, the polynomial order determines the 

accuracy of the approximation. Higher-order polynomials will result in a higher accuracy; 

however, the numerical cost of the coefficient identification scheme will increase 
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accordingly. A quadratic equation describing the electrolyte concentration in the 

electrodes with a maximum error of approximately 4~8% was used in the refs. 22 and 25. 

Rahmian, et al. [23] reported a high charging rate with optimized pore wall flux using a 

third order polynomial for the electrolyte concentration in the electrodes. This model 

showed a maximum error of approximately 4% for a 5C discharge using a volume 

averaged flux.  In addition, Naoki, et al. [24] studied battery thermal behavior using an 

SP model with electrolyte concentrations described by a parabolic profile. These models 

have been shown to be improved by adding the electrolyte physic model, but they are still 

not accurate (2-4% maximum error) compared to full-order electrochemical models. 

Further, some equations in the model were cumbersome and complicated for the BMS 

application.  

 Battery materials are inherently mechanical systems, where large and repeated 

strains develop inside the materials, and the corresponding stresses lead to cracks and 

fractures [26-32]. The basic function of electrochemical materials is fulfilled by ions’ 

intercalating into the materials, meaning the ions enter the materials due to an 

electrochemical potential gradient [32]. During this intercalation process, there is a 

typical volume change of 10% for commercially available graphite materials, and even 

up to 300% for silicon materials [27, 33]. This volume change causes considerable stress 

inside the materials, leading to mechanical failures, such as material pulverization, and 

cracks and fractures in the materials. Further, the stress field inside a particle affects the 

diffusion process of li-ions. As a li-ion intercalates into the host material, a stress field 

builds due to displacement of the host atoms caused by the intercalated ion. This stress 

field affects the energy of the second intercalated ion, leading to an elastic interaction 
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between the two ions. This means that the diffusion process of ions in a particle under 

stress field is different from the stress-free diffusion behavior. Accordingly, these 

mechanical responses must be integrated into the SP model to determine the precise 

diffusivity of ions and their internal battery physics. It is also essential to predict the 

mechanical failure of battery electrodes. 

In this study, we propose a new SP model that include electrolyte physics and a 

stress-diffusion coupling effect that improves the accuracy and computational efficiency 

of conventional SP models. To this end, a second-order analytical expression for 

electrolyte concentration distribution was developed based on electrochemical physics 

inside the entire battery cell, and the stress-enhanced diffusion was coupled to these 

physics. Simulation results of the proposed SP model were validated by comparing them 

with the results from a full-order electrochemical model and a conventional SP model. 

Further, galvanostatic constant discharge tests, the Dynamic Stress Test (DST), and the 

Highway Fuel Economy Test (HWFET) were conducted to demonstrate the accuracy of 

the new SP model for various operation scenarios. 

 

2. PROPOSED SINGLE PARTICLE MODEL WITH ELECTROLYTE AND 
STRESS-ENHANCED DIFFUSION PHYSICS 

 

Figure 1 is a schematic of a li-ion cell composed of two electrodes (solid matrix 

inside an electrolyte solution) and a separator (electrolyte solution). In the full order 

Pseudo-2D (P2D) electrochemical model, li-ion transport in the electrolyte phase is 

considered only in the x direction. The diffusional process in the solid phase is solved 
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based on a symmetric spherical particle assumption that the electrochemical reaction 

takes place on the surface of the particle.  

The P2D electrochemical battery model consists of ten coupled nonlinear partial 

differential equations for the mass and charge balance in the solid and electrolyte phases 

[12]. The SP model is a simplified form of the P2D mode; however it does not include 

the electrolyte physics and mechanical responses. The following section presents the 

governing equations and assumptions for the proposed SP model.  

 

2.1. SINGLE PARTICLE MODEL 

In the conventional SP model, it is assumed that all particles in the electrode 

behave in a similar manner. Therefore, each electrode can be modeled as a single 

spherical particle, as shown in Fig. 1.  

 

 

Figure 1. Schematic representation of three regions in li-ion cell. 
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Further, current passing through an electrode is assumed to be distributed 

uniformly over all of the particles [18, 34]. Each li-ion travels inside spherical solid 

particles by a diffusion process given by Fick’s second law 

 

𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑡𝑡

=
𝐷𝐷𝑠𝑠,𝑗𝑗

𝑟𝑟2
 
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2

𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑟𝑟

� (1) 

where cs,j  is the solid-phase li-ion concentration, 𝑡𝑡 is time, r is the radial coordinate, Ds,j 

is the solid-phase diffusion coefficient, and the subscript j = p/n denotes the 

positive/negative electrode.  

The boundary conditions for Eq. 1 are 

 

𝐷𝐷𝑠𝑠,𝑗𝑗
𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟,𝑟𝑟)

𝜕𝜕𝑟𝑟
�
𝑟𝑟=0

= 0,  𝐷𝐷𝑠𝑠,𝑗𝑗
𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟,𝑟𝑟)

𝜕𝜕𝑟𝑟
�
𝑟𝑟=𝑅𝑅𝑗𝑗

= −𝐽𝐽𝐿𝐿𝐿𝐿 (2) 

where Rj is the electrode particle radius.  

The electrochemical reaction rate for the li-ion intercalation/(de)intercalation at 

the solid/solution interface, JLi, can be expressed via the Butler-Volmer kinetics as [34] 

 

𝐽𝐽𝐿𝐿𝐿𝐿 = 𝑘𝑘𝑗𝑗𝑐𝑐𝑠𝑠,𝑗𝑗,𝑚𝑚𝑎𝑎𝑚𝑚𝑐𝑐𝑒𝑒0.5 �1 −
𝑐𝑐𝑠𝑠,𝑗𝑗,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝑡𝑡)
𝑐𝑐𝑠𝑠,𝑗𝑗,𝑚𝑚𝑎𝑎𝑚𝑚

�
0.5

�
𝑐𝑐𝑠𝑠,𝑗𝑗,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝑡𝑡)
𝑐𝑐𝑠𝑠,𝑗𝑗,𝑚𝑚𝑎𝑎𝑚𝑚

�
0.5

�exp �
0.5𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂𝑗𝑗(𝑡𝑡)�

− exp �
−0.5𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂𝑗𝑗(𝑡𝑡)�� 

(3) 

where kj is the reaction rate constant, ce is the electrolyte concentration, R is the universal 

gas constant, T is the temperature, F is Faraday’s constant, and cs,j,surf(t) is expressed as a 

function of particle surface concentration cs,j,surf(t)= cs,j(Rj,t). 

The parameter 𝜂𝜂𝑗𝑗 is the surface over-potential, defined as   ηj = Φ1,j- Φ2,j-Uj, where 



88 
 
Φ1,j is the solid-phase potential, Φ2,j is solution-phase potential, and Uj is the Open Circuit 

Potential (OCP). The OCP, in general, is a function of the normalized surface 

concentration, cs,j,surf(t)/cs,j,max(t), and temperature. Then, the potential difference can be 

obtained from Eq. 3 

 

𝜂𝜂𝑗𝑗(𝑡𝑡) =
2𝑅𝑅𝑅𝑅
𝐹𝐹

ln �𝑚𝑚𝑗𝑗(𝑡𝑡) + �𝑚𝑚𝑗𝑗
2(𝑡𝑡) + 1� (4) 

where 𝑚𝑚𝑗𝑗(𝑡𝑡) = 𝐽𝐽𝐿𝐿𝐿𝐿

2𝑘𝑘𝑗𝑗𝑐𝑐𝑠𝑠,𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑒𝑒0.5�1−
𝑐𝑐𝑠𝑠,𝑗𝑗,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)
𝑐𝑐𝑠𝑠,𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚

�
0.5
�
𝑐𝑐𝑠𝑠,𝑗𝑗,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)
𝑐𝑐𝑠𝑠,𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚

�
0.5.  

Finally, the li-ion battery terminal voltage can be calculated based on the solid 

phase potential difference between both ends of the cell [34] 

 

𝜌𝜌𝑟𝑟(𝑡𝑡) = Φ1,𝑝𝑝(𝑡𝑡)�
𝑚𝑚=𝐿𝐿

− Φ1,𝑐𝑐(𝑡𝑡)�
𝑚𝑚=0

= �𝜂𝜂𝑝𝑝 + Φ2,𝑝𝑝(𝑡𝑡)�
𝑚𝑚=𝐿𝐿

+ 𝑈𝑈𝑝𝑝� − �𝜂𝜂𝑐𝑐 + Φ2,𝑐𝑐(𝑡𝑡)�
𝑚𝑚=0

+ 𝑈𝑈𝑐𝑐�

= 𝑈𝑈𝑝𝑝 �
𝑐𝑐𝑠𝑠,𝑝𝑝,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝑡𝑡)
𝑐𝑐𝑠𝑠,𝑝𝑝,𝑚𝑚𝑎𝑎𝑚𝑚

� − 𝑈𝑈𝑐𝑐 �
𝑐𝑐𝑠𝑠,𝑐𝑐,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝑡𝑡)
𝑐𝑐𝑠𝑠,𝑐𝑐,𝑚𝑚𝑎𝑎𝑚𝑚

�

+
2𝑅𝑅𝑅𝑅
𝐹𝐹

�ln �𝑚𝑚𝑝𝑝(𝑡𝑡) + �𝑚𝑚𝑝𝑝
2(𝑡𝑡) + 1�

− ln �𝑚𝑚𝑐𝑐(𝑡𝑡) + �𝑚𝑚𝑐𝑐
2(𝑡𝑡) + 1�� + Φ2,𝑝𝑝(𝑡𝑡)�

𝑚𝑚=𝐿𝐿
− Φ2,𝑐𝑐(𝑡𝑡)�

𝑚𝑚=0
 

(5) 

where 𝛷𝛷2,𝑝𝑝(𝑡𝑡)�
𝑚𝑚=𝐿𝐿

− 𝛷𝛷2,𝑐𝑐(𝑡𝑡)�
𝑚𝑚=0

 denotes the electrolyte potential difference.  

In the SP model, the potential gradient inside the electrolyte is neglected. In such 

models, introducing a resistance term into the Butler-Volmer kinetics only aims at 

modeling the interface resistance and does not account for the potential distribution 
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within the electrolyte. The internal resistance is approximated as an ohmic voltage drop, 

iappRcell, where iapp is the applied current density. The resistance value Rcell depends on 

many complex mass and charge transfer phenomena. Guo et al. [34] approximated this 

resistance as an empirical function of the ambient temperature and the battery terminal 

current. In [35], the resistance Rcell is assumed as a function of electrode ionic 

conductivities and electrode thicknesses. This assumption is a critical drawback of the 

conventional SP model and, as a result, the model cannot adequately describe battery 

dynamics at high C-rates [16-20].  

 

2.2. ELECTROLYTE CONCENTRATION DISTRIBUTION AND 
ELECTROLYTE POTENTIAL DIFFERENCE 

 
In the proposed SP model, the li-ion concentration distribution is obtained by 

applying mass conservation in the electrolyte. Here, the electrolyte concentration 

distribution, ce,i(x,t), includes the lithium ionic concentration in both electrodes and the 

separator as a function of time, t, and position, x, where the subscript i = p/s/n represents 

the positive electrode/separator/negative electrode. The transfer of li-ions in the 

electrolyte can be described by porous electrode theory. In the separator region, Fick’s 

first law is used because there is no electrochemical reaction in that region. 

Consequently, the governing equations for the electrolyte concentration in the positive 

electrode, separator, and negative electrode, respectively, are [22,25] 

 

𝜀𝜀𝑒𝑒,𝑐𝑐
𝜕𝜕𝑐𝑐𝑒𝑒,𝑐𝑐

𝜕𝜕𝑡𝑡
= 𝐷𝐷𝑒𝑒,𝑐𝑐

𝑒𝑒𝑠𝑠𝑠𝑠 𝜕𝜕2𝑐𝑐𝑒𝑒,𝑐𝑐

𝜕𝜕𝑒𝑒2
+ (1 − 𝑡𝑡+)

𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝
𝐹𝐹𝐿𝐿𝑐𝑐

    (0 ≤ 𝑒𝑒 ≤ 𝐿𝐿𝑐𝑐) (6) 
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𝜀𝜀𝑒𝑒,𝑠𝑠
𝜕𝜕𝑐𝑐𝑒𝑒,𝑠𝑠

𝜕𝜕𝑡𝑡
= 𝐷𝐷𝑒𝑒,𝑠𝑠

𝑒𝑒𝑠𝑠𝑠𝑠 𝜕𝜕2𝑐𝑐𝑒𝑒,𝑠𝑠

𝜕𝜕𝑒𝑒2
     (𝐿𝐿𝑐𝑐 ≤ 𝑒𝑒 ≤ 𝐿𝐿𝑐𝑐 + 𝐿𝐿𝑠𝑠) (7) 

 

𝜀𝜀𝑒𝑒,𝑝𝑝
𝜕𝜕𝑐𝑐𝑒𝑒,𝑝𝑝

𝜕𝜕𝑡𝑡
= 𝐷𝐷𝑒𝑒,𝑝𝑝

𝑒𝑒𝑠𝑠𝑠𝑠 𝜕𝜕2𝑐𝑐𝑒𝑒,𝑝𝑝

𝜕𝜕𝑒𝑒2
+ (1 − 𝑡𝑡+)

𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝
𝐹𝐹𝐿𝐿𝑝𝑝

    �𝐿𝐿𝑐𝑐 + 𝐿𝐿𝑠𝑠 ≤ 𝑒𝑒 ≤ 𝐿𝐿𝑐𝑐 + 𝐿𝐿𝑠𝑠 + 𝐿𝐿𝑝𝑝� (8) 

where 𝐷𝐷𝑒𝑒,𝐿𝐿
𝑒𝑒𝑠𝑠𝑠𝑠 = 𝐷𝐷𝑒𝑒𝜀𝜀𝑒𝑒,𝐿𝐿

𝑏𝑏𝑟𝑟𝑠𝑠𝑎𝑎 is the effective diffusivity, Ln/Ls/Lp and εe,n/εe,s/εe,p are the 

thicknesses and the porosities for the anode, separator, and cathode, respectively, and 

brug denotes the bruggeman coefficient, which is 1.5.  

The diffusion coefficient, De, and the cationic transport number in the electrolyte, 

t+, are considered to be constant and independent of the electrolyte concentration. 

Considering the continuity of the concentration and mass flux, their boundary conditions 

can be expressed as: 

1. No mass flux at the two ends of the cell in the x-direction 

 

𝜕𝜕𝑐𝑐𝑒𝑒,𝑐𝑐

𝜕𝜕𝑒𝑒
�
𝑚𝑚=0

= 0,   
𝜕𝜕𝑐𝑐𝑒𝑒,𝑝𝑝

𝜕𝜕𝑒𝑒
�
𝑚𝑚=𝐿𝐿

= 0 (9) 

       

2. Continuity of the concentration and flux at the anode-separator interface 

 

𝑐𝑐𝑒𝑒,𝑐𝑐(𝐿𝐿𝑐𝑐, 𝑡𝑡) = 𝑐𝑐𝑒𝑒,𝑠𝑠(𝐿𝐿𝑐𝑐, 𝑡𝑡) ,   𝐷𝐷𝑒𝑒,𝑐𝑐
𝑒𝑒𝑠𝑠𝑠𝑠 𝜕𝜕𝑐𝑐𝑒𝑒,𝑐𝑐

𝜕𝜕𝑒𝑒
�
𝑚𝑚=𝐿𝐿𝑛𝑛

= 𝐷𝐷𝑒𝑒,𝑠𝑠
𝑒𝑒𝑠𝑠𝑠𝑠 𝜕𝜕𝑐𝑐𝑒𝑒,𝑠𝑠

𝜕𝜕𝑒𝑒
�
𝑚𝑚=𝐿𝐿𝑛𝑛

 
(10) 

 

 

3. Continuity of the concentration and flux at the separator-cathode interface 
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 𝑐𝑐𝑒𝑒,𝑠𝑠(𝐿𝐿𝑐𝑐 + 𝐿𝐿𝑠𝑠, 𝑡𝑡) = 𝑐𝑐𝑒𝑒,𝑝𝑝(𝐿𝐿𝑐𝑐 + 𝐿𝐿𝑠𝑠, 𝑡𝑡),

𝐷𝐷𝑒𝑒,𝑠𝑠
𝑒𝑒𝑠𝑠𝑠𝑠 𝜕𝜕𝑐𝑐𝑒𝑒,𝑠𝑠

𝜕𝜕𝑒𝑒
�
𝑚𝑚=𝐿𝐿𝑛𝑛+𝐿𝐿𝑠𝑠

=  𝐷𝐷𝑒𝑒,𝑝𝑝
𝑒𝑒𝑠𝑠𝑠𝑠 𝜕𝜕𝑐𝑐𝑒𝑒,𝑝𝑝

𝜕𝜕𝑒𝑒
�
𝑚𝑚=𝐿𝐿𝑛𝑛+𝐿𝐿𝑠𝑠

 
(11) 

 

4. Electrolyte concentration balance inside the entire region 

 

� 𝑐𝑐𝑒𝑒,𝑐𝑐(𝑒𝑒, 𝑡𝑡)𝜀𝜀𝑒𝑒,𝑐𝑐 𝑎𝑎𝑒𝑒
Ln

0
+ � 𝑐𝑐𝑒𝑒,𝑠𝑠(𝑒𝑒, 𝑡𝑡)𝜀𝜀𝑒𝑒,𝑠𝑠 𝑎𝑎𝑒𝑒

Ln+Ls

Ln
+ � 𝑐𝑐𝑒𝑒,𝑝𝑝(𝑒𝑒, 𝑡𝑡)𝜀𝜀𝑒𝑒,𝑝𝑝 𝑎𝑎𝑒𝑒

Ln+Ls+Lp

Ln+Ls

= 𝑐𝑐0(Ln + Ls + Lp) 

(12) 

 

The continuous electrolyte concentration profiles (Eqs. 6-8) can be approximated, 

in general, by polynomial functions 

 

𝑐𝑐𝑒𝑒,𝐿𝐿(𝑒𝑒, 𝑡𝑡) = 𝛼𝛼𝑘𝑘(𝑡𝑡)𝑒𝑒𝑚𝑚 + 𝛼𝛼𝑘𝑘(𝑡𝑡)𝑒𝑒𝑚𝑚−1⋯+ 𝛼𝛼𝑘𝑘(𝑡𝑡) + 𝛽𝛽   𝑖𝑖 = 𝑒𝑒, 𝑠𝑠,𝑎𝑎    𝑘𝑘 = 1,2,3⋯ (13) 

 

The polynomial orders for the electrolyte concentrations in the electrodes and 

separator can be different. It has been observed at steady state that the electrolyte 

concentration distribution can be approximated by a parabolic profile in the electrodes 

and a linear profile in the separator [22]. At the beginning of discharge, the li-ions 

deintercalate from the active particles to the electrolyte in the negative electrode, and 

intercalate from the electrolyte to the cathode particles in the positive electrode. Thus, the 

electrolyte concentration in the negative electrode increases, while it decreases in the 

positive electrode. As t = ∞, the cell stays a steady status and the competitive effects of 

the li-ions moving into/out of the electrolyte from the solid electrodes (i.e. 
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electrochemical reaction) and the concentration gradient (i.e. diffusion) are balanced [22, 

23]. In this work, second-order polynomials are chosen for the electrolyte concentrations 

inside the negative electrode, the separator, and the positive electrode, respectively. For 

this, the general equation in Eq. (13) is further simplified with αk as a form of 

𝑎𝑎𝑘𝑘(1 − 𝑒𝑒−𝑏𝑏𝑘𝑘 𝑟𝑟) and β to be the initial concentration c0 

 

𝑐𝑐𝑒𝑒,𝑐𝑐(𝑒𝑒, 𝑡𝑡) = 𝑎𝑎1(1 − 𝑒𝑒−𝑏𝑏1 𝑟𝑟)𝑒𝑒2 + 𝑎𝑎2(1 − 𝑒𝑒−𝑏𝑏1 𝑟𝑟) + 𝑐𝑐0 (14) 

 

𝑐𝑐𝑒𝑒,𝑠𝑠(𝑒𝑒, 𝑡𝑡) = 𝑎𝑎3(1 − 𝑒𝑒−𝑏𝑏3 𝑟𝑟)𝑒𝑒2 + 𝑎𝑎4(1 − 𝑒𝑒−𝑏𝑏3 𝑟𝑟) + 𝑐𝑐0 (15) 

 

𝑐𝑐𝑒𝑒,𝑝𝑝(𝑒𝑒, 𝑡𝑡) = 𝑎𝑎5(1 − 𝑒𝑒−𝑏𝑏2 𝑟𝑟)(𝐿𝐿 − 𝑒𝑒)2 + 𝑎𝑎6(1− 𝑒𝑒−𝑏𝑏2 𝑟𝑟) + 𝑐𝑐0 (16) 

 

The initial electrolyte concentration is 

 

𝑐𝑐𝑒𝑒,𝐿𝐿(𝑒𝑒, 0) = 𝑐𝑐0 (17) 

 

Under steady-state conditions, the electrolyte concentrations at different locations 

are independent of time; therefore, equations (14-16), respectively, become 

 

𝑐𝑐𝑒𝑒,𝑐𝑐(𝑒𝑒, 𝑡𝑡) = 𝑎𝑎1𝑒𝑒2 + 𝑎𝑎2 + 𝑐𝑐0 (18) 

 

𝑐𝑐𝑒𝑒,𝑠𝑠(𝑒𝑒, 𝑡𝑡) = 𝑎𝑎3𝑒𝑒2 + 𝑎𝑎4 + 𝑐𝑐0 (19) 
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𝑐𝑐𝑒𝑒,𝑝𝑝(𝑒𝑒, 𝑡𝑡) = 𝑎𝑎5(𝐿𝐿 − 𝑒𝑒)2 + 𝑎𝑎6 + 𝑐𝑐0 (20) 

 

In addition, based on Eqs. 6-8, the total amount of Li+ in the three regions can be 

expressed by the following equations [25]: 

 

𝑎𝑎
𝑎𝑎𝑡𝑡
�𝜀𝜀𝑒𝑒,𝑐𝑐 � 𝑐𝑐𝑒𝑒,𝑐𝑐(𝑒𝑒, 𝑡𝑡) 𝑎𝑎𝑒𝑒

𝐿𝐿𝑛𝑛

0

� = 𝐷𝐷𝑒𝑒,𝑐𝑐
𝑒𝑒𝑠𝑠𝑠𝑠 𝑎𝑎𝑐𝑐𝑒𝑒,𝑐𝑐(𝐿𝐿𝑐𝑐, 𝑡𝑡)

𝑎𝑎𝑒𝑒
+ (1 − 𝑡𝑡+)

𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝
𝐹𝐹

  (21) 

 

𝑎𝑎
𝑎𝑎𝑡𝑡
�𝜀𝜀𝑒𝑒,𝑠𝑠 � 𝑐𝑐𝑒𝑒,𝑠𝑠(𝑒𝑒, 𝑡𝑡) 𝑎𝑎𝑒𝑒

𝐿𝐿𝑛𝑛+𝐿𝐿𝑠𝑠

𝐿𝐿𝑛𝑛

� = 𝐷𝐷𝑒𝑒,𝑠𝑠
𝑒𝑒𝑠𝑠𝑠𝑠 �

𝑎𝑎𝑐𝑐𝑒𝑒,𝑠𝑠(𝐿𝐿𝑐𝑐 + 𝐿𝐿𝑠𝑠, 𝑡𝑡)
𝑎𝑎𝑒𝑒

−
𝑎𝑎𝑐𝑐𝑒𝑒,𝑠𝑠(𝐿𝐿𝑐𝑐, 𝑡𝑡)

𝑎𝑎𝑒𝑒
� (22) 

        

𝑎𝑎
𝑎𝑎𝑡𝑡
�𝜀𝜀𝑒𝑒,𝑝𝑝 � 𝑐𝑐𝑒𝑒,𝑝𝑝(𝑒𝑒, 𝑡𝑡) 𝑎𝑎𝑒𝑒

𝐿𝐿𝑛𝑛+𝐿𝐿𝑠𝑠+𝐿𝐿𝑝𝑝

𝐿𝐿𝑛𝑛+𝐿𝐿𝑠𝑠

� = −𝐷𝐷𝑒𝑒,𝑝𝑝
𝑒𝑒𝑠𝑠𝑠𝑠 𝑎𝑎𝑐𝑐𝑒𝑒,𝑝𝑝(𝐿𝐿𝑐𝑐 + 𝐿𝐿𝑠𝑠, 𝑡𝑡)

𝑎𝑎𝑒𝑒
− (1 − 𝑡𝑡+)

𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝
𝐹𝐹

    (23) 

 

The coefficients ak can be obtained from the boundary conditions in Eqs. 10-12 

and from mass conservation (Eqs. 21-23) 

 

𝑎𝑎1 = −
𝜀𝜀𝑒𝑒,𝑐𝑐
−𝑏𝑏𝑟𝑟𝑠𝑠𝑎𝑎𝐽𝐽

2 𝐷𝐷𝑒𝑒 𝐿𝐿𝑐𝑐
 (24) 

 

𝑎𝑎2 =
�𝐽𝐽�𝜀𝜀𝑒𝑒,𝑛𝑛

1−𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝐿𝐿𝑛𝑛2+2𝜀𝜀𝑒𝑒,𝑝𝑝
1−𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝐿𝐿𝑝𝑝2+6𝜀𝜀𝑒𝑒,𝑝𝑝𝜀𝜀𝑒𝑒,𝑠𝑠

−𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝐿𝐿𝑠𝑠𝐿𝐿𝑝𝑝+3𝜀𝜀𝑒𝑒,𝑠𝑠
1−𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝐿𝐿𝑠𝑠2+3𝜀𝜀𝑒𝑒,𝑛𝑛

1−𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝐿𝐿𝑛𝑛�𝜀𝜀𝑒𝑒,𝑝𝑝𝐿𝐿𝑝𝑝+𝜀𝜀𝑒𝑒,𝑠𝑠𝐿𝐿𝑠𝑠���

6𝐷𝐷𝑒𝑒(𝜀𝜀𝑒𝑒,𝑛𝑛𝐿𝐿𝑛𝑛+𝜀𝜀𝑒𝑒,𝑝𝑝𝐿𝐿𝑝𝑝+𝜀𝜀𝑒𝑒,𝑠𝑠𝐿𝐿𝑠𝑠)
   (25) 
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𝑎𝑎5 =
𝜀𝜀𝑒𝑒,𝑝𝑝
−𝑏𝑏𝑟𝑟𝑠𝑠𝑎𝑎𝐽𝐽

2𝐷𝐷𝑒𝑒𝐿𝐿𝑝𝑝
 (26) 

𝑎𝑎6= −

𝐽𝐽(2𝜀𝜀𝑒𝑒,𝑛𝑛
1−𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝐿𝐿𝑛𝑛2+3𝜀𝜀𝑒𝑒,𝑛𝑛𝜀𝜀𝑒𝑒,𝑝𝑝

−𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝐿𝐿𝑛𝑛𝐿𝐿𝑝𝑝+𝜀𝜀𝑒𝑒,𝑝𝑝
1−𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝐿𝐿𝑝𝑝2+6𝜀𝜀𝑒𝑒,𝑛𝑛𝜀𝜀𝑒𝑒,𝑠𝑠

−𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝐿𝐿𝑛𝑛𝐿𝐿𝑠𝑠+3𝜀𝜀𝑒𝑒,𝑝𝑝
−𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝜀𝜀𝑒𝑒,𝑠𝑠𝐿𝐿𝑠𝑠𝐿𝐿𝑝𝑝+3𝜀𝜀𝑒𝑒,𝑠𝑠

1−𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝐿𝐿𝑠𝑠2)

6𝐷𝐷𝑒𝑒(𝜀𝜀𝑒𝑒,𝑛𝑛𝐿𝐿𝑛𝑛+𝜀𝜀𝑒𝑒,𝑝𝑝𝐿𝐿𝑝𝑝+𝜀𝜀𝑒𝑒,𝑠𝑠𝐿𝐿𝑠𝑠)
   

(27) 

where 𝐽𝐽 = (1 − 𝑡𝑡+) 𝐿𝐿𝑚𝑚𝑝𝑝𝑝𝑝
𝐹𝐹

.  

 In the unsteady state, a linear concentration in the separator is assumed to simplify 

Eq. (15) using two values at the boundaries of the anode-separator and separator-cathode. 

As a result, the expression for electrolyte concentration distribution in the separator (Eq. 

15) can be rewritten as 

 

𝑐𝑐𝑒𝑒,𝑠𝑠(𝑒𝑒, 𝑡𝑡) =

(𝑚𝑚−𝐿𝐿𝑛𝑛−𝐿𝐿𝑠𝑠)�𝑎𝑎5�1−𝑒𝑒−𝑏𝑏2 𝑡𝑡�𝐿𝐿𝑝𝑝2+𝑎𝑎6�1−𝑒𝑒−𝑏𝑏2 𝑡𝑡�−�𝑎𝑎1�1−𝑒𝑒−𝑏𝑏1 𝑡𝑡�𝐿𝐿𝑛𝑛2+𝑎𝑎2�1−𝑒𝑒−𝑏𝑏1 𝑡𝑡���
𝐿𝐿𝑠𝑠

 +

𝑎𝑎5(1 − 𝑒𝑒−𝑏𝑏2 𝑟𝑟)𝐿𝐿𝑝𝑝2 + 𝑎𝑎6(1 − 𝑒𝑒−𝑏𝑏2 𝑟𝑟) + 𝑐𝑐0   

(28) 

 

Then, based on flux continuity and approximated solution (Eqs. 10, 11, 14, 16 and 

28), the coefficients b1 and b2 are 

𝑏𝑏1 =
6D𝑒𝑒ε𝑒𝑒,𝑐𝑐

brug−1ε𝑒𝑒,𝑝𝑝
brugε𝑒𝑒,𝑠𝑠

brug(𝜀𝜀𝑒𝑒,𝑐𝑐𝐿𝐿𝑐𝑐 + ε𝑒𝑒,𝑝𝑝𝐿𝐿𝑝𝑝 + ε𝑒𝑒,𝑠𝑠𝐿𝐿𝑠𝑠)

𝐿𝐿𝑐𝑐�2ε𝑒𝑒,𝑐𝑐
brugε𝑒𝑒,𝑝𝑝ε𝑒𝑒,𝑠𝑠

brugL𝑝𝑝2 + 2ε𝑒𝑒,𝑝𝑝
1+brug𝐿𝐿𝑝𝑝�ε𝑒𝑒,𝑠𝑠

brug𝐿𝐿𝑐𝑐 + 3ε𝑒𝑒,𝑐𝑐
brug𝐿𝐿𝑠𝑠� + ε𝑒𝑒,𝑝𝑝

brugε𝑒𝑒,𝑠𝑠𝐿𝐿𝑠𝑠�2ε𝑒𝑒,𝑠𝑠
brug𝐿𝐿𝑐𝑐 + 3ε𝑒𝑒,𝑐𝑐

brug𝐿𝐿𝑠𝑠��
 

                                                                

(29) 

𝑏𝑏2 =
6D𝑒𝑒ε𝑒𝑒,𝑐𝑐

brugε𝑒𝑒,𝑝𝑝
brug−1ε𝑒𝑒,𝑠𝑠

brug(𝜀𝜀𝑒𝑒,𝑐𝑐𝐿𝐿𝑐𝑐 + ε𝑒𝑒,𝑝𝑝𝐿𝐿𝑝𝑝 + ε𝑒𝑒,𝑠𝑠𝐿𝐿𝑠𝑠)

𝐿𝐿𝑝𝑝�2ε𝑒𝑒,𝑐𝑐ε𝑒𝑒,𝑝𝑝
brugε𝑒𝑒,𝑠𝑠

brugL𝑐𝑐2 + 2ε𝑒𝑒,𝑐𝑐
1+brug𝐿𝐿𝑐𝑐�ε𝑒𝑒,𝑠𝑠

brug𝐿𝐿𝑝𝑝 + 3ε𝑒𝑒,𝑝𝑝
brug𝐿𝐿𝑠𝑠� + ε𝑒𝑒,𝑐𝑐

brug�2ε𝑒𝑒,𝑠𝑠
1+brug𝐿𝐿𝑝𝑝𝐿𝐿𝑠𝑠 + 3ε𝑒𝑒,𝑝𝑝

brugε𝑒𝑒,𝑠𝑠L𝑠𝑠2��
 

(30) 
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 Eqs. 14, 16, and 28 are the analytical solutions for the electrolyte concentration 

distribution in the cathode, electrolyte, and anode regions, respectively, as a function of 

the spatial coordinate x (Fig. 1).  

Then the electrolyte potential and potential difference can be calculated as 

detailed in ref. 36. The analytical equations for electrolyte potential were derived based 

on the electrolyte charge conservation equation, and expressed as: 

For the negative electrode region (0 �  x �  Ln) 

 

Φ𝑒𝑒(𝑒𝑒) = Φ𝑒𝑒(0) + (1 − 𝑡𝑡+)
2𝑅𝑅𝑅𝑅
𝐹𝐹

ln
𝑐𝑐𝑒𝑒(𝑒𝑒)
𝑐𝑐𝑒𝑒(0) −

𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝
2𝐿𝐿𝑐𝑐𝑘𝑘𝑐𝑐

𝑒𝑒𝑠𝑠𝑠𝑠 𝑒𝑒
2 (31) 

 

For the separator region (Ln  �  x �  Ln+Ls) 

 

Φ𝑒𝑒(𝑒𝑒) = Φ𝑒𝑒(0) + (1 − 𝑡𝑡+)
2𝑅𝑅𝑅𝑅
𝐹𝐹

ln
𝑐𝑐𝑒𝑒(𝑒𝑒)
𝑐𝑐𝑒𝑒(0) −

𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝
𝑘𝑘𝑠𝑠
𝑒𝑒𝑠𝑠𝑠𝑠 (𝑒𝑒 − 𝐿𝐿𝑐𝑐) −

𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝𝐿𝐿𝑐𝑐
2𝑘𝑘𝑐𝑐

𝑒𝑒𝑠𝑠𝑠𝑠  (32) 

 

For the positive electrode region (Ln+Ls  �  x �  Ln+Ls+Lp) 

 

Φ𝑒𝑒(𝑒𝑒) = Φ𝑒𝑒(0) + (1 − 𝑡𝑡+)
2𝑅𝑅𝑅𝑅
𝐹𝐹

ln
𝑐𝑐𝑒𝑒(𝑒𝑒)
𝑐𝑐𝑒𝑒(0) +

𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝
2𝐿𝐿𝑝𝑝𝑘𝑘𝑝𝑝

𝑒𝑒𝑠𝑠𝑠𝑠 (𝐿𝐿 − 𝑒𝑒)2 −
𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝

2
(
𝐿𝐿𝑐𝑐
𝑘𝑘𝑐𝑐
𝑒𝑒𝑠𝑠𝑠𝑠

+
2𝐿𝐿𝑠𝑠
𝑘𝑘𝑠𝑠
𝑒𝑒𝑠𝑠𝑠𝑠 +

𝐿𝐿𝑝𝑝
𝑘𝑘𝑝𝑝
𝑒𝑒𝑠𝑠𝑠𝑠) 

(33) 
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where 𝑘𝑘𝐿𝐿

𝑒𝑒𝑠𝑠𝑠𝑠 = 𝑘𝑘𝐿𝐿 ∗ ε𝐿𝐿
brug, and kn, ks, and kp are the electrolyte conductivities in the anode, 

separator, and cathode, respectively, which are functions of electrolyte concentration 

[36].  

The electrolyte potential difference is obtained by the difference between the 

potentials taken from the electrode-current collector interface (i.e., x = 0 and x = L). In 

addition, the last part of Eq. 34 can be regarded as anohmic resistance, which is expressed 

as a function of electrode geometry and electrolyte effective conductivity. [36]  

 

Φ2,𝑝𝑝(𝑡𝑡)�
𝑚𝑚=𝐿𝐿

− Φ2,𝑐𝑐(𝑡𝑡)�
𝑚𝑚=0

= Φ𝑒𝑒(𝐿𝐿, 𝑡𝑡) −Φ𝑒𝑒(0, 𝑡𝑡) 

= (1 − 𝑡𝑡+)
2𝑅𝑅𝑅𝑅
𝐹𝐹

ln
𝑐𝑐𝑒𝑒,𝑝𝑝(𝐿𝐿, 𝑡𝑡)
𝑐𝑐𝑒𝑒,𝑐𝑐(0, 𝑡𝑡)

−
𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝

2
(
𝐿𝐿𝑐𝑐
𝑘𝑘𝑐𝑐
𝑒𝑒𝑠𝑠𝑠𝑠 +

2𝐿𝐿𝑠𝑠
𝑘𝑘𝑠𝑠
𝑒𝑒𝑠𝑠𝑠𝑠 +

𝐿𝐿𝑝𝑝
𝑘𝑘𝑝𝑝
𝑒𝑒𝑠𝑠𝑠𝑠) 

(34) 

 

2.3. STRESS MODEL 

In order to calculate the solid phase li-ion concentration due to a stress build-up, 

the insertion/extraction of ions are modeled as a diffusion-stress coupling process. By 

considering the chemical potential due to the concentration gradient and mechanical 

strain energy [28], the species flux, Jst, can be expressed by 

 

𝐽𝐽𝑠𝑠𝑟𝑟 = −𝐷𝐷𝑠𝑠,𝑗𝑗 �∇𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡) −
Ω𝑗𝑗𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)

𝑅𝑅𝑅𝑅
∇𝜎𝜎ℎ� =

𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝
𝐹𝐹

 (35) 

 

𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑡𝑡

+ ∇ ∙ 𝐽𝐽𝑠𝑠𝑟𝑟 = 0 (36) 

where Ωj is the partial molar volume and σh is the hydrostatic stress.  
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Then, concentration can be rewritten bysubstituting Eq. 35 into Eq. 36 

 

𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝐷𝐷𝑠𝑠,𝑗𝑗 �∇2𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡) −
Ω𝑗𝑗
𝑅𝑅𝑅𝑅

∇𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡) ∙ ∇𝜎𝜎ℎ −
Ω𝑗𝑗𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)

𝑅𝑅𝑅𝑅
∇2𝜎𝜎ℎ� (37) 

 

For the case of a spherical particle, the stress tensor contains two independent 

components [28]: radial stress σr and tangential stress σt. 

 

𝜎𝜎𝑟𝑟 =
2Ω𝑗𝑗𝐸𝐸𝑗𝑗

3�1 − 𝜈𝜈𝑗𝑗�
(

1
𝑅𝑅𝑗𝑗3

� �̃�𝑐
𝑅𝑅𝑗𝑗

0
𝑟𝑟2 𝑎𝑎𝑟𝑟 −

1
𝑟𝑟3
� �̃�𝑐
𝑟𝑟

0
𝑟𝑟2 𝑎𝑎𝑟𝑟) (38) 

 

𝜎𝜎𝑟𝑟 =
Ω𝑗𝑗𝐸𝐸𝑗𝑗

3�1 − 𝜈𝜈𝑗𝑗�
(

2
𝑅𝑅𝑗𝑗3

� �̃�𝑐
𝑅𝑅𝑗𝑗

0
𝑟𝑟2 𝑎𝑎𝑟𝑟 −

1
𝑟𝑟3
� �̃�𝑐
𝑟𝑟

0
𝑟𝑟2 𝑎𝑎𝑟𝑟 − �̃�𝑐) (39) 

where �̃�𝑐 is the concentration change from the initial value, νj is the Poisson’s ratio, and Ej 

is the Young’s modulus of active materials. The hydrostatic stress is [28] 

 

𝜎𝜎ℎ = (𝜎𝜎𝑟𝑟 + 2𝜎𝜎𝑟𝑟)/3 =
2Ω𝑗𝑗𝐸𝐸𝑗𝑗

9�1 − 𝜈𝜈𝑗𝑗�
(

3
𝑅𝑅𝑗𝑗3

� �̃�𝑐
𝑅𝑅𝑗𝑗

0
𝑟𝑟2 𝑎𝑎𝑟𝑟 − �̃�𝑐) (40) 

 

Substituting Eq. 40 into Eqs. 35 and 37  

 

𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝐷𝐷 �
𝜕𝜕2𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)

𝜕𝜕𝑟𝑟2
+

2
𝑟𝑟
𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)

𝜕𝜕𝑟𝑟
+ 𝜃𝜃𝑗𝑗 �

𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑟𝑟

�
2

+ 𝜃𝜃𝑗𝑗𝑐𝑐 �
𝜕𝜕2𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)

𝜕𝜕𝑟𝑟2
+

2
𝑟𝑟
𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)

𝜕𝜕𝑟𝑟
�� 

(41) 
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𝐽𝐽𝑠𝑠𝑟𝑟 = −𝐷𝐷𝑠𝑠,𝑗𝑗 �1 + 𝜃𝜃𝑗𝑗𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)�
𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)

𝜕𝜕𝑟𝑟
   𝑎𝑎𝑡𝑡 𝑟𝑟 = 𝑅𝑅𝑗𝑗 (42) 

where 𝜃𝜃𝑗𝑗 = 2Ω𝑗𝑗
2𝐸𝐸𝑗𝑗

9𝑅𝑅𝑅𝑅(1−𝜈𝜈𝑗𝑗)
 .  

Eqs. 1 and 2 are replaced by Eqs. 41 and 42, respectively, in the proposed SP 

model to calculate the solid phase concentration, and JLi is replaced with Jst in Eq. 3. In 

this way, the stress model is coupled with the proposed SP model with accurate 

electrolyte physics.  

 

3. RESULTS AND DISCUSSION 

 

In order to demonstrate the effectiveness of the proposed model, the LiMn2O4-

LiC6 battery chemistry from Doyle et al. [10] was adopted in this work. The parameters 

used in the simulation are listed in Table 1. All of the models were simulated on a 

computer using the Windows operating system with a 1.9GHz Intel Xeon CPU and 24 

GB of RAM. The P2D model (denoted “P2D”), conventional SP model (denoted “SP”), 

and proposed SP model (denoted “proposed model”) with/without stress consideration 

were simulated in Matlab with a COMSOL-Matlab LiveLink function. The computation 

time was recorded via a Time Portions of Code in Matlab. Each model used the same 

sampling period (1s) and a 1C discharge rate for 2810s (4.2V to 3V) to compare the 

computational efficiency. The Matlab program execution times for each model are listed 

in Table 2. The computational time of the SP model (19.0s) and the proposed model 

(19.2s) were reduced by 65%, as compared to the P2D model (55.0s). In addition, when 
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the stress field is added, the computational time of the P2D and the proposed SP model 

increases by 14s and 3.1s, respectively, reducing the time by 68% with the SP model.  

 

Table 1. Values of parameters used in the simulations. 
Parameter Value Description Ref 

Ln 1×10-4 Thickness of the negative electrode (m)  [10] 
Ls 52×10-6 Thickness of the separator (m) [10] 
Lp 183×10-6 Thickness of the positive electrode (m) [10] 
εn 0.375 Porosity of the negative electrode [10] 
εs 1 Porosity of the separator [10] 
εp 0.444 Porosity of the positive electrode [10] 
De 7.5×10-11 Diffusion coefficient in electrolyte (m2s-1) [10] 
kj 2×10-6 Reaction rate constant (m2.5mol-0.5s-1) [10] 
 F 96487 Faraday’s constant (C mol-1)   
t+ 0.363 Cationic transport number [10] 

iapp 17.5×C-rate  Crate times 1C discharge current density(Am-2) [10] 
c0 2000 Initial concentration (mol m-3) [10] 

Ds,n 3.9×10-14 Solid-phase Li diffusivity, negative electrode 
(m2s-1) 

[10] 

Ds,p 1×10-13 Solid-phase Li diffusivity, positive electrode 
(m2s-1) 

[10] 

Rn 12.5×10-6 Particle radius, negative electrode (m) [10] 
Rp 8×10-6 Particle radius, positive electrode (m) [10] 
R 8.314 Universal gas constant (J mol-1 K-1)   
T 298.15 Ambient temperature (K)   
Es 10 LMO Young’s modulus (GPa) [55] 
En 60 LiC6 Young’s modulus (GPa)  [33] 
νs 0.3 LMO Poisson’s ratio [55] 
νn 0.25 LiC6 Poisson’s ratio [33] 
Ωs 3.499×10-6 LMO partial molar volume [26] 
Ωn 4.926×10-6 LiC6 partial molar volume [26] 

Cmax, pos 22860 Positive maximum concentration (mol m-3) [10] 
Cmax, neg 26390  Negative maximum concentration (mol m-3) [10] 

 

Table 2. Comparison of P2D model, SP model, and proposed model computation times 
for 1C discharge. 

Model Computation time (s) 
without stress consideration with stress consideration 

P2D 55.0 69.0 
SP 19.0 22.0 
Proposed model 19.2 22.3 
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3.1. ELECTROLYTE CONCENTRATION DISTRIBUTION AND 
ELECTROLYTE POTENTIAL DIFFERENCE 

 
In order to verify the proposed model, the electrolyte concentration distributions 

of the analytical equations (Eqs. 14, 16 and 28) were compared with the numerical 

solutions of the governing equations with the boundary conditions given in Eqs. 6-12, 17. 

The results of the electrolyte concentration distribution are shown in Fig. 2a. Using the 

parameters in Table 1, the concentration change for a 1C discharge is displayed in Fig. 2a 

as a function of position, x, at different times, t. The prediction error between the second-

order analytical equations and the P2D model is a result of reduced degrees of freedom in 

the empirical equation for the electrolyte concentration. In addition, the accuracy of the 

proposed model increased over time (0.82% maximum error at 30 s to 0.36% maximum 

error at 1500 s) because the coefficients ak were derived based on steady-state conditions. 

 

 

Figure 2. (a) Comparison of the electrolyte concentration distribution at different times 
for a 1C discharge rate, (b) percentile errors between solutions. 

 

(a) 

(b) 
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The electrolyte concentrations for a 1C discharge as a function of time at the 

interface regions within a cell as shown in Fig. 3. The four selected interfaces are the 

interface between the current collector and the negative electrode, the interface between 

the negative electrode and the separator, the interface between the separator and the 

positive electrode, and the interface between the positive electrode and the current 

collector. As shown in Fig. 3, the concentration profiles at the electrode-current collector 

and electrode-separator interface agreed well (< 0.1% error) with the numerical solution. 

Compared with similar second-order analytical solutions [22, 25], the model proposed in 

this paper improved the electrolyte profile in the positive electrode. At the electrode-

current collector interface, the maximum concentration error is reduced from 2% [22] and 

4% [5] to 0.8%, where the battery voltage is calculated from the electrolyte potential at 

this point. Further, when comparing the model based on the third-order solution [23], this 

model and the model in [23] can accurately capture the physics of the electrolyte 

concentration at C-rates below 1C. However, for higher C-rates, the voltage profile in 

[23] showed a maximum error of about 4% at a 5C discharge with the volumetric mean 

flux, while the results of this study showed a 1.9% maximum error at a 5C discharge with 

a simpler second-order expression. Additionally, this approximate solution can be applied 

to any type of operating condition, as well as the galvanostatic discharge condition.  

In order to validate the model under dynamic loading, simulations of the Dynamic 

Stress Test (DST) and the Highway Fuel Economy Test (HWFET) were conducted. 

These tests are designed by the United States Advanced Battery Consortium to test EV 

and HEV batteries [37-39]. The electrolyte potential difference profiles for the DST and 

HWFET are plotted in Fig. 4. For the dynamic loading simulations, the initial electrolyte 
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concentration was updated by the last value from the previous step (i.e. c0  = ce(x,0) at t=0  

and  c0 = ce(x,t-Δt) at t≠0)  to capture the electrolyte concentration dynamic profile. 

Compared to the HWFET simulation, the DST simulation are less fluctuating but have 

higher C-rate loads. Therefore, the error from electrolyte potential difference at high C-

rates [22] will be more critical. For this reason, the errors will accumulate, leading to the 

deviation between the proposed SP and P2D models for the DST simulation. In general, 

Fig. 4 shows that the results from the proposed SP model agree well (average error < 

0.03V) with those from the P2D model simulations. Therefore, the form for the 

approximate solution given by Eq. 31 is validated as being effective for the dynamic 

operating scenarios seen in EV and HEV applications. In summary, the approximate 

solution obtained in this study can be used to accurately describe the variation in the 

electrolyte concentration with respect to position and time for different operating 

scenarios. 

 

 

Figure 3. Comparison of concentrations that vary with time at selected interfaces for 1C 
charge rate. 
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Figure 4. Electrolyte potential difference profile for (a) DST simulation and (b) HWFET 
simulation. 

 
 
 

Table 3. Average error of proposed SP model and SP model. 
Model 0.2C (%) 1C (%) 3C (%) 5C (%) 10C (%) 

SP 0.049±0.035 
 

0.183±0.101 
 

0.975±0.574 
 

1.533±0.887 
 

8.041±0.434 
 

Proposed model 0.032±0.023 0.146±0.064 0.630±0.331 0.935±0.608 4.417±0.841 
 

3.2. CELL VOLTAGE RESPONSE 

In this section, the cell voltage was simulated from 4.2 to 3 V for different C-rates 

(0.2C, 1C, 3C, 5C, and 10C) based on Eqs. 5 and 31. The results were then compared 

with the P2D model results in Fig. 5. As shown in Figs. 5a and 5b, both the SP and 

proposed SP models agree well with the P2D model results (0.0020 root mean square 

error (RMSE)) for a 0.2C discharge rate. However, for higher C-rates, the proposed SP 

model results (with RMSE of 0.0048 for 1C, 0.0249 for 3C, 0.0379 for 5C,  and 0.1509 

for 10C) were much closer than the SP results (RMSE of 0.0079 for 1C, 0.0380 for 3C, 

0.0689 for 5C,  and 0.2766 for 10C), as shown in Figs. 5c to 5j. The increased error at 

higher C-rates between the proposed SP and P2D models was because the electrolyte 

(a)                                                                               (b) 
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potential difference error increases with increasing C-rates as discussed in Section 2. The 

uniform reaction distribution (Eqs. 1 and 4) used in the proposed SP model also differed 

from the results of the P2D model with non-uniform reaction distribution [22]. However, 

the proposed SP model reduced the average voltage error (shown in Table 3) compared to 

the SP model. In addition, with a short period of discharge time (at the beginning of 

discharge), the proposed model showed only a very small maximum error (0.01% to 

0.21% for 0.2C to 3C), as compared to the rest of the discharge time. Thereby one of the 

shortcomings of the SP model has been overcome. Modern batteries, especially for 

HEVs, can operate at more than 10C, which is encountered during the DST [39, 40]. The 

case of 10C rate (Figs. 5g and 5h) demonstrated that the error rate increased considerably 

in the case of SP model, as compared to the case of the proposed SP model. In 

conclusion, results for the proposed SP model were in good agreement with those from 

the P2D model. The voltage error was reduced considerably (reduced 39.98% RMSE), as 

compared to the voltage errors resulting from the SP model. 

 The DST and HWFET were used to validate the proposed SP model for dynamic 

loads. As shown in Fig. 6, the proposed SP model for both the HWFET and the DST 

showed a considerable improvement in accuracy (reduced 55.8% RMSE for HWFET and 

25% RMSE for DST) compared to the SP model. As previously discussed, the proposed 

SP model was more accurate at short periods of discharge time and higher C-rates, as 

compared to the SP model, indicating the proposed SP model is capable of accurately 

predicting cell voltage for dynamic loads. 
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Figure 5. Comparison of time-dependent voltage responses and errors for P2D, SP, and 
proposed models for 0.2C (a and b), 1C (c and d), 3C (e and f), 5C (g and h), and 10C (i 

and j) galvanostatic discharges. 
 

(a)                                                                     (b) 

(c)                                                                      (d) 

(e)                                                                       (f) 
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Figure 5. Comparison of time-dependent voltage responses and errors for P2D, SP, and 
proposed models for 0.2C (a and b), 1C (c and d), 3C (e and f), 5C (g and h), and 10C (i 

and j) galvanostatic discharges. (Cont.) 
 

3.3. STRESS EFFECTS 

Based on Eqs. 41 and 42, the stress model was coupled with the proposed SP 

model. In order to analyze the impact of stress on battery performance, three different 

galvanostatic discharge cases were conducted (i.e. 0.2, 1, and 3C). The results for 

simulations using the proposed SP model, with and without coupling to the stress model, 

are shown in Fig. 7.  

Including the stress model produced negligible effects (maximum error < 0.01V) 

in the voltage profile for a 0.2C discharge. However, as shown in Figs. 7c, 7d, 7i, and 7j, 

(g)                                                                    (h) 

(i)                                                                    (j) 
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the voltage difference between the proposed SP model with and without stress increases 

with increasing C-rate, producing a maximum error of 0.16 V at the end of the 3C 

discharge. In addition, the effect of stress on anode surface concentration was more 

pronounced when the C-rate was higher, as shown in Figs. 7c, 7g, and 7k. However, the 

difference in cathode surface concentration was negligible, even for high C-rates, as 

shown in Figs. 7d, 7h, and 7l. To demonstrate the applicability of the stress model in 

online estimation, the stress effect was added in the DST and HWFET loading conditions 

and as shown in Figs. 7m and 7n, different voltage responses were also observed 

depending on whether or not the stress effect was included.  

 

 

Figure 6. Cell voltage profile and errors for P2D, SP, and proposed models for HWFET 
operating scenario (a and b) and DST operating scenario (c and d). 

(c)                                                                    (d) 

(a)                                                                    (b) 
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Figure 7. Comparison of proposed model with and without stress consideration (a) 

voltage comparison for 0.2C, (b) difference with and without stress consideration for 
0.2C, (c) solid phase concentration in negative electrode surface for 0.2C, and (d) solid 

phase concentration in positive electrode surface for 0.2C; (e) voltage comparison for 1C, 
(f) difference with and without stress consideration for 1C, (g) solid phase concentration 

in negative electrode surface for 1C, and (h) solid phase concentration in positive 
electrode surface for 1C; (i) voltage comparison for 3C, (j) difference with and without 

stress consideration for 3C, (k) solid phase concentration in negative electrode surface for 
3C, and (l) solid phase concentration in positive electrode surface for 3C; (m) voltage 

comparison for HWFET  and (n) voltage comparison for DST. 
 
 

 
 
 
 

(a)                                                                             (b) 

(c)                                                                            (d) 
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Figure 7. Comparison of proposed model with and without stress consideration (a) 

voltage comparison for 0.2C, (b) difference with and without stress consideration for 
0.2C, (c) solid phase concentration in negative electrode surface for 0.2C, and (d) solid 

phase concentration in positive electrode surface for 0.2C; (e) voltage comparison for 1C, 
(f) difference with and without stress consideration for 1C, (g) solid phase concentration 

in negative electrode surface for 1C, and (h) solid phase concentration in positive 
electrode surface for 1C; (i) voltage comparison for 3C, (j) difference with and without 

stress consideration for 3C, (k) solid phase concentration in negative electrode surface for 
3C, and (l) solid phase concentration in positive electrode surface for 3C; (m) voltage 

comparison for HWFET  and (n) voltage comparison for DST. (Cont.) 
 
 

 
 
 

(e)                                                                                (f) 

(g)                                                                               (h) 
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Figure 7. Comparison of proposed model with and without stress consideration (a) 

voltage comparison for 0.2C, (b) difference with and without stress consideration for 
0.2C, (c) solid phase concentration in negative electrode surface for 0.2C, and (d) solid 

phase concentration in positive electrode surface for 0.2C; (e) voltage comparison for 1C, 
(f) difference with and without stress consideration for 1C, (g) solid phase concentration 

in negative electrode surface for 1C, and (h) solid phase concentration in positive 
electrode surface for 1C; (i) voltage comparison for 3C, (j) difference with and without 

stress consideration for 3C, (k) solid phase concentration in negative electrode surface for 
3C, and (l) solid phase concentration in positive electrode surface for 3C; (m) voltage 

comparison for HWFET  and (n) voltage comparison for DST. (Cont.) 
 

(i)                                                                          (j) 

(k)                                                                          (l) 
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Figure 7. Comparison of proposed model with and without stress consideration (a) 

voltage comparison for 0.2C, (b) difference with and without stress consideration for 
0.2C, (c) solid phase concentration in negative electrode surface for 0.2C, and (d) solid 

phase concentration in positive electrode surface for 0.2C; (e) voltage comparison for 1C, 
(f) difference with and without stress consideration for 1C, (g) solid phase concentration 

in negative electrode surface for 1C, and (h) solid phase concentration in positive 
electrode surface for 1C; (i) voltage comparison for 3C, (j) difference with and without 

stress consideration for 3C, (k) solid phase concentration in negative electrode surface for 
3C, and (l) solid phase concentration in positive electrode surface for 3C; (m) voltage 

comparison for HWFET  and (n) voltage comparison for DST. (Cont.) 
 

Based on Eq. 42, it can be seen that stress increases diffusivity, leading to a 

considerable change in the anode surface concentration, thereby affecting the voltage 

responses. In Eq. 42, the diffusivity, Ds,j(1+ θj Cs,j(r,t)), depends on the coefficient θj and 

the  li-ion concentration, Cs,j(r,t), at each electrode [28], and θj, depends on materials’ 

mechanical properties. Various mechanical properties for LiMn2O4 and LiC6 have been 

reported. For instance, the Young's modulus of LiMn2O4 has been measured to be 25 GPa 

using a vibrating-reed measurement [41] and was measured to be 10 GPa using an elastic 

spectroscopy [42]. The difference was due to the fact that the chemical composition of 

each sample was different [41, 42]. Several battery modeling papers regarding LiMn2O4 

[26, 42] have used a Young’s modulus of 10 GPa that was measured using an elastic 

spectroscopy. In the present work, 10 GPa was selected because the target material was 

(m)                                                                        (n) 
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similar to that used in the reported experiment, and it was assumed that it was 

independent of the amount of lithium content. For the LiMn2O4 cathode, the maximum 

increase in diffusivity is θp × Cs,p,max = 0.358, where θp = 1.56×10-5 m3/mol and Cs,p,max = 

22,860 mol/m3. However, for the stiff graphite anode, the maximum increase in 

diffusivity is θp × Cs,n,max = 4.59, where θn = 1.74×10-4 m3/mol and Cs,n,max = 26,390 

mol/m3. Therefore, the effect of stress on the anode diffusivity is much more significant 

than the effect of stress on the cathode diffusivity due to the order of magnitude 

difference in the coefficient, θj. The difference of θj is due to the difference at molar 

volume, Ωj, Young’s modulus, Ej, as shown in Eq. 42 and Table. 1. The trend of the 

stress-diffusion coupling impact on battery performance is in agreement with the 

published results. 

Diffusion-Induced Stress (DIS) and Stress-Enhanced Diffusion (SED) have been 

carefully studied and analyzed for decades [28, 32, 43-50]. Experimentally, as evidence 

of DIS, mechanical failures of active materials (such as cracking, fracture, and 

delamination) have been observed through different approaches, such as SEM [43-45], 

AFM [45-47], and other in situ observation methods [48, 49]. For SED, most of the 

studies have been based on numerical simulations because it is difficult to decouple the 

effects of DIS and SED [28, 32, 45, 50, 51], and a few of experimental investigated were 

studied the effect of stress on diffusivity [52-53] and on the battery voltage profile [54]. 

The coupled SED and DIS phenomenon were also analyzed by a finite deformation 

model, thereby accounting for the full coupling between diffusion and stress evolution 

[50]. Ref. 50 indicated that the SED would increase the diffusion of the electrode and 

Ref. 28 also noted that considering SED effect would result in a lower concentration in 
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the cathode during discharge due to the enhanced solid phase diffusivity. The observed 

impact of stress field on diffusivity and voltage profile (Fig. 7) in this work agree quite 

well with the results in the literature [28, 50], in which the contribution of stress to 

diffusion was small at low lithium concentrations and SED became more pronounced as 

the lithium concentration increased. In conclusion, the proposed SP model, coupled with 

the stress model, indicated that it was necessary to consider an SED model capture the 

real battery physics governed by the coupling between stress and diffusion. This is 

especially important when using stiff materials or when operating at high charge and 

discharge rates as shown in Fig.7.  

 

4. SUMMARY AND CONCLUSIONS 

 

A low-order battery model was developed that incorporates stress-enhanced 

diffusion and electrolyte concentration distribution into a modified single particle model. 

An approximated analytical solution was derived for the electrolyte concentration 

distribution by solving the mass transport equation in the electrolyte of a li-ion cell. It has 

a simpler form than the P2D model and provided computational efficiency that is faster 

than that of the P2D model (almost 3 times faster in calculation time), and more accurate 

than that of the SP model (reduced 33.8% average voltage error). It was confirmed that 

this approximate solution can be applied to any combination of operating scenarios, 

including constant charge/discharge, short/long interval, and rest period, as well as the 

dynamic loads. From comparisons of the electrolyte concentration distributions and the 

potential difference profiles for various discharge conditions, it was concluded that the 
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approximate solution is reliable and can be used to predict cell voltages with less than 

0.630±0.331% voltage error for C-rates up to 3C. In addition, coupling between the 

proposed SP model and a stress-model was considered. As a result, the effects of stress 

on cell voltage and solid phase concentrations was captured. The effect of stress has been 

found to non-negligible because it is important for medium to high C-rate operating 

conditions, and high-energy density materials or rigid materials. Therefore, the proposed 

model considering both nonuniformly dispersive electrolyte and stress-enhanced 

diffusivity is more accurate than the conventional SP model for predicting cell voltage 

without losing computational efficiency.   
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V. A SINGLE PARTICLE MODEL WITH CHEMICAL/MECHANICAL 
DEGRADATION PHYSICS FOR LITHIUM ION BATTERY STATE OF 

HEALTH (SOH) ESTIMATION 
 

 

ABSTRACT 

 

State of Health (SOH) estimation of lithium ion batteries is critical for Battery 

Management Systems (BMSs) in Electric Vehicles (EVs). Many estimation techniques 

utilize a battery model; however, the model must have high accuracy and high 

computational efficiency. Conventional electrochemical full-order models can accurately 

capture battery states, but they are too complex and computationally expensive to be used 

in a BMS. A Single Particle (SP) model is a good alternative that addresses this issue; 

however, existing SP models do not consider degradation physics. In this work, an SP-

based degradation model is developed by including Solid Electrolyte Interface (SEI) 

layer formation, coupled with crack propagation due to the stress generated by the 

volume expansion of the particles in the active materials. A model of lithium ion loss 

from SEI layer formation is integrated with an advanced SP model that includes 

electrolytic physics. This low-order model quickly predicts capacity fade and voltage 

profile changes as a function of cycle number and temperature with high accuracy, 

allowing for the use of online estimation techniques. Lithium ion loss due to SEI layer 

formation, increase in battery resistance, and changes in the electrodes' open circuit 

potential operating windows are examined to account for capacity fade and power loss. In 

addition to the low-order implementation to facilitate on-line estimation, the model 

proposed in this paper provides quantitative information regarding SEI layer formation 
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and crack propagation, as well as the resulting battery capacity fade and power 

dissipation, which are essential for SOH estimation in a BMS. 

 

1. INTRODUCTION 

    

Lithium Ion Batteries (LIBs) are key energy storage devices for many 

applications due to their high energy and power densities, and are widely used in Electric 

Vehicles (EVs) and Hybrid Electric Vehicles (HEVs). A critical challenge, however, is 

the capacity degradation experienced during repeated charge/discharge cycles. Battery 

performance declines over time due to irreversible physical and chemical changes that 

naturally occur until the battery can no longer be used. Therefore, State of Health (SOH) 

estimation is an essential component of a Battery Management System (BMS) for a 

variety of energy storage systems in transportation and stationary applications [1, 2]. 

However, there are challenges in performing SOH estimation in a BMS. First, SOH 

cannot be directly measured. Here, SOH refers to the state of a battery’s condition 

compared to its initial condition, and is expressed as a loss of capacity relative to the 

initial value. For instance, when the battery capacity in EVs/HEVs reaches 80% of its 

initial capacity, the battery is no longer considered usable [1]. 

Secondly, battery performance continuously degrades due to various mechanisms, 

both mechanical and chemical, which affect LIBs during their lifetime. Therefore, 

studying these mechanisms require long-term, in situ testing that typically requires the 

battery to be destroyed. Moreover, it is challenging to decouple the effects of each of 

these mechanisms on battery health and performance. Modern LIBs, which are fabricated 
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from a variety of anode and cathode materials, degrade due to a number of mechanisms 

that depend on the chemical nature of their constituent materials. In general, battery 

degradation mechanisms [3-6] include current collector corrosion, morphological 

changes of active materials, electrolyte decomposition, Solid Electrolyte Interphase (SEI) 

layer formation, and material dissolution. For example, carbonaceous materials, which 

are the most common anode materials in modern LIBs, have a significant amount of 

irreversible capacity loss during initial cycling as the SEI layer is formed on the carbon 

surface [3-5, 7].  

Moreover, the SEI layer continues to grow due to the continuous reduction of the 

electrolyte and the reformation of the SEI layers, which re-consumes lithium ions and 

results in irreversible battery capacity loss. For instance, about 8-15% irreversible 

capacity loss due to lithium ion loss is expected for MesoCarbon MicroBeads [5]. 

Further, mechanical damage to the battery will accelerate chemical degradation. The 

basic function of an electrochemical material is fulfilled by ions entering the active 

materials due to an electrochemical potential gradient [8]. During this intercalation 

process, volume change causes considerable stresses inside the particles, leading to 

mechanical failures such as pulverization of, or cracks and fractures in, the active 

materials. These cracks generate new surfaces on the particle, which are then exposed to 

the electrolyte, leading to additional SEI layer formation and the acceleration of capacity 

fade and power loss [8-14]. 

Despite these difficulties, the foundation of many models of different battery 

aging mechanisms has been presented by the research community to predict battery life. 

The studies in [15-20] utilized physics-based models that provide very detailed 
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information regarding the battery electrochemical response. Capacity loss due to SEI 

layer formation was simulated through a continuum-scale mathematical model by 

considering the flux of the side reaction at the anode particle surface [15, 16] or by 

modifying the solid phase concentration to be a function of the cycle according to lithium 

ion loss [17-19]. The effect of mechanical degradation on capacity fade has also been 

simulated using a full order physics-based model [20]. These models solve governing 

physical equations, which include mass conservation and charge conservation in the solid 

and electrolyte phases, as well as kinetic reactions at the interface between the solid and 

electrolyte.  

A comprehensive and detailed state-of-the-art review of SOH estimation for LIBs 

has been conducted in [21]. These methods can be categorized as experimental 

techniques and adaptive methods. Experimental techniques depend on recorded 

experimental data and previous knowledge about the effect of the operating conditions 

such as temperature, cycle number, SOC, current magnitude, etc. on the battery cycle life 

[21]. Although these methods are easy to implement onboard BMSs, their validity is 

limited to the calibration data used in their development.  

Furthermore, the wide range of operating conditions encountered in different 

battery applications, such as EVs, necessitates the use of an adaptive SOH estimation 

methods. Adaptive methods utilize parameters from battery models to estimate the SOH. 

Electrochemical models can provide highly accurate predictions of the battery behavior 

while providing insight into internal battery phenomena. Due to these advantages, these 

models are gaining popularity in recent years in the development of different BMS 
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functionalities, such as SOH estimation. For BMSs, however, there is still a challenge in 

incorporating battery physics and degradation during on-line estimation.  

Although a high fidelity electrochemical modes are ideal for the detailed analysis 

of battery phenomena, they are too computationally intensive to be efficiently utilized in 

a BMS [22]. This has led to efforts to reduce the complexity of electrochemical models, 

such as the studies in [23, 24] that reduced the electrochemical model proposed by Doyle 

et al. [25] into a form suitable for a BMS.  

To further simplify battery models, most studies employ an Equivalent Circuit 

Model (ECM), which describes the battery dynamic behavior as a voltage source and a 

series of resistors and capacitors [26] and is widely used in BMSs due to the model’s low 

complexity and ease of online implementation. However, ECM models have no physical 

significance, which leads to low fidelity and limited prediction capability. In addition, the 

prediction of battery side-reactions is not feasible due to the difficulty of obtaining the 

battery internal dynamic characteristics. Therefore, higher accuracies can be attained only 

by considering time-variant model parameters.  

The Single Particle (SP) model is a common type of reduced-order model. The SP 

model strikes the necessary balance between full order electrochemical models and 

ECMs, and is becoming a popular model in recent years for SOC and SOH estimation 

[27-31]. It assumes both electrodes are composed of multiple uniform sized spherical 

particles, and that the current distribution is uniform across both electrodes. Thus, each 

electrode can be approximated by a single spherical particle. The SP model is described 

by a set of ordinary differential equations, yet it is directly derived from comprehensive 

electrochemical models and, thus, explicitly retains many important battery properties 
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with high computational efficiency. The drawbacks of the SP model are that the accuracy 

of the SP model suffers at high C-rates due to the lack of electrolyte physics and 

degradation is not taken into account [28].  

In this work, to address these issues, a capacity degradation model with 

chemical/mechanical degradation mechanisms [17] is modified and integrated with an 

advanced SP model. This capacity degradation model is able to predict battery capacity 

loss as a function of cycle number and temperature, including SEI layer formation and 

growth, coupled with mechanical fatigue analysis. 

 Further, the proposed model is able to predict voltage responses based on a 

physical analysis, which is an advanced method for predicting the voltage profiles as a 

function of cycle, compared to the existing method based on a look-up table [17, 18]. The 

method utilizing a look-up table limited the model to the cases with well-defined tables. 

Also, the existing models did not consider the kinetic reactions associated with the SEI 

layer.  

In particular, the stress model in the existing approach was idealized as it was 

based on a single particle, which could lead to unrealistic results in certain cases. In 

general, the SOH of lithium ion batteries is related to capacity fade due to lithium loss 

and power fade due to impedance increase. Then, the capacity loss and impedance rise 

affect the voltage profile, which is critical information for battery management. However, 

most SOH estimation studies only consider the capacity change without any prediction of 

the voltage profile change [27-30].  

Our proposed model can be directly applied to SOH estimation for battery 

management systems. In addition, the model is well validated with different loading 
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conditions, including static and dynamic loadings. Further, the coupling between 

different physical behaviors, such as mechanical response and electrochemical reaction, 

is important physics in several energy related materials. The proposed approach can be 

applied to many other similar systems. In this paper, therefore, three unsolved challenges 

in the literature are addressed: 

(1) Capacity fade due to multiple degradation mechanisms and corresponding voltage 

change is predicted based on the physical analysis of an SP model, which does not 

require any lookup tables, unlike existing models. 

(2) Realistic boundaries between multiple particles are considered to calculate particle 

stress, which is then linked to capacity degradation. Note: the idealized single 

particle used for the electrochemical model is different from the single-particle based 

stress model in [17]. 

(3) A systematic study is conducted by analyzing the relationship between the battery 

system’s parameters (e.g., particle size, C-rate, temperature) and capacity loss due to 

SEI layer formation and growth on the particle and cracked surfaces. 

The remainder of this paper is organized as follows. Section 2 describes the 

proposed methods to integrate lithium ion loss with an advanced SP model, the stress 

evaluation based on multiple surrounding particles, and the prediction of capacity fade 

due to chemical and mechanical degradation.  

In Section 3, the degradation model validation and the analysis of model 

parameter effects on capacity and power losses are given, followed by a summary and 

conclusions in Section 4. 
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Nomenclature 
a crack length (m)  lcr0 Initial crack width (m) 
a0 Initial crack length (m) 𝐿𝐿𝑆𝑆𝐸𝐸𝑆𝑆0  initial SEI layer thickness (m) 
brug Bruggeman coefficient Li Electrode thickness (m)  
c0 Initial concentration (mol m-3) MSEI Molecular weight of compounds 

constituting SEI (gm mol−1) 
Cmax, pos Positive maximum concentration 

(mol m-3) 
nLi Initial total number of lithium 

ions inside battery 
Cmax, neg  Negative maximum concentration 

(mol m-3) 
nSEI Consumed lithium ion for 1 mol 

of SEI layer formation 

De Diffusion coefficient in electrolyte 
(m2s-1) 

N Cycle number 

Ds,j Solid-phase Li diffusivity (m2s-1) Q0 Battery capacity after formation 
cycle 

Ea1 Activation energy for crack 
propagation (kcal mol-1) 

Qin Battery capacity before SEI layer 
formation cycle 

Ea2 Activation energy for SEI layer 
growth (kcal mol-1) 

Qg Graphite specific capacity (Ah 
g−1) 

E Young’s modulus of electrode 
material (N m−2) 

QN Capacity after Nth cycle 

F Faraday’s constant (C mol-1)  R Universal gas constant (J mol-1 K-

1)  
i = p/s/n  Positive/separator /negative  rj Particle radius (m) 
Iapp Applied current density (Am-2) 𝑅𝑅𝑆𝑆𝐸𝐸𝑆𝑆0  Initial SEI layer resistance (Ω) 
j = p/n Positive/negative  𝑡𝑡+ Cationic transport number 
𝐽𝐽𝑗𝑗𝐿𝐿𝐿𝐿 Molar flux density (mol s m-2) 𝜌𝜌(0)|𝑁𝑁 Initial voltage at each cycle (V) 
ki Electrolyte conductivities (S m-1) 𝜀𝜀𝐿𝐿 Electrode porosity 
kj Reaction rate constant (m2.5mol-0.5s-

1) 
ρcr Number of cracks per unit area of 

particle (m−2) 
k0 Crack propagation coefficient ρg Graphite density (g cm−3) 
KSEI0 SEI layer growth coefficient ρSEI Density of SEI films (g m−3) 
kSEI SEI layer conductivity (S m-1) Ω Partial molar volume of solute 

(m3mol−1) 
 

2. CAPACITY FADE MECHANISM MODELING 

 

2.1. SINGLE PARTICLE MODEL COUPLED WITH CAPACITY 
DEGRADATION 

 
Figure 1a is a schematic overview of the simulation process in this paper. The 

model requires the initial battery voltage, temperature, and current input. Those initial 

values can be obtained from measurements. Next, the model predicts capacity fade by 
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calculating lithium loss due to SEI layer formation and growth on the surface of particles 

and cracks. Then, the capacity changes are coupled with the SP model to predict the 

voltage profile based on the change in the lithium ion concentration. These steps are 

repeated for each cycle.  

 

 

Figure 1. Schematic diagrams for (a) overview of the proposed simulation processes, (b) 
a lithium ion battery composed of an anode, a separator, and a cathode, (c) representing 
two single particles for each electrode in the SP model, (d and e) coupled degradation 

mechanism between SEI layer formation and crack propagation on particle, and (f) 
capacity fade due to the lithium loss caused by SEI layer formation and growth. 

 

(a) 

(b) 

(c) 
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Figure 1. Schematic diagrams for (a) overview of the proposed simulation processes, (b) 
a lithium ion battery composed of an anode, a separator, and a cathode, (c) representing 
two single particles for each electrode in the SP model, (d and e) coupled degradation 

mechanism between SEI layer formation and crack propagation on particle, and (f) 
capacity fade due to the lithium loss caused by SEI layer formation and growth. (Cont.) 

 

Figure 1b is a schematic diagram of a lithium ion cell composed of two electrodes 

(a solid matrix in an electrolyte solution) and a separator (electrolyte solution), while 

Figure 1c shows the concept of the SP model, which represents each electrode with a 

single particle. Pesudo-2D (P2D) models, which are based on porous electrode theory 

using concentrated solutions, are widely used for battery modeling [24,25]. This model 

describes lithium ion transport through the use of one-dimensional (battery thickness, x, 

direction) charge and mass conservation laws along with the thickness direction, as well 

as the diffusion process for individual active particles, which is implemented in the radial 

direction of the particles,. The kinetic reaction at the particle surfaces is described by the 

Butler-Volmer equation. The P2D model consists of ten coupled nonlinear partial 

differential equations for the mass and charge balance in the solid and electrolyte phases 

[24,25].  

(d) 

(f) 

(e) 
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In the SP model it is assumed that the current passing through the electrode is 

uniformly distributed over all of the particles inside the electrode. Therefore, as shown in 

Figure 1c, each electrode can be modeled as a single spherical particle, and the governing 

partial differential equations can be simplified into a set of algebraic equations. Further, 

the complex multi-physics of the battery can be implemented in a relatively simple 

manner based on the assumption of uniformity of intercalation flux in the SP model [32], 

which  leads to each reaction inside electrode, such as diffusion, transportation, diffusion-

induced stress, and side-reactions, has a uniform impact on each particle. However, the 

existing SP models do not consider the concentration and potential distribution in 

electrolyte phase; therefore, model accuracy suffers at high C-rates. In order to overcome 

this limitation and increase model accuracy, this study uses the authors’ recently 

developed SP model [33], in which the electrolyte physics was added.  

The remaining challenge is to consider battery degradation, in particular, the 

coupled degradation mechanisms between mechanical crack propagation and SEI layer 

formation and growth. Figures 1d and 1e show the proposed SP model considering the 

coupling between them. In the mechanical part (Figure 1e), the repeated stress due to the 

(de)intercalation is calculated, and corresponding crack propagation is predicted. In the 

SEI layer formation and growth model, the updated crack propagation is used to estimate 

the new SEI layer formation on the surface of newly-formed cracks. More details are 

discussed in Section 2.2. 

To calculate the terminal voltage, the SP model considers the solid phase potential 

difference between the end sides of both electrodes based on Bulter-Volmer equation [33] 
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(3) 

where cs,j,max is the maximum solid phase concentration, kj is the reaction rate constant and 

j = p/n denotes the positive/negative electrode, respectively, R is the universal gas 

constant, T is temperature, F is Faraday’s constant, Φ1,j is the solid-phase potential, and 

Uj is the Open-Circuit Potential (OCP). 

The OCP, in general, is a function of the normalized surface concentration, 

cs,j,surf(t)/cs,j,max. The variable  𝑘𝑘𝐿𝐿
𝑒𝑒𝑠𝑠𝑠𝑠 = 𝑘𝑘𝐿𝐿𝜀𝜀𝐿𝐿

𝑏𝑏𝑟𝑟𝑠𝑠𝑎𝑎, brug denotes the bruggeman coefficient, 

where ki is the electrolyte conductivities [34]. The variable Li is the electrode thickness, i 

= p/s/n denotes the positive/separator /negative electrode, respectively, Iapp is the applied 

current density, t+ is cationic transport number in the electrolyte,  𝐽𝐽𝑗𝑗𝐿𝐿𝐿𝐿 is the 

electrochemical reaction rate, and ce,i(x,t) is the electrolyte concentration [33].  
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 Equation 1 does not include battery capacity reduction effects and, therefore, does 

not exhibit changes in the voltage profile as the battery is cycled. In order to integrate 

capacity loss mechanisms into the SP model, the initial concentrations, 𝑐𝑐𝑠𝑠,𝑝𝑝(0)�
𝑁𝑁+1

 and 

𝑐𝑐𝑠𝑠,𝑐𝑐(0)�
𝑁𝑁+1

 for the cathode and anode, respectively, at the beginning of the (N+1)th cycle 

must be calculated. Here, one cycle is when the battery is fully discharged and then fully 

charged. The number of available lithium ions inside the battery after the Nth cycle can be 

calculated based on the capacity after the Nth cycle, QN, and the initial total number of 

lithium ions inside the battery, nLi. From charge conservation in the anode and cathode at 

the (N+1)th cycle  

 

𝜀𝜀𝑠𝑠,𝑝𝑝𝐿𝐿𝑝𝑝𝑐𝑐𝑠𝑠,𝑝𝑝(0)�
𝑁𝑁+1
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𝑎𝑎𝐿𝐿𝐿𝐿 (4) 

where Q0 is the battery capacity after the formation cycle (described below).  

In general, battery vendors suggest a maximum voltage for charging; therefore, a 

scenario of full charging to that voltage was assumed in this paper. The initial voltage at 

the Nth cycle, V(0), which is constant at the beginning of each discharge cycle, is 

 

𝑈𝑈𝑝𝑝 �
𝑐𝑐𝑠𝑠,𝑝𝑝(0)�

𝑁𝑁+1
𝑐𝑐𝑠𝑠,𝑝𝑝,𝑚𝑚𝑎𝑎𝑚𝑚

� − 𝑈𝑈𝑐𝑐 �
𝑐𝑐𝑠𝑠,𝑐𝑐(0)�

𝑁𝑁+1
𝑐𝑐𝑠𝑠,𝑐𝑐,𝑚𝑚𝑎𝑎𝑚𝑚

� = 𝜌𝜌(0) (5) 

 

The initial concentrations in the anode and cathode are estimated by solving 

Equations 4 and 5. It should be noted that as the battery capacity decreases with each 

cycle, the corresponding OCP curve windows change, affecting the concentration 
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polarization. The reduction in capacity can be attributed to lithium ion loss during the 

formation and growth of SEI layers on the surfaces of anode active material particles and 

cracks.  

 

2.2. SINGLE PARTICLE BASED CHEMICAL/MECHANICAL DEGRADATION 
MODEL 

2.2.1. Capacity Degradation. A schematic diagram of SEI formation, growth, 

and additional formation and its growth due to crack propagation is shown in Figures 1d 

and 1e. A fresh battery cell (Stage I) undergoes a process called ‘formation cycle’ to 

stabilize the cell by forming an initial SEI layer. During the formation cycle, a uniform 

SEI layer, mainly containing Li2O, LiF, and Li2CO3, is formed on the freshly exposed 

particle surfaces and initial crack surface due to electrolyte reduction (Stage II). Once the 

battery is in use, the SEI layer tends to grow, especially when the battery is used at high 

temperatures (Stage III). In addition, the diffusion-induced stress due to changes in the 

battery volume causes cracks to propagate on the particle surface, creating new surfaces 

that are exposed to the electrolyte and on which new SEI layers will form. This repeated 

process continuously consumes lithium ions, causing capacity fade as shown Figure 1f. 

The growth model developed by Rutooj et al. [17] is utilized in this work and coupled 

with the SP model given in this paper to include degradation mechanisms due to SEI 

layer formation and growth. 

Solid electrolyte interface layer formation and growth can be categorized into four 

different mechanisms including: (1) initial SEI layer formation during the formation 

cycle; (2) growth on the initially formed SEI layer; (3) initial SEI layer formation on 
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newly formed surfaces due to cracking; and (4) growth of the initially formed SEI layers 

on the surfaces created by cracking.  

 During the formation cycle, the particle will be fully covered with an SEI layer. 

The initial SEI layer thickness, 𝐿𝐿𝑆𝑆𝐸𝐸𝑆𝑆0 , can be estimated based on the capacity loss after the 

formation cycle, which is assumed to be 10% [5, 17] 

 

𝐿𝐿𝑆𝑆𝐸𝐸𝑆𝑆0 =
0.1𝑄𝑄𝐿𝐿𝑐𝑐𝑀𝑀𝑆𝑆𝐸𝐸𝑆𝑆

𝐴𝐴𝐿𝐿𝑐𝑐𝐿𝐿𝑟𝑟𝐿𝐿𝑎𝑎𝑖𝑖𝑎𝑎𝑆𝑆𝐸𝐸𝑆𝑆𝜌𝜌𝑆𝑆𝐸𝐸𝑆𝑆𝐹𝐹
 (6) 

where the Qin is the battery capacity before the SEI layer formation cycle process is 

conducted, Ainitial is the particle surface area before the SEI layer formation cycle, nSEI is 

the number of lithium moles lost for every mole of SEI layer formed, ρSEI is the SEI layer 

density, and MSEI is the molecular weight of compounds constituting the SEI layer.  

To evaluate the surface area of the SEI layer, defects must be considered that exist 

in active material particles and will be the seeds that initiate cracks. The initial surface 

area of the single particle is the surface area of a sphere with initial defects [17] 

 

𝐴𝐴𝐿𝐿𝑐𝑐𝐿𝐿𝑟𝑟𝐿𝐿𝑎𝑎𝑖𝑖 = 4𝜋𝜋𝑟𝑟𝑐𝑐2(1 + 2𝜌𝜌𝑐𝑐𝑟𝑟𝑙𝑙𝑐𝑐𝑟𝑟0𝑎𝑎0) (7) 

where lcr0 is the initial defect width, a0 is the initial defect length, rn is the particle radius, 

and ρcr is the number of cracks per unit area.  

Since SEI layer growth generally follows a parabolic pattern, SEI layer thickness, 

LSEI, growth rate per cycle number (N) can be expressed as 

 

𝑎𝑎𝐿𝐿𝑆𝑆𝐸𝐸𝑆𝑆
𝑎𝑎𝑑𝑑

=
1
2
𝐾𝐾𝑆𝑆𝐸𝐸𝑆𝑆𝑑𝑑

−12 (8) 
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where 𝐾𝐾𝑆𝑆𝐸𝐸𝑆𝑆 = 𝐾𝐾𝑆𝑆𝐸𝐸𝑆𝑆0𝑒𝑒
−𝐸𝐸𝑚𝑚2
𝑅𝑅𝑅𝑅 , Ea2 is the activation energy for SEI layer thickness growth, and 

KSEI0 is the SEI layer growth coefficient [17]. 

The SEI layer will grow on the initial particle surface, thus, combining Equations 

6-8, the volume change of the SEI layer growth on the initial SEI layer, i.e., the second 

degradation mechanism, is 

 

𝑎𝑎𝜌𝜌𝑆𝑆𝐸𝐸𝑆𝑆,2
𝑎𝑎𝑑𝑑

= 2𝜋𝜋𝑟𝑟𝑐𝑐2(1 + 2𝜌𝜌𝑐𝑐𝑟𝑟𝑙𝑙𝑐𝑐𝑟𝑟0𝑎𝑎0)𝐾𝐾𝑆𝑆𝐸𝐸𝑆𝑆𝑑𝑑
−12 (9) 

 

As the number of battery cycles increases, not only does the formed SEI layer 

continue to grow, the initial defects also grow and form cracks on the surfaces of the 

particles due to repeated stress on the active material particles. These cracks result in new 

interface area with the electrolyte. Paris’ law is used here to model such crack 

propagation [35] 

 

𝑎𝑎𝑎𝑎
𝑎𝑎𝑑𝑑

= 𝑘𝑘�𝜎𝜎𝜃𝜃,𝑐𝑐𝑐𝑐𝑟𝑟𝑏𝑏√𝜋𝜋𝑎𝑎�
𝑚𝑚

 (10) 

where a is the crack length and m and b are empirical constants that depend on material 

properties [36]. The crack propagation coefficient can be expressed based on the 

Arrhenius form, 𝑘𝑘 = 𝑘𝑘0𝑒𝑒
−𝐸𝐸𝑚𝑚1
𝑅𝑅𝑅𝑅 , where Ea1 is the activation energy for crack propagation 

and k0 is the crack propagation coefficient [17]. 

In order to determine the crack growth rate, the maximum cyclic stress on the 

particle surface is used. Most studies concerning stress analysis in battery models are 
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based on a single isolated particle under a steady-state condition and calculate the 

maximum tensile stress to be [37] 

 

𝜎𝜎𝜃𝜃,𝑚𝑚𝑎𝑎𝑚𝑚 =
−𝐸𝐸Ω𝐼𝐼𝑎𝑎𝑝𝑝𝑝𝑝

45(1 − 𝜈𝜈)𝜀𝜀𝑐𝑐𝑙𝑙𝑐𝑐
�
𝑟𝑟𝑐𝑐2

𝐹𝐹𝐷𝐷𝑠𝑠,𝑐𝑐
�
2

 (11) 

where E is Young’s modulus, ν is Poisson’s ratio of the electrode material, and Ω is the 

partial molar volume of the solute. This model computes the stress levels in a single 

particle caused by diffusion; however, it does not consider the constraint imposed on a 

particle’s boundary when it is in contact with other particles. This analysis is extended in 

this paper to a more realistic situation where there is a network of particles and calculates 

the maximum stress at the particle surface based on the strain during charge and 

discharge.  

The driving force for lithium ion diffusion can be obtained by the gradient of the 

concentration and mechanical strain energy and, correspondingly, the mass conservation 

of lithium ions becomes [11] 

 

𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝐷𝐷𝑠𝑠,𝑗𝑗𝐷𝐷 �∇2𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡) −
Ω
𝑅𝑅𝑅𝑅

∇𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡) ∙ ∇𝜎𝜎ℎ −
Ω𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡)

𝑅𝑅𝑅𝑅
∇2𝜎𝜎ℎ� (12) 

where σh is the hydrostatic stress of a spherical particle [11]. The stress-strain relationship 

considering the effect of intercalation is [38,39] 

 

𝜀𝜀𝑚𝑚𝑐𝑐 =
1
𝐸𝐸

[(1 + 𝜈𝜈)𝜎𝜎𝑚𝑚𝑐𝑐 − 𝜈𝜈𝜎𝜎𝑘𝑘𝑘𝑘𝛿𝛿𝑚𝑚𝑐𝑐] +
�𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 𝑡𝑡) − 𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟, 0)�Ω

3
𝛿𝛿𝑚𝑚𝑐𝑐 (13) 
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 where εmn is the components of strain tensor (m, n, k = 1, 2, 3), σmn/σkk  are components of 

stress tensor, and δmn is the Kronecker delta. 

The stress acting on a particle is now calculated based on a network of particles, 

and the particle surface stress ratios are normalized based on the stress of a single particle 

with a radius of 5 μm [17]. The schematic of a network of 5 particles is shown in Figure 

2a and the stress increase ratio for networks with 3-7 particles is shown in Figure 2b as a 

function of particle size. As shown in Figure 2b, when using a network of particles the 

stress increases linearly with particle size, which is in stark contrast to the quadratic 

relationship between the stress and particle radius for a single particle as given in 

Equation 11. Comparing to a network of seven particles, the stress ratio differences for 3-

6 particles are 9.58%, 3.77%, 1.45%, and 1.3%, respectively; therefore, a network of 5 

particles is used in this study. The stress equation for a single particle (Equation 11) is 

calibrated using a correction factor, β, which is based on the stress calculation with a 

network of 5 particles divided by the stress calculated from Equation 11. The corrected 

maximum stress is 

 

𝜎𝜎𝜃𝜃,𝑐𝑐𝑐𝑐𝑟𝑟 = 𝛽𝛽 �
−𝐸𝐸Ω𝐼𝐼𝑎𝑎𝑝𝑝𝑝𝑝

45(1 − 𝜈𝜈)𝜀𝜀𝑐𝑐𝑙𝑙𝑐𝑐
�
𝑟𝑟𝑐𝑐2

𝐹𝐹𝐷𝐷𝑠𝑠,𝑐𝑐
�
2

� (14) 

 

The total area change associated with crack propagation due to stress for each 

cycle is 

𝑎𝑎𝐴𝐴𝑐𝑐𝑟𝑟
𝑎𝑎𝑑𝑑

= 8𝜋𝜋𝑟𝑟𝑐𝑐2𝜌𝜌𝑐𝑐𝑟𝑟𝑙𝑙𝑐𝑐𝑟𝑟0𝑘𝑘�𝜎𝜎𝜃𝜃,𝑐𝑐𝑐𝑐𝑟𝑟𝑏𝑏�𝜋𝜋𝑎𝑎0�
𝑚𝑚
�
𝑎𝑎
𝑎𝑎0
�
𝑚𝑚
2

 (15) 
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Figure 2. (a) Schematic of five particles and (b) Particle surface stress ratio as a function 
of particle size for various numbers of particles. 

 
 

Correspondingly, the volume change of the SEI layer formation at newly exposed 

surfaces per cycle, i.e., the third degradation mechanism, is 

 

𝑎𝑎𝜌𝜌𝑆𝑆𝐸𝐸𝑆𝑆,3
𝑎𝑎𝑑𝑑

= 𝐿𝐿𝑆𝑆𝐸𝐸𝑆𝑆0 8𝜋𝜋𝑟𝑟𝑐𝑐2𝜌𝜌𝑐𝑐𝑟𝑟𝑙𝑙𝑐𝑐𝑟𝑟0𝑘𝑘�𝜎𝜎𝜃𝜃,𝑐𝑐𝑐𝑐𝑟𝑟𝑏𝑏�𝜋𝜋𝑎𝑎0�
𝑚𝑚
�1

+
2 −𝑚𝑚

2
𝑘𝑘�𝜎𝜎𝜃𝜃,𝑐𝑐𝑐𝑐𝑟𝑟𝑏𝑏√𝜋𝜋�

𝑚𝑚
𝑎𝑎0 �

𝑚𝑚
2 −𝑚𝑚

�𝑑𝑑�
𝑚𝑚

2−𝑚𝑚
 

(16) 

 

The growth rate of the SEI layer formed on cracks as they grow, i.e., the fourth 

degradation mechanism, is 

𝑎𝑎𝜌𝜌𝑆𝑆𝐸𝐸𝑆𝑆,4
𝑎𝑎𝑑𝑑

= ��8𝜋𝜋𝑟𝑟𝑐𝑐2𝜌𝜌𝑐𝑐𝑟𝑟𝑙𝑙𝑐𝑐𝑟𝑟0𝑘𝑘�𝜎𝜎𝜃𝜃,𝑐𝑐𝑐𝑐𝑟𝑟𝑏𝑏�𝜋𝜋𝑎𝑎0�
𝑚𝑚
�1

𝑁𝑁−1
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𝑚𝑚
2 −𝑚𝑚

�𝑑𝑑�
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�
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�
1
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𝐾𝐾𝑆𝑆𝐸𝐸𝑆𝑆𝑑𝑑

−12�
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Finally, the total SEI layer growth rate is 

 

𝑎𝑎𝜌𝜌𝑆𝑆𝐸𝐸𝑆𝑆
𝑎𝑎𝑑𝑑

=
𝑎𝑎𝜌𝜌𝑆𝑆𝐸𝐸𝑆𝑆,2
𝑎𝑎𝑑𝑑

+
𝑎𝑎𝜌𝜌𝑆𝑆𝐸𝐸𝑆𝑆,3
𝑎𝑎𝑑𝑑

+
𝑎𝑎𝜌𝜌𝑆𝑆𝐸𝐸𝑆𝑆,4
𝑎𝑎𝑑𝑑

 (18) 

 

Capacity decay can be calculated based on SEI layer growth. The initial battery 

capacity of a fresh cell, Qin in Equation 6, is estimated to be 

 

𝑄𝑄𝐿𝐿𝑐𝑐 = 𝑞𝑞𝑟𝑟𝑄𝑄𝑎𝑎 �
4
3
𝜋𝜋𝑟𝑟𝑐𝑐3𝜌𝜌𝑎𝑎� (19) 

where Qg is the specific capacity of graphite, ρg is the density of graphite. In a 

conventional lithium ion cell employing a substantially graphitic negative electrode, the 

negative’s capacity is about 10% greater than that of the positive in order to avoid lithium 

plating on overcharge of the negative. For such a cell, qr is assumed to be 0.9. [17].  

The formation cycle is generally considering has 8 to 10% capacity loss, and then 

the battery capacity after the SEI formation cycle is  

 

𝑄𝑄0 = 0.9𝑄𝑄𝐿𝐿𝑐𝑐 (20) 

 

Then, the capacity fade rate per cycle after the formation cycle is 

  

𝑎𝑎𝑄𝑄𝑁𝑁
𝑎𝑎𝑑𝑑

= −
𝑎𝑎𝑆𝑆𝐸𝐸𝑆𝑆𝜌𝜌𝑆𝑆𝐸𝐸𝑆𝑆𝐹𝐹
𝑀𝑀𝑆𝑆𝐸𝐸𝑆𝑆

𝑎𝑎𝜌𝜌𝑆𝑆𝐸𝐸𝑆𝑆
𝑎𝑎𝑑𝑑

 (21) 
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2.2.2. Resistance Due To SEI Layer Formation And Growth. The SEI layer 

growth may also increase the cell resistance and impact battery power. Battery resistance 

increase is estimated by leveraging the work of Ning et al. [19]. The SEI layer resistance 

at the Nth cycle is 

 

𝑅𝑅𝑆𝑆𝐸𝐸𝑆𝑆|𝑁𝑁 =
𝐿𝐿𝑆𝑆𝐸𝐸𝑆𝑆|𝑁𝑁
𝑘𝑘𝑆𝑆𝐸𝐸𝑆𝑆

 (22) 

where kSEI is the SEI layer conductivity and the SEI layer thickness at the Nth cycle is 

 

𝐿𝐿𝑆𝑆𝐸𝐸𝑆𝑆|𝑁𝑁 =
𝜌𝜌𝑆𝑆𝐸𝐸𝑆𝑆|𝑁𝑁
𝐴𝐴𝑐𝑐𝑟𝑟|𝑁𝑁

 (23) 

 

The initial SEI layer resistance, 0
SEIR , is assumed to be on the same order as the 

electrolyte resistance [40]. Thus, kSEI is calculated based on the initial SEI layer thickness 

and resistance 

 

𝑘𝑘𝑆𝑆𝐸𝐸𝑆𝑆 =
𝐿𝐿𝑆𝑆𝐸𝐸𝑆𝑆0

𝑅𝑅𝑆𝑆𝐸𝐸𝑆𝑆0  (24) 

   

 Finally, the cell terminal voltage, including the impact of initial concentration 

change (Equations 4 and 5), SEI layer resistance (Equation 22), and other polarizations 

effects such as activation and diffusion, is 
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𝜌𝜌𝑟𝑟(𝑡𝑡)|𝑁𝑁+1 = 𝑈𝑈𝑝𝑝 �
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𝑐𝑐𝑒𝑒,𝑝𝑝(𝐿𝐿, 𝑡𝑡)
𝑐𝑐𝑒𝑒,𝑐𝑐(0, 𝑡𝑡)

−
𝐼𝐼𝑎𝑎𝑝𝑝𝑝𝑝

2
(
𝐿𝐿𝑐𝑐
𝑘𝑘𝑐𝑐
𝑒𝑒𝑠𝑠𝑠𝑠 +

2𝐿𝐿𝑠𝑠
𝑘𝑘𝑠𝑠
𝑒𝑒𝑠𝑠𝑠𝑠 +

𝐿𝐿𝑝𝑝
𝑘𝑘𝑝𝑝
𝑒𝑒𝑠𝑠𝑠𝑠)

+ 𝑅𝑅𝑆𝑆𝐸𝐸𝑆𝑆|𝑁𝑁𝐼𝐼𝑎𝑎𝑝𝑝𝑝𝑝 

(25) 

 

In order to demonstrate the effectiveness of the developed model, the LiFePO4/C 

battery chemistry is adopted in this work. The parameters used in the simulation studies 

conducted in this paper are listed in Table 1. 

 

3. RESULTS AND DISCUSSION 

 

3.1. VALIDATION OF DEGRADATION MODEL 

3.1.1. Capacity Degradation Under a Constant Loading. To verify the 

proposed model, predicted battery capacity is compared with previously observed 

experimental data for a LiFePO4/Graphite battery [41] as a function of cycle number and 

temperature from 15-60 oC for a discharge rate of 0.5C. As shown in Figure 3a, the 

simulated capacity fade matches the measured data well with fractional capacity Root 

Mean Square Errors (RMSEs) of 7.21×10-3, 7.43×10-3, and 10.3×10-3 at 15, 45, and 60 

oC, respectively. As expected, the capacity fades at a faster rate as the temperature 
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increases. Despite its low-order structure, the developed model is in good agreement with 

the experimental data, indicating that the proposed capacity fade model based on single 

particle assumptions can describe the degradation of lithium ion batteries at different 

temperatures.  

 
Figure 3. (a) Cell fractional capacity as a function of number of cycles with 0.5C, and 

simulation and experimental results for LiFePO4/Graphite battery: open circuit voltages 
and voltage profiles for (b) 15 oC and (c) 60 oC, and (d) SEI layer volume ratio 

Vmechanism/Vinitial for mechanism 2 SEI layer growth on the initial SEI layer, mechanism 3 
SEI layer formation on new crack surfaces, and mechanism 4 SEI layer growth on SEI 

layers formed on crack surfaces as a function of cycle number. 

(a) (b) 

(c) (d) 
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Table 1. Model parameters used in simulation studies. 
Parameter Value Description Reference 

a0 2×10-9 Initial crack length (m) [17] 
brug 1.5 Bruggeman coefficient [17] 

c0 1000 Initial concentration (mol m-3) [17] 
Cmax, pos 22806 Positive maximum concentration (mol m-3) [17] 
Cmax, neg 30555  Negative maximum concentration (mol m-3) [17] 

De 7.5×10-11 Diffusion coefficient in electrolyte (m2s-1) [17] 
Ds,n 10×10-14 Solid-phase Li diffusivity, negative electrode 

(m2s-1) 
[17] 

Ds,p 5.9×10-20 Solid-phase Li diffusivity, positive electrode 
(m2s-1) 

[17] 

Ea1 10.1 Activation energy for crack propagation (kcal 
mol-1) 

Fitted 

Ea2 5.791 Activation energy for SEI layer growth (kcal 
mol-1) 

Fitted 

E 3.3×1010 Young’s modulus of electrode material (N 
m−2) 

[17] 

 F 96487 Faraday’s constant (C mol-1)   
kj 2×10-11 Reaction rate constant (m2.5mol-0.5s-1) [17] 
k0 1.62x10-16 Crack propagation coefficient Fitted 

KSEI0 7.195x10-11 SEI layer growth coefficient Fitted 
 lcr0 2×10-9 Initial crack width (m) [17] 
𝐿𝐿𝑐𝑐 3. 8×10-5 Negative electrode thickness (m)  [17] 
𝐿𝐿𝑝𝑝 8×10-5 Positive electrode thickness (m) [17] 
𝐿𝐿𝑠𝑠  2.5×10-5 Separator thickness (m) [17] 

MSEI 78.89 Molecular weight of compounds constituting 
SEI (gm mol−1) 

[17] 

nSEI 2 Consumed lithium ion for 1 mol SEI layer 
formation 

[17] 

Qg 0.339 Graphite specific capacity (Ah g−1) [17] 
R 8.314 Universal gas constant (J mol-1 K-1)   
rn 5×10-6 Particle radius, negative electrode (m) [17] 
rp 5×10-8 Particle radius, positive electrode (m) [17] 
𝑅𝑅𝑆𝑆𝐸𝐸𝑆𝑆0  1x10-3 Initial SEI layer resistance (Ω) [39] 

t+ 0.363 Cationic transport number  
𝜌𝜌(0)|𝑁𝑁 4.2 Initial voltage at each cycle (V)  

εn 0.248 Negative electrode porosity [17] 
εp 0.367 Positive electrode porosity [17] 
εs 1 Separator porosity [17] 
ρcr 2.542×1018 Number of cracks per unit area of particle 

(m−2) 
[17] 

ρg 2.26 Graphite density (g cm−3) [17] 
ρSEI 2.11×106 Density of SEI films (g m−3) [17] 
Ω 8.9×10-6 Partial molar volume of solute (m3mol−1) [17] 
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Accurate voltage profile prediction as the battery goes through cycles of charging 

and discharging is a critical function of the BMS. The proposed model predicts the 

voltage profile based on the physics described in Equations 4, 5, and 25, which is 

different from the work in [17] that relied on a look-up table. Lithium ion losses due to 

SEI layer formation and growth affect not only the available battery capacity, but also the 

operating voltage window due to shifts in the OCP curves. Figures 3b and 3c show that 

the range of the anode (LixC6) OCP curve shifts to the left due to lithium ion losses. On 

the other hand, the cathode (LixFePO4) OCP curve does not shift despite the loss of 

lithium ions due to the unique long plateau of this curve. As a result of the coupling 

between the anode and cathode, the voltage profiles vary with the cycle number. The 

simulation results are in good agreement with an RMSE on the order of 1×10-2 (Table 2) 

compared to the experimental voltage profile in [41, 42]. Additionally, the simulation is 

able to capture the same behavior as the experimental observations in which they 

observed that the anode OCP window shifted to the left as the battery capacity decreased, 

and the cathode OCP window did not shift [17, 18].  

 

Table 2. Root Mean Square Errors of voltage profile at C/2 with 15 oC and 60 oC. 
 0th cycle 1054th cycle 2628th cycle 

C/2 and 15 oC 54.4×10-3 39.9×10-3 35.0×10-3 
 0th cycle 372th cycle 757th cycle 

C/2 and 60 oC 24.5×10-3 57.8×10-3 44.2×10-3 
 

 Capacity fade is mainly due to the lithium ion loss resulting from the four 

mechanisms described above. The first mechanism (i.e., initial SEI layer formation) 

occurs before the battery is put into operation. Next, the effect of the other three 
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degradation mechanisms is analyzed in details. Figure 3d shows the contributions of 

mechanisms 2-4 as a ratio of the SEI volume formed due to each mechanism to the initial 

SEI volume formed during the formation cycle (i.e., mechanism 1). The newly-formed 

SEI volume ratio due to new crack surfaces (i.e., mechanism 3) reaches approximately 

9% after 900 cycles, which is when the battery reaches 80% of its initial capacity, with a 

rate of 9.76×10-5 volume ratio per cycle, while the volume increase due to the growth of 

the initial SEI layer (i.e., mechanism 2) and the SEI volume formation due to growth on 

newly-formed crack surfaces (i.e., mechanism 4) are less than 1% after 900 cycles with 

rates of 5.25×10-6 and 5.68×10-7 volume ratio per cycle, respectively. Therefore, SEI 

layers formed on the cracks dominate the battery degradation.  

3.1.2. Capacity Fade Under Dynamic Loading Conditions. The SEI layer 

formation mainly occurs during the charging process and, for typical EVs, batteries are 

charged using a Constant Current/Constant Voltage (CCCV) mode. Section 3.1.1 focused 

on a constant current case, while this section considers a case in which the charging 

current may be different at each cycle. For this dynamic loading condition, a random 

current loading (from 0 to 0.5 C-rate) is applied during changing at each cycle at 25 oC. 

Battery degradation results are shown in Figure 4 for a dynamic current profile and the 

corresponding average constant current profile. As shown in Figure 4b, the capacity fade 

when subjected to dynamic loading results in greater capacity fade (0.7% greater at 80% 

capacity loss) than when subjected to the dynamic profile’s average current. This 

phenomenon, in which a dynamic current produces a faster degradation rate (1.16x10-4 

per cycle) than the constant current (1.10x10-4 per cycle) as shown in Figure 4c, was 

observed in experimental data [43] for an electric vehicle battery under highway driving 
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loading profiles. In this experiment, the capacity fade with highway driving load profiles 

is slightly greater (approximately 0.1%) than the case with a constant current. 

 

 
Figure 4. Battery degradation results: (a) dynamic and constant average applied currents, 

(b) cycle history of normalized capacity prediction for dynamic and constant applied 
currents, and (c) cycle history of capacity change cycle for dynamic and constant applied 

currents. 
 

3.2. CAPACITY LOSS AND POWER LOSS ANALYSES 

Crack propagation, Δa/a0, defined as the ratio of the change in crack length to the 

initial crack length, is plotted in Figure 5 as a function of temperature, C-rate, and particle 

size (with β = 3.3, 1, and 0.4 for 0.5rn, rn, and 2rn, respectively). As shown in this figure, 

all of the parameters have a significant impact on crack propagation and, hence, battery 

(c) 

(a) (b) 
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cycle life. Lower temperatures can slow the growth of the SEI layer (Equation 8), and 

lower C-rates or smaller particle sizes can lower the stress level (Equation 14), both of 

which slow the crack growth rate (Equation 10) and, correspondingly, extend battery life. 

There is a lot of experimental evidence that stress can build up inside battery materials 

and there are also some experimental studies characterize the developed stress and cracks 

based on measurements from SEM and AFM [41, 44-47]. However, in all of the prior 

work, the crack growth inside particles was not monitored and, practically, it will be very 

hard to monitor stress at the particle level based on in-situ measurement. The predicted 

crack propagation rate in this work are in the range of values from the reference [41, 44-

46]. 

Figure 6 shows examples of voltage profiles for three cases at two specific cycle 

numbers, N = 372 (Figure 6a) and N = 757 (Figure 6b). Case 1 does not consider crack 

propagation, i.e., degradation mechanisms 3 and 4 (solid line) are not included. Case 2 

does not consider SEI layer growth on previously formed SEI layers, i.e., degradation 

mechanisms 2 and 4 (dashed line) are not included. Case 3 considers all four degradation 

mechanisms (dotted line). As shown in Figure 6, capacity reduction and power loss are 

slightly less for Case 2 as compared to Case 1. However, in the absence of crack 

propagation (Case 1), there are significant differences in capacity fade and power loss as 

compared to Case 3. Details of capacity fade and power loss differences are discussed 

below. 
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Figure 5. Crack propagation Δa/a0 versus cycle number (a) different temperatures with 
0.5C and rn, (b) different C-rates with 60oC and rn, and (c) different particle sizes with 

0.5C and 60oC. 
 

 

Figure 6. Voltage profiles and resulting capacity fade and power loss when considering a 
variety of degradation mechanisms at (a) 372 and (b) 757 cycles. 

(a) 

(a) 

(b) 

(b) 

(c) 
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3.2.1. Capacity Loss Analysis. Capacity Fade Deviation (CFD) percentage is 

defined as  

 

𝐶𝐶𝐹𝐹𝐷𝐷 =
𝑄𝑄𝑐𝑐𝑎𝑎𝑠𝑠𝑒𝑒,3 − 𝑄𝑄𝑐𝑐𝑎𝑎𝑠𝑠𝑒𝑒,𝐿𝐿

𝑄𝑄𝑐𝑐𝑎𝑎𝑠𝑠𝑒𝑒,3
× 100 (26) 

where Qcase,3 is the calculated capacity fade for Case 3 and Qcase,i is the calculated 

capacity fade for Case 1 or Case 2.  

Therefore, the greater the CFD, the greater the influence of crack propagation 

(Case 1) or SEI layer growth (Case 2) on battery capacity fade. Compared to the results 

that take all degradation mechanisms into account, the results for Case 2 show little 

change in the capacity fade, the CFD values are 0.9% and 1.8% at 372 and 757 cycles, 

respectively. In contrast, there is a relatively large difference in the capacity fade, i.e., the 

CFD values are 6.2% and 18.3% at 372 and 757 cycles, respectively, for Case 1. This 

result indicates that crack propagation accelerates SEI layer formation and, thus, capacity 

fade, significantly.  

 Issues such as crack propagation, SEI layer growth, capacity fade, and power loss 

can be affected by other factors, such as C-rate, temperature, and particle size. Additional 

studies were conducted to explore these effects and the results are shown in Figure 7, 

which includes the impact of temperature (Figures 7a and 7b), C-rate (Figures 7c and 7d), 

and particle size (Figures 7e and 7f). The results in Figures 7a, 7c, and 7e exclude the 

effect of crack propagation and the results in Figures 7b, 7d, and 7f exclude the effect of 

SEI layer growth. All of the simulations are terminated assuming battery life is over 

when the battery capacity reaches 80% of the initial capacity.  
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Temperature is an important factor determining battery life, as it directly affects 

the SEI layer formation rate (Equation 8) and the crack propagation rate (Equation 10). 

As shown in Figures 7a and 7b, for the original particle size (5 μm) at 0.5C, higher 

temperatures increase the crack growth rate and SEI layer growth rate, resulting in more 

SEI layer formation on the cracked surfaces. Case 1 shows the CFD values are 23.29% 

and 22.95% at 15 and 60 oC, respectively (Figure 7a); however, the results of Case 2 

show that the CFD values are 1.01% and 1.99% at 15 and 60 oC, respectively (Figure 7b).  

The C-rate impacts capacity fade because it affects not only the battery 

electrochemical reaction (Equation 1) but also the maximum stress on the particle surface 

(Equation 14). As shown in Figures 7c and 7d, a higher C-rate results in shorter battery 

life. For instance, the cycle life is 4,000 cycles at 0.25C while the life is only 150 cycles 

at 1C. This is due to the fact that higher C-rates promote crack propagation by increasing 

the maximum stress at the particle surface. In Case 1, 1C results in a CFD value of 

23.99%, which is 4.19% greater than the case for 0.25C. Additionally, the results from 

Case 2 for all of the C-rates show smaller values of CFD than the corresponding results 

for Case 1. 

Particle size will also impact capacity fade because it affects the maximum stress 

at the particle surface (Equation 14) and the total surface area (Equation 7). Larger 

particles undergo greater volume change, causing higher stresses. As a result, the CFD 

value is much greater for Case 1, as compared to the CFD values for Case 2 at all C-rates. 

As shown in Figures 7e and 7f, the deviation of larger particles (2rn, 23.98% CFD) used 

in Case 1 is 4.18% greater for the smaller particle (0.5rn, 19.80% CFD); however, the 

larger particles (2rn, 0.38% CFD) used in Case 2 have a value of CFD that is 4.33% 
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smaller than the CFD value for the smaller particle (0.5rn, 4.77% CFD), which could be 

explained by higher current density on the smaller particles.  

3.2.2. Power Loss Analysis. Power is another important measure of battery 

performance.  

Similar to capacity fade deviation, a Power Loss Deviation (PLD) percentage is 

defined as 

 

𝑃𝑃𝐿𝐿𝐷𝐷 =
𝐼𝐼𝑎𝑎𝑝𝑝𝑝𝑝𝜌𝜌𝑐𝑐𝑎𝑎𝑠𝑠𝑒𝑒,𝐿𝐿 − 𝐼𝐼𝑎𝑎𝑝𝑝𝑝𝑝𝜌𝜌𝑐𝑐𝑎𝑎𝑠𝑠𝑒𝑒,3

𝐼𝐼𝑎𝑎𝑝𝑝𝑝𝑝𝜌𝜌𝑐𝑐𝑎𝑎𝑠𝑠𝑒𝑒,3
× 100 =

𝜌𝜌𝑐𝑐𝑎𝑎𝑠𝑠𝑒𝑒,𝐿𝐿 − 𝜌𝜌𝑐𝑐𝑎𝑎𝑠𝑠𝑒𝑒,3

𝜌𝜌𝑐𝑐𝑎𝑎𝑠𝑠𝑒𝑒,3
× 100 (27) 

where Vcase,3 is the calculated voltage for Case 3 and Vcase,i is the calculated voltage for 

Cases 1 or 2. 

The PLD values were calculated based on the voltage profiles changes (Figure 6) 

at different operating conditions and the results are given in Figure 8 for a variety of 

temperatures, C-rates, and particle sizes.  

As can be seen in Figure 8, the PLDs indicate that the voltages for Cases 1 and 2 

are always greater than the voltage for Case 3. In addition, the PLD value is always 

significantly larger for higher normalized capacities. 

 This means that the voltage profile changes significantly due to the capacity fade 

at the end of discharge, which is related to a high concentration polarization resulting 

from the shift of the OCP window as mentioned above.  
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Figure 7. Capacity fade difference between Cases 1 and 3 at (a) different temperatures 
with 0.5C and rn, (c) different C-rates with 60 oC and rn, and (e) different particle sizes 
with 0.5C and 60 oC. Capacity fade difference between Cases 2 and 3 at (b) different 

temperatures with 0.5C and rn, (d) different C-rates with 60 oC and rn, and (f) different 
particle sizes with 0.5C and 60 oC. 

(a)                                                                          (b) 

(c)                                                                          (d) 

(e)                                                                         (f) 
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The effects of temperature on the voltage loss were similar to the effects of 

temperature on the capacity fade. Similar to the CFD results for Case 2 where low C-rates 

caused increased capacity fade due to prolonged battery cycling life, low C-rates will also 

cause increased battery power loss. In addition, the PLD values for Case 1 (Figure 8c) 

have 28.18% and 29.53% differences at the end of discharge for 0.25 and 0.5C, 

respectively, similar to the trend of CFD with C-rates. The PLD value for Case 1 at 1C 

(13.86%), however, is much smaller than the CFD value for Case 1 (23.99%), which 

could be due to the fact that the total number of lithium ion loss is not sufficient to affect 

the voltage profile as calculated by Equations 4 and 5. For particle sizes of 0.5rn, rn, and 

2rn, the results also generally follow the CFD trends for both Cases 1 and 2. 

In summary, the maximum CFD and PLD values at different conditions in Table 

3 demonstrate that the effect of SEI layer growth on capacity fade strongly depends on 

temperature (Figures 7a and 7b), C-rate (Figures 7c and 7d), and particles size (Figures 

7e and 7f). Also, the effect of SEI layer growth on power loss strongly depends on C-rate 

(Figures 8c and 8d) and particle size (Figures 8e and 8f), but it is less sensitive to 

temperature (Figures 8a and 8b). The effect of crack propagation on capacity fade 

decreases as the C-rate and particle size decrease. It also can be concluded that the effect 

of crack propagation is more important than the effect of SEI layer growth on capacity 

fade and power loss for all of the operating conditions considered here. 

3.2.3. SEI Layer Resistance. The SEI layer can interfere with ion transport and 

may result in increased internal battery resistance. In this study, the SEI layer resistance 

is integrated with the SP model via Equations 22-25 to study the effect of SEI layer 

resistance on the voltage curve profile and capacity fade. Figure 9 shows the voltage 
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profiles for two different C-rates with and without considering SEI layer resistance, RSEI, 

in Equation 25. At 0.5C, the effect of SEI layer resistance on voltage drop at the start of 

discharge is very small (0.1%) and has no effect on the final capacity, which is consistent 

with experimental observations at 0.5C [40]. However, as shown in Figure 9b, the initial 

voltage drop increases by 2% (0.03 V) and shows a 0.3% capacity fade at 3C when the 

capacity decayed to 80%. Therefore, it can be concluded that SEI layer resistance has a 

greater impact on the voltage profile as the C-rate increases. 

 
Table 3. Maximum CFD and PLD values for different conditions. 

Parameters Capacity Fade Deviation Power Loss Deviation 
No crack 

propagation 
No SEI 

layer growth 
No crack 

propagation 
No SEI 

layer growth 
15 oC, 0.5C, rn 23.29% 1.01% 27.42% 11.36% 
45 oC, 0.5C, rn 23.06% 1.78% 27.64% 12.12% 
60 oC, 0.5C, rn 22.95% 1.99% 29.53% 15.25% 
60 oC, 0.25C, rn 20.32% 3.53% 28.18% 18.42% 
60 oC, 1C, rn 23.99% 0.82% 13.86% 1.77% 
60 oC, 0.5C, 0.5rn 19.80% 4.77% 25.90% 19.52% 
60 oC, 0.5C, 2rn 23.98% 0.38% 29.29% 7.86% 

 

4. SUMMARY AND CONCLUSIONS 

 

In this paper, an advanced capacity fade model, coupled with chemical and 

mechanical degradation mechanisms, was developed based on an SP model. This SP 

model includes electrolyte physics, alleviating the problem of low accuracy at high C-

rates. The proposed model was able to accurately predict battery capacity fade and 

voltage profile as a function of cycle number over a broad temperature range with an 

error of 10.3×10-3 RMSE compared to experimental results. The key findings can be 

summarized as follows: 
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Figure 8. Power loss differences between Cases 1 and 3 at (a) different temperatures with 
0.5C and rn, (c) different C-rates with 60 oC and rn, and (e) different particle sizes with 

0.5C and 60 oC. Power loss differences between Cases 2 and 3 at (b) different 
temperatures with 0.5C and rn, (d) different C-rates with 60 oC and rn, and (f) different 

particle sizes with 0.5C and 60 oC. 
 

(c) 

(e)  (f) 

(d) 

(b) (a) 
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Figure 9. Voltage profiles with and without consideration of SEI layer resistance at 60 oC 
for (a) 0.5C and (b) 3C after 757 cycles. 

 

(1) The SEI layer formation on newly formed surfaces due to the crack propagation 

dominates the capacity degradation during cycling; it had a 9 times greater effect on 

capacity fade than the growth of the existing SEI layer on all surfaces (i.e., particle 

and cracks). 

(2) The effect of crack propagation on capacity strongly depends on temperature, C-rate, 

and particle size, and the effect of crack propagation on power loss increases at higher 

temperatures, lower C-rates, and smaller particle sizes. 

(3) Battery resistance increased slightly (0.1%) with cycling at low C-rate (0.5C) and had 

minimal impact on battery capacity fade, which agrees well with the experimental 

observations from the literature. At higher C-rates (3C), the SEI layer resistance had 

more impact (2% voltage drop) on voltage profiles. 

In future studies, this model will be further extended by including additional side 

reactions such as lithium plating. One key challenge in fast charging is lithium plating 

and its interaction with other side reactions. This means fast charging needs an adaptive 

(a)                                                               (b) 
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charging protocol as a function of cycle. This model will be a very important foundation 

for the creation of a fast charging protocol.  
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VI . A SINGLE PARTICLE-BASED BATTERY DEGRADATION MODEL AND 

LIFE ESTIMATION FOR LiMn2O4/GRAPHITE BATTERY 
 

 

ABSTRACT 

 

State of Health (SOH) estimation of Li-ion batteries is a critical function in 

Battery Management Systems (BMSs). Many estimation techniques utilize a battery 

model, which require high accuracy and high computational efficiency. Conventional 

electrochemical full-order models can accurately capture battery states, but they are too 

complex and computationally expensive to be used in the BMS. A Single Particle (SP) 

model is a good alternative to addresses this issue. In this work, an SP model for 

LiMn2O4/Graphite batteries is developed by including the key degradation mechanisms 

of (1) Mn dissolution in the cathode and (2) Li-ion loss due to SEI layer formation in the 

anode coupled with mechanical degradation mechanism. The model proposed in this 

paper provides quantitative information regarding, Mn dissolution and Li-ion loss as well 

as the resulting battery capacity fade. Two stages of capacity fade are observed: The Li-

ion loss due to SEI layer formation dominated the cell capacity loss, and then the Mn 

dissolution dominated the cell degradation due to the volume fraction changes. This 

model, quickly and accurately predicts capacity/voltage, can be used for SOH estimation. 

 

1. INTRODUCTION 

 

Li-ion battery is one of the most important components of for portable devices, 

electric vehicles (EV), and many applications. The most important concerning of the 
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usage of Li-ion battery is the degradation. Due to irreversible physical and chemical 

changes, battery performance decreases over time until the battery can no longer be used. 

For example, when the battery capacity of an electric vehicle reaches 80% of its initial 

capacity, the battery is no longer considered to be available.[1] The Battery State of 

Health (SOH) have been used to indicate the state of a battery’s condition compared to its 

initial condition, which is represented by the capacity of the battery after certain charge-

discharge cycles. Therefore, SOH estimation is an essential component to control Li-ion 

battery usage.[1, 2] In order to estimate the SOH, the degradation mechanisms, depended 

on the chemical nature of the materials for a variety of anode and cathode materials, have 

to be considered. Battery degradation mechanisms [3-6] can be generally included as 

current collector corrosion, morphological changes or dissolution of active materials, 

electrolyte decomposition, and Solid Electrolyte Interphase (SEI) layer formation. The 

most known processes leading to capacity fade in Li-ion batteries are SEI layer formation 

and growth on the anode particles and manganese (Mn) dissolution of the cathode 

materials. 

On the anode active material particle surface, the SEI layer will form on the first 

few cycles with a significant amount of irreversible capacity loss and will grow during 

charge-discharge cycling, which results in further irreversible ion loss [3-5, 7].  

Moreover, mechanical damage due to the stress generated on particle surface will 

accelerate chemical degradation [8]. During the intercalation/de-intercalation process, 

volume change causes considerable stresses inside the particles, leading to mechanical 

failures such as pulverization of, or cracks and fractures in, the active materials. These 

cracks growth will generate new surfaces on the particle and the new surface is exposed 
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to the electrolyte [8-14], which leading to additional SEI layer formations and then the 

acceleration of capacity. The amount of Li-ions loss depending on the type of carbon 

used as the anode. For the graphitic material (MCMB), the irreversible capacity is about 8 

to 15%, and for hard carbons, it can archive 50% of reversible capacity [5].  For the 

cathode side, Lithium Manganese Oxide (LMO) spinel is a commonly used active 

material due to its economic and non-toxic features. However, the capacity loss of LMO 

during cycling is a critical issue in most applications. Among the several degradation 

mechanisms, such as surface film formation and electrolyte decomposition, Mn 

dissolution is the primary reason for capacity fade in the LMO cathode [15]. 

The foundation of many battery degradation prediction models developed in 

current decades is physics-based models that provide very detailed information regarding 

the battery electrochemical responses [16-23]. SEI layer formation was simulated through 

a full order model by considering the flux of the side reaction at the anode particle 

surface [16, 17] or by modifying the solid phase concentration to be a function of the 

cycle according to Li-ion loss [18-20]. The effect of mechanical degradation on capacity 

fade was also simulated using a full order electrochemical model [21]. The dissolution of 

Mn has been studied with the full order model for LMO cathode degradation [22] and 

also the dissolution was coupled with side-reactions from anode [23] to predict the 

battery capacity fade. Even though the full order model is ideal for the detailed analysis 

of battery performance and able to accurately capture the degradation of LMO/graphite 

phenomena, it is too computationally intensive to be efficiently utilized in a BMS [24, 

25]. These degradation model, based on the full order electrochemical model, solve ten 

more coupled partial differential equation for the mass conservation and charge 
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conservation in the solid and electrolyte phases, as well as kinetic reactions at the 

interface between the solid and electrolyte. This has led to a requirement to reduce the 

complexity of electrochemical models. For instance, the studies in [26, 27] reduced the 

electrochemical model proposed by Doyle et al. [28] into a form suitable for a BMS; 

however, the model parameter identification process required to construct these models is 

unwieldy. To simply the model identification process, an Equivalent Circuit Model 

(ECM) have been used for BMS, which describes the battery dynamic behavior as a 

voltage source and a series of resistors and capacitors [29]. The disadvantage of ECM 

models are low fidelity, limited prediction capability, and their states have no physical 

significance, which leads to limitations of the usage for different applications. A 

physical-based reduced-order model, called Single Particle (SP) model, shows the 

balance between full order electrochemical models and ECMs. The SP model assumes 

multiple uniform sized spherical particles in both electrodes, and then the current 

distribution is uniform across both electrodes. Therefore, each electrode can be 

approximated by a single spherical particle. The SP model includes a set of ordinary 

differential equations which are directly derived from comprehensive electrochemical 

models. Thus, the SP model is able to explicitly and physically represent many battery 

properties.  

In this paper, we present a side-reaction coupled SP model for capacity 

degradation analysis of Li-ion batteries. This side-reaction coupled model includes the 

SEI layer formation on the anode side for graphite material, and the Mn dissolution on 

the cathode side for LMO material. The cell internal resistance increase due to SEI layer 

formation and diffusion change due to dissolution is also included. The effects of 
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different degradation mechanisms on capacity fade and battery performance area studied 

quantitatively. As a result, three stages are found for the degradation of LMO/graphite 

battery: (1) SEI layer formation dominant cycles, (2) SEI layer stabilizing cycles, and (3) 

dissolution dominant cycles. 

 

2. EXPERIMENTAL METHOD 

 

In this work, a LiMn2O4 (LMO) paste were prepared by first mixing 85.5 wt% 

LMO powder (MTI, 13 μm) with 6.5 wt% carbon black (CB, Alfa Aesar) and 8 wt% 

Polyvinylidene fluoride (PvdF, Sigma-Aldrich), and that was then dispersed in N-Methyl-

2-pyrrolidone solvent (NMP, Sigma-Aldrich), similarly MCMB paste was prepared by 

mixing MCMB powder) with 6.5 wt% CB and 8 wt% PvdF in NMP. The pastes were 

mixed by a SpeedMixer (FlackTeck Inc) at 2000 RMP for 20 minutes at room 

temperature. A CR2032 coin cell (Wellcos Corp) was used to assemble the battery in an 

argon-filled glove box (Mbraun). LMO was used as a cathode, MCMB as an anode, and 

commercial PP/PE/PP membrane (Celgard) as a separator; the battery was filled with 

liquid electrolyte 1M LiFP6 EC:DMC 1:1 (Sigma-Aldrich). The electrochemical behavior 

of the assembled batteries was measured from 3 V to 4.2 V by using a battery testing 

station (IVIUMnSTAT, Ivium Tech). The cycling performances were conducted under 

0.1 C-rate at room temperature. 
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3. COMPUTATIONAL METHODOLOGY AND IMPLEMENTATION 

 

Figure 1a is the schematic diagram of a Li-ion cell composed of two electrodes (a 

solid matrix in an electrolyte solution) and a separator (electrolyte solution), while Figure 

1b shows the concept of the SP model, which represents each electrode as a single 

particle. Pesudo-2D (P2D) models, which are based on porous electrode theory using 

concentrated solutions, are widely used for battery modeling [14]. This model describes 

Li-ion transport through the use of one-dimensional (battery thickness, x, direction) 

charge and mass conservation laws along with the thickness direction, as well as the 

diffusion process for individual active particles, which is implemented in the radial 

direction of the particles,. The kinetic reaction at the particle surfaces is described by the 

Butler-Volmer equation. The P2D model consists of ten coupled nonlinear partial 

differential equations for the mass and charge balance in the solid and electrolyte phases 

[16].  

In the SP model it is assumed that the current passing through the electrode is 

uniformly distributed over all of the particles inside the electrode. Therefore, as shown in 

Figure 1b, each electrode can be modeled as a single spherical particle [17], and the 

governing partial differential equations can be simplified into a set of algebraic equations. 

Further, the complex multi-physics of the battery can be implemented in a relatively 

simple manner based on the assumption of uniformity of intercalation flux in the SP 

model [30], which  leads to each reaction inside electrode, such as diffusion, 

transportation, diffusion-induced stress, and side-reactions, has a uniform impact on each 
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particle. In addition, the SP models can be extend to include the concentration and 

potential distribution in electrolyte phase to improve model accuracy at high C-rates. [30] 

 

 

Figure 1. Schematic of anode, separator, and cathode in a Li-ion battery for P2D and SP 
models, and schematic of SEI layer formation, crack propagation, and dissolution on a 

particle surface. 
 

The remaining challenge of SP model is to consider battery degradation. On the 

anode side, the degradation is due to the coupled mechanisms between mechanical crack 

propagation and SEI layer formation and growth. In the SEI layer formation and growth 

model, the crack propagation is used to estimate the new SEI layer formation on the 

surface of newly-formed cracks. One the cathode side, the Mn dissolution leads to the 

(b) 

(a) 
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reduction of solid phase volume fraction of the active material, which impact the kinetic 

reaction and diffusivity of the active material. 

In the SP mode, to calculate the terminal voltage, the SP model considers the solid 

phase potential difference between the end sides of both electrodes based on Bulter-

Volmer equation [30] 
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The electrolyte potential difference is considered as: 
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where cs,j,max is the maximum solid phase concentration, kj is the reaction rate constant and 

j = p/n denotes the positive/negative electrode, respectively. R is the universal gas 

constant, T is temperature, and F is Faraday’s constant, Φ1,j is the solid-phase potential 

and Uj is the Open-Circuit Potential (OCP). The OCP, in general, is a function of the 
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normalized surface concentration, cs,j,surf(t)/cs,j,max.  𝑘𝑘𝐿𝐿

𝑒𝑒𝑠𝑠𝑠𝑠 = 𝑘𝑘𝐿𝐿𝜀𝜀𝐿𝐿
𝑏𝑏𝑟𝑟𝑠𝑠𝑎𝑎, brug denotes the 

bruggeman coefficient and ki is the electrolyte conductivities [18]. Li is the thickness, i = 

p/s/n denotes the positive/separator /negative electrode, respectively. Iapp is the applied 

current density, t+ is cationic transport number in the electrolyte,  𝐽𝐽𝑗𝑗𝐿𝐿𝐿𝐿 is the 

electrochemical reaction rate and ce,i(x,t) is the electrolyte concentration [18].  

 

3.1. LI-ION LOSS DUE TO SEI LAYER FORMATION 

 Equation 1 does not include battery capacity reduction effects and, therefore, does 

not exhibit changes in the voltage profile as the battery is cycled. In order to implement 

capacity loss mechanisms into the SP model, the initial concentrations, 𝑐𝑐𝑠𝑠,𝑝𝑝(0)�
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 and 
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 for the cathode and anode, respectively, at the beginning of the (N+1)th cycle 

must be calculated. Here, a fully charged status of the battery is assumed. Then, the 

number of available Li-ions inside the battery after the Nth cycle can be calculated based 

on the capacity after the Nth cycle, QN, and the initial total number of Li-ions inside the 

battery, nLi. From charge conservation in the anode and cathode at the (N+1)th cycle  
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where Q0 is the battery capacity after the formation cycle (described below). In addition, 

the initial voltage at the Nth cycle, 𝜌𝜌(0), is constant at the beginning of discharge at each 

cycle, is 
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Therefore, the initial concentrations in the anode and cathode are estimated by 

solving Eqs. 2 and 3. It should be noted that as the battery capacity decreases with each 

cycle, the corresponding OCP curve windows change, affecting the concentration 

polarization. The reduction in capacity can be attributed to Li-ion loss during the 

formation and growth of SEI layers on anode active material particle surfaces.  

A fresh battery cell undergoes a process called ‘formation cycle’ to stabilize the 

cell by forming an initial SEI layer. During the formation cycle, a uniform SEI layer is 

formed on the freshly exposed particle surfaces due to electrolyte reduction. Once the 

battery is in use, the SEI layer tends to grow, and stresses developed due to changes in 

the battery volume cause crack propagation on the particle surface, creating new surfaces 

that are exposed to the electrolyte and on which new SEI layers will form. We utilized 

the growth model developed by Rutooj et al. [20] in our work and extended our SP model 

to include degradation mechanisms due to SEI layer formation and growth [31]. 

Solid electrolyte interface layer formation and growth can be categorized into four 

different mechanisms including (1) initial SEI layer formation during the formation 

cycle; (2) growth on the initially formed SEI layer; (3) initial SEI layer formation on 

newly formed surfaces due to cracking; and (4) growth of the initially formed SEI layers 

on the surfaces created by cracking, and the total SEI layer growth rate is [31] 
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Then, the capacity fade rate per cycle after the formation cycle is 
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= −
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The SEI layer growth also increase the cell resistance and impact battery power. 

We estimated battery resistance increase by leveraging the work of Ning et al. [21]. The 

SEI layer resistance at the Nth cycle is 

 

𝑅𝑅𝑆𝑆𝐸𝐸𝑆𝑆|𝑁𝑁 =
𝐿𝐿𝑆𝑆𝐸𝐸𝑆𝑆|𝑁𝑁
𝑘𝑘𝑆𝑆𝐸𝐸𝑆𝑆

 (6) 

where kSEI is the SEI layer conductivity and the SEI layer thickness at the Nth cycle is 

 

𝐿𝐿𝑆𝑆𝐸𝐸𝑆𝑆|𝑁𝑁 =
𝜌𝜌𝑆𝑆𝐸𝐸𝑆𝑆|𝑁𝑁
𝐴𝐴𝑐𝑐𝑟𝑟|𝑁𝑁

 (7) 

 

The initial SEI layer resistance, 𝑅𝑅𝑆𝑆𝐸𝐸𝑆𝑆0 , is assumed to be on the same order as the 

electrolyte resistance. Thus, kSEI is calculated based on the initial SEI layer thickness and 

resistance 

 

𝑘𝑘𝑆𝑆𝐸𝐸𝑆𝑆 =
𝐿𝐿𝑆𝑆𝐸𝐸𝑆𝑆0

𝑅𝑅𝑆𝑆𝐸𝐸𝑆𝑆0  (8) 

  

 Finally, the cell terminal voltage, including the impact of initial concentration 

change (Eqs. 2 and 3), SEI layer resistance (Eq. 6), and other polarizations effects such as 

activation and diffusion, is 
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𝑁𝑁+1
𝑐𝑐𝑠𝑠,𝑝𝑝,𝑚𝑚𝑎𝑎𝑚𝑚

� − 𝑈𝑈𝑐𝑐 �
𝑐𝑐𝑠𝑠,𝑐𝑐,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝑡𝑡)�

𝑁𝑁+1
𝑐𝑐𝑠𝑠,𝑐𝑐,𝑚𝑚𝑎𝑎𝑚𝑚

�

+
2𝑅𝑅𝑅𝑅
𝐹𝐹

�ln �𝑚𝑚𝑝𝑝(𝑡𝑡) + �𝑚𝑚𝑝𝑝
2(𝑡𝑡) + 1�

− ln �𝑚𝑚𝑐𝑐(𝑡𝑡) + �𝑚𝑚𝑐𝑐
2(𝑡𝑡) + 1�� + (1

− 𝑡𝑡+)
2𝑅𝑅𝑅𝑅
𝐹𝐹

ln
𝑐𝑐𝑒𝑒,𝑝𝑝(𝐿𝐿, 𝑡𝑡)
𝑐𝑐𝑒𝑒,𝑐𝑐(0, 𝑡𝑡)

−
𝐼𝐼𝑎𝑎𝑝𝑝𝑝𝑝

2
(
𝐿𝐿𝑐𝑐
𝑘𝑘𝑐𝑐
𝑒𝑒𝑠𝑠𝑠𝑠 +

2𝐿𝐿𝑠𝑠
𝑘𝑘𝑠𝑠
𝑒𝑒𝑠𝑠𝑠𝑠 +

𝐿𝐿𝑝𝑝
𝑘𝑘𝑝𝑝
𝑒𝑒𝑠𝑠𝑠𝑠)

+ 𝑅𝑅𝑆𝑆𝐸𝐸𝑆𝑆|𝑁𝑁𝐼𝐼𝑎𝑎𝑝𝑝𝑝𝑝 

(9) 

 

3.2. CAPACITY LOSS DUE TO ACTIVE MATERIAL LOSS IN CATHODE 

For the LMO battery, the Mn dissolution is the critical factor for the capacity 

degradation, and the loss of active material would increase the resistance and reduce solid 

phase diffusivity. The generated acid inside the cell is responsible for the Mn dissolution 

as: 

 

𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑒𝑒𝑎𝑎𝑡𝑡
𝑂𝑂𝑚𝑚𝐿𝐿𝑂𝑂𝑎𝑎𝑟𝑟𝐿𝐿𝑐𝑐𝑐𝑐
�⎯⎯⎯⎯⎯⎯�𝑆𝑆𝑙𝑙𝑐𝑐 + 𝐻𝐻+ + 𝑒𝑒− (10) 

where 𝑆𝑆𝑙𝑙𝑐𝑐 represents the overall products of the solvent oxidation and includes soluble 

species and solid species. The rate of the solvent decomposition is charge-transfer-kinetic 

controlled and can be expressed by a Butler-Volmer expression. The H+ production rate 

due to the reaction given in Eq. 10 can be written as follows: 

 

𝑅𝑅𝑠𝑠,1 =
𝑖𝑖𝑐𝑐
𝐹𝐹
𝑒𝑒𝑒𝑒𝑒𝑒 �

0.5𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎� (11) 

 

The parameter ηj is the reaction over-potential defined as ηj = Φ1,j- Φ2,j-Uj, where 

Φ1,j is the solid-phase potential, Φ2,j is solution-phase potential, and Uj is the open-circuit 
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potential. The OCP, in general, is a function of the normalized surface concentration, 

cs,j,surf/cs,j,max, and temperature. In order to calculate the average overpotential, ηp,avg at 

cathode, it is assuming that 

 

𝜂𝜂𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎 = Φ1,𝑝𝑝 − Φ2,𝑝𝑝 − 𝑈𝑈𝑝𝑝
𝑒𝑒𝑒𝑒 (12) 

where the 𝑈𝑈𝑝𝑝
𝑒𝑒𝑒𝑒 is the equilibrium potential of the side reaction, and 𝑈𝑈𝑝𝑝

𝑒𝑒𝑒𝑒 = 4.1. [23] 

To cancel out the term Φ1,p- Φ2,p, which cannot be obtained in SP model, the 

potential along the electrode is calculated as 

 

𝜂𝜂𝑝𝑝 = Φ1,𝑝𝑝 − Φ2,𝑝𝑝 − 𝑈𝑈𝑝𝑝 

 
(13) 

Then Eq. 12 subtract Eq. 13, it can obtain the averaged potential at cathode 

 

𝜂𝜂𝑝𝑝,𝑎𝑎𝑎𝑎𝑒𝑒 = 𝑎𝑎𝑆𝑆𝑎𝑎�𝑈𝑈𝑝𝑝 − 𝑈𝑈𝑝𝑝
𝑒𝑒𝑒𝑒� + 𝜂𝜂𝑝𝑝 

 
(14) 

 

The reaction over-potential can be obtained by rewriting Bulter-Volmer equation as 

 

𝐽𝐽𝑗𝑗𝐿𝐿𝐿𝐿 = 𝑘𝑘𝑗𝑗𝑐𝑐𝑠𝑠,𝑗𝑗,𝑚𝑚𝑎𝑎𝑚𝑚𝑐𝑐𝑒𝑒0.5 �1 −
𝑐𝑐𝑠𝑠,𝑗𝑗,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠

𝑐𝑐𝑠𝑠,𝑗𝑗,𝑚𝑚𝑎𝑎𝑚𝑚
�
0.5

�
𝑐𝑐𝑠𝑠,𝑗𝑗,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠

𝑐𝑐𝑠𝑠,𝑗𝑗,𝑚𝑚𝑎𝑎𝑚𝑚
�
0.5

�𝑒𝑒𝑒𝑒𝑒𝑒 �
0.5𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂𝑗𝑗�

− 𝑒𝑒𝑒𝑒𝑒𝑒 �
−0.5𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂𝑗𝑗�� 
(15) 

 

where i0 is the exchange current density, kj is the reaction rate constant, ce is the 

electrolyte concentration, R is the universal gas constant, T is the temperature, F is 
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Faraday’s constant, cs,j,surf is the particle surface concentration, and cs,j,max is maximum 

solid phase concentration. 

Then the reaction potential can be obtained from Eq. 1b 

 

𝜂𝜂𝑝𝑝 =
2𝑅𝑅𝑅𝑅
𝐹𝐹

ln �𝑚𝑚𝑝𝑝 + �𝑚𝑚𝑝𝑝
2 + 1� (16) 

where 𝑚𝑚𝑝𝑝 =
𝐽𝐽𝑗𝑗
𝐿𝐿𝐿𝐿

2𝑘𝑘𝑝𝑝𝑐𝑐𝑠𝑠,𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑒𝑒0.5�1−
𝑐𝑐𝑠𝑠,𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑠𝑠,𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚

�
0.5
�
𝑐𝑐𝑠𝑠,𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑠𝑠,𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚

�
0.5 

The i0 in Eq. 11 can be calculated as 

 

𝑖𝑖0 = 𝑘𝑘𝑝𝑝𝑐𝑐𝑠𝑠,𝑝𝑝,𝑚𝑚𝑎𝑎𝑚𝑚𝑐𝑐𝑒𝑒,𝑗𝑗
0.5 �1 −

𝑐𝑐𝑠𝑠,𝑝𝑝,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠

𝑐𝑐𝑠𝑠,𝑝𝑝,𝑚𝑚𝑎𝑎𝑚𝑚
�
0.5

�
𝑐𝑐𝑠𝑠,𝑝𝑝,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠

𝑐𝑐𝑠𝑠,𝑝𝑝,𝑚𝑚𝑎𝑎𝑚𝑚
�
0.5

 

 
(17) 

  

In order to calculate the dissolution as a function of cycle numbers, the value of 

ηp,avg and i0 are averaged to a constant value during cycling. Based on the Eqs. 14 and 17 

for one cycle, the i0 = 1.92 A/m, and ηp,avg = 0.0047 V, is used for cycling. 

The acid attack on the active material in the cathode, LiMn2O4, is assumed to 

occur as follows: 

 

4𝐻𝐻+ + 2𝐿𝐿𝑖𝑖𝑀𝑀𝑎𝑎2𝑂𝑂4 = 2𝐿𝐿𝑖𝑖+ + 𝑀𝑀𝑎𝑎2+ +
3
2
𝑀𝑀𝑎𝑎2𝑂𝑂4 + 2𝐻𝐻2𝑂𝑂 (18) 

 

It is supposed that the reaction rate for acid attack on the active material shown in 

Eq. 18 is dominated by the acid concentration in the solution. Consequently, the reaction 

rate for the reaction in Eq. 18 is given by: 
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𝑅𝑅𝑠𝑠,2 = 𝑘𝑘𝑂𝑂𝐿𝐿𝑠𝑠𝑐𝑐𝐻𝐻+ (19) 

where kdis is the reaction rate constant for the acid attack on the active material. 

In addition, the concentration of H+ also affected by LiPF6 salt decomposition: 

 

𝐿𝐿𝑖𝑖𝑃𝑃𝐹𝐹6 → 𝐿𝐿𝑖𝑖𝐹𝐹 + 𝑃𝑃𝐹𝐹5 (20) 

  

𝑃𝑃𝐹𝐹5 + 𝐻𝐻2𝑂𝑂 → 𝑃𝑃𝑂𝑂𝐹𝐹3 + 2𝐻𝐻𝐹𝐹 (21) 

  

𝑅𝑅𝑠𝑠,3 = 𝑘𝑘𝑂𝑂𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝐻𝐻2𝑂𝑂
2 𝑐𝑐𝐿𝐿𝐿𝐿+  (22) 

 

+Hc is concentration of H+, +Lic is concentration of Li+, OHc
2

is the H2O 

concentration, and  kdecom is the salt decomposition coefficient. Then, it is assumed: 

 

𝜀𝜀𝑠𝑠,𝑝𝑝
𝜕𝜕𝑐𝑐𝐻𝐻+

𝜕𝜕𝑡𝑡
= 10𝑅𝑅𝑠𝑠,1 − 4𝑎𝑎𝑝𝑝𝑐𝑐𝑠𝑠𝑅𝑅𝑠𝑠,2 + 2𝑅𝑅𝑠𝑠,3 (23) 

  

𝜀𝜀𝑠𝑠,𝑝𝑝
𝜕𝜕𝑐𝑐𝐻𝐻2𝑂𝑂

2

𝜕𝜕𝑡𝑡
= 2𝑎𝑎𝑝𝑝𝑐𝑐𝑠𝑠𝑅𝑅𝑠𝑠,2 − 𝑅𝑅𝑠𝑠,3 (24) 

  

𝜀𝜀𝑠𝑠,𝑝𝑝
𝜕𝜕𝑐𝑐𝐿𝐿𝐿𝐿+
𝜕𝜕𝑡𝑡

=
1 − 𝑡𝑡+
𝐹𝐹

𝑎𝑎𝑝𝑝𝑐𝑐𝑠𝑠𝑖𝑖𝑝𝑝 − 𝑅𝑅𝑠𝑠,3 (25) 

  

𝑖𝑖𝑝𝑝 = 𝑖𝑖0 �𝑒𝑒𝑒𝑒𝑒𝑒 �
0.5𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎� − 𝑒𝑒𝑒𝑒𝑒𝑒 �
−0.5𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎�� (26) 

where εs.pos is the positive electrode porosity and apos represents the specific surface area.  

The governing equation for the volume fraction of the active material in the 

matrix phase which accounts for the acid induced Mn dissolution (side reaction in Eq.18) 

is given by: 
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𝜕𝜕𝜀𝜀𝑠𝑠,𝑝𝑝

𝜕𝜕𝑡𝑡
= −𝑎𝑎𝑝𝑝𝑐𝑐𝑠𝑠𝑅𝑅𝑠𝑠,2𝜌𝜌𝑚𝑚 (27) 

where Vm is the molar volume of LMO.   

Based on the following equations, the solid phase volume fraction change could 

be implemented into SP model. The volume fraction will affect the Li-ion molar flux 

density at the surface as: 

 

𝐽𝐽𝑝𝑝𝐿𝐿𝐿𝐿 =
𝐼𝐼𝑎𝑎𝑝𝑝𝑝𝑝𝑅𝑅𝑝𝑝

3𝜀𝜀𝑠𝑠,𝑝𝑝𝑙𝑙𝑝𝑝𝐹𝐹
 (28) 

 

where Rp is the particle radius, and Iapp is applied current. 

 The change of flux density would affect the concentration diffusion and the 

potential difference. 

 

𝜕𝜕𝑐𝑐𝑠𝑠,𝑝𝑝(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑡𝑡

=
𝐷𝐷𝑠𝑠
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2

𝜕𝜕𝑐𝑐𝑠𝑠,𝑝𝑝(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑟𝑟

� (29) 

where cs,p is the solid-phase li-ion concentration, t is time, r is the radial coordinate, Ds is 

the solid-phase diffusion coefficient. The boundary conditions for Eq. 29 are: 

 

𝐷𝐷𝑠𝑠
𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟,𝑟𝑟)

𝜕𝜕𝑟𝑟
�
𝑟𝑟=0

= 0 , 𝐷𝐷𝑠𝑠
𝜕𝜕𝑐𝑐𝑠𝑠,𝑗𝑗(𝑟𝑟,𝑟𝑟)

𝜕𝜕𝑟𝑟
�
𝑟𝑟=𝑅𝑅𝑝𝑝

= −𝐽𝐽𝑗𝑗𝐿𝐿𝐿𝐿 (30) 

 

The Li-ion diffusion coefficient in the solid phase changes due to the plugging of 

pores and the formation of the film on the LMO particles surface in the cathode. The 

reduction of Li-ion diffusion coefficient is given by an empirical equation. That is, the 

effective diffusion coefficient in the solid phase is given by: 
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𝐷𝐷𝑠𝑠 = 𝐷𝐷𝑠𝑠,0 �1 − �
𝜀𝜀1,𝑝𝑝𝑐𝑐𝑠𝑠
0 − 𝜀𝜀1,𝑝𝑝𝑐𝑐𝑠𝑠

𝜀𝜀1,𝑝𝑝𝑐𝑐𝑠𝑠
0 �

𝑐𝑐1

� (31) 

where Ds,0 is the initial solid phase diffusion coefficient, 𝜀𝜀𝑠𝑠,𝑝𝑝
0 , is the initial solid volume 

fraction , n1, 0.75, is an empirical factor which represents the effect of the formation of 

the film on the Li ion diffusion.  

 

4. RESULTS AND DISCUSSIONS 

 

4.1. EXPERIMENTAL OBSERVATION 

Two cells were tested under 0.1C, cell 1 is used to find fitting parameters and cell 

2 is used to validate the simulation results. As shown in Fig. 2a, for cell 1, the capacity 

fade 10% after first 10 cycles and the capacity fade ratio is stabilized at 0.3% per cycle, 

thus the first 10 cycles could be considered as the formation cycles, and then the 11th 

cycle could be assumed as the 2nd cycle for simulation. The results of cell 2 showing 

results with 0.22% capacity fading rate, the formation cycle can be considered for the 

first 15 cycles (Fig. 2b). The capacity fade in cells 1 and 2 is assumed only affect by the 

Li-ion loss due to SEI layer formation on anode graphite material with crack propagation, 

and dissolution from cathode LMO active material.  

The results at 20th, 40th, and 60th cycle are used to compare the capacity fade and 

voltage profile. In general, cell 2 has 2% more capacity at the three cycles, which could 

be caused by the slower capacity fading ratio of cell 2 comparing to cell 1 as shown in 

Table 2. 
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Figure 2. Capacity for different batches (a) cell #1 and (b) cell #2. 
 

Table 1. Capacity fade of cell 1 and cell 2 

 Formation 
cycles 

Capacity fade 
rate pre cycle 

Capacity 
20th cycle 40th cycle 60th cycle 

Cell 1 10 0.30% 91.7% 87.6% 80.8% 
Cell 2 15 0.22% 93.9% 88.9% 82.4% 

 

4.2. MODEL VALIDATION 

The reduction of solid phase volume fraction due to dissolution and the Li-ion 

loss due to SEI layer formation were calculated based on our SEI layer formation model 

and dissolution model. The capacity and voltage profiles at 2nd and 60th cycles were first 

used to modify our SEI layer formation model and dissolution model, and voltage 

profiles at 20th and 40th cycles were used to validate the simulated results. The capacity 

loss due to SEI layer and volume fraction at 2nd and 60th cycles were first fitted to match 

the voltage profile and the remained capacity. The parameters used in the simulation are 

listed in Table 3. 

 

(a) (b) 
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Table 2. Model parameters used in simulation studies. 
Parameter Value Description 

a0 2×10-9 Initial crack length (m) 
brug 1.5 Bruggeman coefficient 
c0 2000 Initial electrolyte concentration (mol m-3) 
Cmax, pos 22860 Positive maximum concentration (mol m-3) 
Cmax, neg 15000  Negative maximum concentration (mol m-3) 
De 7.5×10-11 Diffusion coefficient in electrolyte (m2s-1) 
Ds,n 3.9×10-14 Solid-phase Li diffusivity, negative electrode (m2s-1) 
Ds,p 1×10-13 Solid-phase Li diffusivity, positive electrode (m2s-1) 
Ea1 10.1 Activation energy for crack propagation (kcal mol-1) 

Fitted 
Ea2 5.791 Activation energy for SEI layer growth (kcal mol-1) 

Fitted 
E 3.3×1010 Young’s modulus of electrode material (N m−2) 
 F 96487 Faraday’s constant (C mol-1)  
k0 2.43x10-13 Crack propagation coefficient Fitted 
kdis 4.58x10-12 Reaction rate constant for the acid attack on the  

active material (m s-1) Fitted 
kdecom 7.5x10-14 Salt decomposition coefficient (m6 mol-2) Fitted 
KSEI0 1.44x10-8 SEI layer growth coefficient Fitted 
 lcr0 2×10-9 Initial crack width (m) 
Ln 150×10-6 Negative electrode thickness (m)  
Lp 90×10-6 Positive electrode thickness (m) 
Ls 30×10-6 Separator thickness (m) 
MSEI 78.89 Molecular weight of compounds constituting SEI (g 

mol−1) 
nSEI 2 Consumed Li-ion for 1 mol SEI layer formation 
Qg 0.339 Graphite specific capacity (Ah g−1) 
R 8.314 Universal gas constant (J mol-1 K-1)  
Rn 13×10-6 Particle radius, negative electrode (m) 
Rp 15×10-8 Particle radius, positive electrode (m) 
𝑅𝑅𝑆𝑆𝐸𝐸𝑆𝑆0  1x10-3 Initial SEI layer resistance (Ω) Assumed 
t+ 0.363 Cationic transport number 
𝜌𝜌(0)|𝑁𝑁 4.2 Initial voltage at each cycle (V) 
εn 0.471 Negative electrode porosity 
εp 0.297 Positive electrode porosity 
εs 1 Separator porosity 
ρcr 2.542×1018 Number of cracks per unit area of particle (m−2) 
ρg 2.26 Graphite density (g cm−3) 
ρSEI 2.11×106 Density of SEI films (g m−3) 
Ω 8.9×10-6 Partial molar volume of solute (m3mol−1) 
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4.3. LI-ION LOSS DUE TO SEI LAYER FORMATION 

In order to calculate the capacity fade due to SEI layer formation, estimated 

capacity fade (0% and 13%) at 2nd and 60th cycles were used to find the fitting parameter 

kth0 (coefficient for SEI layer growth) in the SEI layer formation model. Then, the 

capacity fade is calculated for 20th and 40th cycles (Table 3), and the results with the 

capacity fade due to SEI layer without dissolution is plotted as Fig. 4. Based on the Li-ion 

loss due to SEI layer formation, the initial solid phase concentration for both of anode 

and cathode were updated based on Eqs. 2 and 3, and the resistance due to SEI layer was 

calculated based on Eq. 6. As shown in Fig. 3, the simulated results at 60th cycle cannot 

match with experiments observation when only considering the impact of SEI layer on 

capacity fade, it because that the capacity fade due to SEI layer formation and growth is 

approximately 0.3% per cycle at 2nd to 40th cycle and then from 40th to 60th cycle the Li-

ion loss is slowed down to approximately 0.1% per cycle. This stabilization of capacity 

fade due to SEI layer is due to the SEI layer became thick and the growth will be slower 

[17]. Therefore, the remained capacity loss could result from the Mn dissolution at the 

cathode. 

 

Table 3. Only considered capacity fade due to SEI layer formation  
Cycle 
number 

Experime
ntal 
capacity 
fade (%) 

Capacity 
fade due 
to SEI 
layer (%) 

Initial anode 
concentratio
n 
(mol.m-3) 

Initial 
cathode 
concentration 
(mol.m-3) 

𝑅𝑅𝑆𝑆𝐸𝐸𝑆𝑆 
(ohm.m2) 

Simulate
d 
capacity 
fade (%) 

2nd  0 0 6603.0 3898.5 1e-3 0 
20th  8.3 7 6038.0 3897.4 1.029e-3 8.5 
40th  12.6 11 5715.1 3896.8 1.044e-3 13.26 
60th 19.2 13 5553.6 3896.5 1.055e-3 15.65 
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.  

Figure 3. Voltage profile with only considering capacity fade due to SEI layer formation. 
 

4.4. VOLUME FRACTION LOSS DUE TO DISSOLUTION 

The reduction of solid phase volume fraction due to Mn dissolution can be 

calculated based on Eq. 24. The estimated volume changes (100% and 74%) at 2nd and 

60th cycles were used to fit the coefficient for Mn dissolution rate, kdis, and the coefficient 

for electrolyte decomposition rate, kdecom, in the dissolution model. Then, the solid phase 

volume fraction due to dissolution is calculated via the dissolution model for 20th and 40th 

cycle (Table 5) and the results with the capacity fade due to SEI layer and solid phase 

volume fraction due to dissolution is plotted as Fig. 4. With the change of volume 

fraction, the cathode efficient diffusivity is also changed based on Eq. 28, and the initial 

concentration of two electrodes and SEI layer resistance are not affected by dissolution. 

At each cycle, the simulated capacity can match well with experimental data with 0.2%, 

0.93%, and 0.4% difference. Thus, coupling the effect of SEI layer and dissolution, the 

SP degradation model can accurately predict the capacity after cycling and predict the 
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voltage profile within 1.5% errors. The SP degradation model is used to predict the 

capacity fade of another cell. The comparison of experimental results of cell 2 and 

simulation results is plotted in Figs. 4c and 4d which indicated that the simulation results 

matched the cell 2 experimental results within 2% errors. 

 

 

Figure 4. Cycling performance prediction based on dissolution and SEI layer formation 
cell 1: (a) voltage profile and (b) voltage error, and cell 2: (c) voltage profile and (d) 

voltage error. 
 

 

 

 

(c) (d) 

(a) (b) 
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Table 4. Calculated the reduction of solid phase volume fraction and initial electrodes 
concentration at different cycles 

Cycle 
number 

Experimental 
capacity fade 
(%) 

𝜀𝜀1.𝑝𝑝𝑝𝑝𝑠𝑠

𝜀𝜀1,𝑝𝑝𝑝𝑝𝑠𝑠
0  

(%) 

Initial anode 
concentration 
(mol.m-3) 

Initial 
cathode 
concentration 
(mol.m-3) 

𝑅𝑅𝑆𝑆𝐸𝐸𝑆𝑆 
(ohm.m2) 

Simulated 
capacity 
fade (%) 

2nd  0 100 6603.0 3898.5 1e-3 0 
20th  8.3 99.7 6038.0 3897.4 1.029e-3 8.5 
40th  12.6 94.6 5715.1 3896.8 1.044e-3 13.53 
60th 19.2 74 5553.6 3896.5 1.055e-3 19.6 

 

4.5. CAPACITY DEGRADATION ANALYSIS 

The comparison of capacity degradation between two experiments and simulation 

is plotted in Fig. 5a, it indicated that the simulation with coupling the SEI layer and 

dissolution is able to capture the degradation phenomena accurately. Further, the Li-ion 

loss due to the SEI layer and volume fraction reduction due to the dissolution as a 

function of cycle number is decoupled as shown in Fig. 5b, it shows three stages that (1) 

SEI layer formation dominant cycles, (2) SEI layer stabilizing cycles, and (3) dissolution 

dominant cycles.  

 

 

Figure 5. (a) Capacity degradation comparison between experiments and simulation, and 
(b) Reduction of volume fraction due to dissolution and Li-ion loss (i.e. capacity fade) 

due to SEI layer formation and growth. 

(a) (b) 
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During the SEI layer formation dominate cycles, the Li-ion loss resulting from 

SEI layer formation and growth on the active material particles in the anode and on the 

cracks that form on the surfaces of these particles. The Li-ion loss due to SEI layer 

formation and growth leads to the capacity fade and then the total number of Li-ion 

inside the cell will be reduced Eq. 2. Correspondingly, the initial concentration at both 

cathode and anode will be decreased, which will affect the initial SOC and the OCP 

window at each cycle [31]. On the cathode side, the active material loss due to 

dissolution is ignorable comparing to Li-ion loss forming SEI layer. 

For the dissolution dominant cycles, the capacity fade is due to the cathode active 

material cannot store enough Li-ions [23,33]. After approximately 30 cycles, as the SEI 

layer grows thicker, the SEI layer growth slow down. Meanwhile, as Mn dissolution on 

cathode continues further, the cathode loss overloaded the capacity to contain the 

reversible Li-ions. Then, the dissolution dominates the capacity fade because the poor 

capacity of cathode leads to a quick capacity fade, and the SEI layer growth became 

stable. 

One more stage also can be defined between the SEI layer formation dominant 

cycles and dissolution dominant cycles, where the Li-ion loss due to SEI layer formation 

trends to stable, while the Mn active material loss did not exceed the loss of Li-ions. 

Then, the capacity fade is at a stable rate approximately from 20th to 30th cycles as shown 

in Fig. 6. These stages of degradation have been discussed from full order simulation [23] 

and experiments [33], which indicated the ability of the SP degradation model is able to 

reasonably capture the degradation of SEI layer and dissolution. 
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5. CONCLUSION 

 

In this paper, an advanced physics-based degradation model was developed based 

on SP model. This model includes two key degradation mechanisms in both anode and 

cathode materials of the Li-ion battery.  

Li-ion loss due to SEI layer formation on the anode, and solid phase volume fraction 

change due to the dissolution of cathode material are able to be accurately captured, and 

the effects of them on battery capacity from cycle to cycle were used to modify the initial 

concentration and diffusion coefficient. In addition, the effect of the two degradation 

mechanisms on capacity fade and battery performance is studied quantitatively, and the 

capacity fade can be classed into two parts: SEI layer formation dominant cycles and 

dissolution dominant cycles. The study will help to control the charge and discharge 

protocols for extending battery life in a BMS. 
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SECTION 

  

2. SUMMARIES AND CONCLUSIONS 

    

This research focused on the development of new 3D electrode structures via 

additive manufacturing to enhance batteries’ energy and power densities, and 

development of fast and accurate physical based battery models to predict the battery 

status for control purposes in the sophisticated battery management systems. 

In the first part of this research, 3D Li-ion battery structures were proposed for 

achieving high battery performance, such as high areal energy and power densities. In the 

Paper I, a novel hybrid 3D structure electrode was proposed that utilizes the advantages 

of digital structure (i.e. high aspect ratio) to break through the limitation posed by the 

conventional laminated structure, which can be applied to large-scale battery formats. An 

extrusion-based additive manufacturing method was used to fabricate this hybrid 3D 

structure with the conventional solution, which resolves the typical challenges in 

preparing solutions for the extrusion process. The results indicated that significant 

enhancements can be achieved with the hybrid 3D structure. The hybrid 3D LiMn2O4 

battery showed superior performances, and compared to the conventional structure, the 

hybrid 3D structure was more efficient and had much better Li-ions utilization. This work 

resolved fabrication, solution preparation, and assembly issues for a scaled up 3D battery 

via the extrusion-based additive manufacturing method. In Paper II, a novel macro-

micro-controlled 3D electrode was proposed that can achieve high battery performance 

by utilizing the advantages of the hybrid 3D structure. An extrusion-based additive 
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manufacturing method was used to control the 3D electrode structure, and an applied 

electric field was used to further enhance the surface area via manipulating the structure 

at a particle level. The effect of paste solids loading was well studied and 30% SL can 

provide the best results for extrusion and battery performance. The effect of the electric 

field was also well studied that the higher electric field or longer duration time will obtain 

a better battery performance. In Paper III, a 3D mathematical model was developed for 

the simulation of batteries’ 3D structure. The simulation results were validated with our 

experimental observation, and the effect of electrode thickness and solid phase volume 

fraction on battery performance were studied. This model is able to help the design and 

optimization of 3D electrode structures in the future. 

In the second part of this research, an advanced SP model was developed to 

predict the SOC and SOH in BMS. In Paper IV, a low-order battery model was 

developed that incorporates stress-enhanced diffusion and electrolyte concentration 

distribution into a conventional SP model. An approximated analytical solution was 

derived from the electrolyte concentration distribution by solving the mass transport 

equation in the electrolyte of a Li-ion cell. It has a simpler and faster than the P2D model, 

and more accurate than the conventional SP. It was confirmed that this approximate 

solution can be applied to any combination of operating scenarios, including constant 

charge/discharge, short/long interval, and rest period, as well as the dynamic loads. In 

Paper V, an advanced capacity fade model coupled with chemical and mechanical 

degradation mechanisms was developed based on the new SP model for the 

electrochemistry and a multi-particle model for mechanical stress. The degradation 

mechanisms considered capacity decrease due to Li-ion loss resulting from SEI layer 
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formation and growth on the active material particles of the anode and on the cracks that 

form on the surfaces of these particles. Li-ion diffusion physics were modified to include 

effects from mechanical strain energy and changes in battery capacity from cycle to cycle 

were used to modify the OCP windows. In Paper VI, an SP degradation model was 

developed for LMO/Graphite battery with considering the dissolution of cathode active 

materials and Li-ion loss due to SEI layer with crack propagation at anode side. This 

model was validated with experimental observation for the capacity degradation. Two 

stages of capacity fade were observed: In the first stage, the Li-ion loss due to SEI layer 

formation dominated the cell capacity loss, and then the Mn dissolution dominated the 

cell degradation due to the volume fraction changes. This model, quickly and accurately 

predicts capacity and voltage as a function of cycles, can be used for SOH estimation in a 

BMS.  
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