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ABSTRACT

Insurance companies sometimes face catastrophic losses, yet they must remain

solvent enough to meet the legal obligation of covering all claims. Catastrophes can result

in large damages to the policyholders, causing the arrival of numerous claims to insurance

companies at once. Furthermore, the severity of an event could impact the time until the next

occurrence. An insurer needs certain levels of startup capital to meet all claims, and then

must have adequate reserves on a continual basis, even more so when catastrophes occur.

This work examines two facets of these matters: for an infinite time horizon, we extend

and develop models for insurer bankruptcy-related quantities accounting for the reality of

large claims occurring. Meanwhile, for finite time horizons, we model the present value

of claims that have been incurred but not yet reported, so-called “IBNR” claims. In the

former, we show how our method for “Gerber-Shiu” functions works in a recently proposed

dependency structure allowing insurers to charge clients different premiums depending on

their riskiness. In the latter, we build upon a recent method which allowed claims to arrive

in batches; besides permitting discounting to be time-dependent, we allow the insurer to

adjust the assumed distribution of the time until the next event by comparing the number of

claims from the current event to any number of random intervals. We provide numerical

studies for both scenarios.

Keywords: Solvency, Time value of ruin, Gerber-Shiu functions, Reserves, Incurred but

not reported claims (IBNR), Heavy-tailed risks
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1. INTRODUCTION

1.1. BACKGROUND, LITERATURE REVIEW, AND SCOPE OF DISSERTATION

Insurance companies are in the business of covering risks of their policy-holding

clients, who expect to be financially compensated for their losses in return for having paid

premiums. The insurers sometimes face catastrophic losses, yet they must remain solvent

enough to meet the legal obligation of covering all claims. Some examples of events which

intuitively cause possibly large losses include tornadoes, forest fires, hurricanes, typhoons,

floods, earthquakes, etc. Epidemics, wars or civil upheaval could also produce larger losses;

this dissertation concentrates on insurers’ losses in general. If an insurer receives more

claims than they have the ability to pay, they will become bankrupt, or experience “ruin” in

technical terms. Besides fees from legal proceedings and interest on unpaid claims, “ruin”

stands to harm the insurer’s reputation, both with clients and otherwise potential clients.

The money which insurers must have ready at hand to pay every claim received is

known as the companies’ “reserves.” Intuitively, someone who desires to open an insurance

company must have some startup capital before reserves can even come into consideration.

Without much imagination needed, one can see that the amount of startup capital affects a

new insurance company’s solvency even long-term. The probability (likelihood) of ultimate

ruin has received much attention from actuarial researchers over the decades, and likewise

for the time of ruin in more recent decades. Other ways exist to consider the “what-if”

scenario of an insurer becoming bankrupt: for example, the deficit sustained by a ruined

insurer has commonly been called the “severity” of ruin in the literature.

We want to develop models for estimating the necessary startup capital and sub-

sequent reserves an insurer needs in order to remain solvent. Large, rare claims present

extra challenges in modeling; we need a unified manner of modeling quantities relevant
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to insurer solvency which recognizes that catastrophes happen. But there is more: not all

catastrophes qualitatively fall within the same level of cataclysmic fallout. Even just in the

context of the USA, comparing tornadoes with several 2017 US hurricanes may make the

point, let alone the potential for the New Madrid seismic region to have an earthquake. If

we have not made the point clear enough, let us mention the Yellowstone supervolcano.

Tornadoes, hurricanes, earthquakes and supervolcanoes as a simple “thought experiment”

demonstrate the need for a multiplicity of qualitative levels of risk. Considering all the

uncertainty associated with the severity of a natural disaster or health epidemic even within

a single “risk class,” the concept of comparing an event’s severity to a random threshold or

random intervals naturally arises; we make this idea precise later on.

In addition to startup capital, day-to-day reserves must be modeled adequately in a

world with catastrophes. On an individual level, claims might not have been reported to

an insurer, but the insurer must pay each and every valid claim all the same. After totaling

their car, a policyholder might well be hospitalized, and hence unable to inform the insurer

of the loss until sufficiently recovered. Or a home owner may be displaced after a hurricane;

they might not be sure of the damage their home sustained until returning there. The greater

the number of claims instigated by a catastrophic event, the more there are which may not

come to the insurer’s attention immediately. These claims are known as “incurred but not

reported,” or IBNR claims. Upon receiving notice of a claim, the insurer might not pay

(settle on) the claim immediately. Perhaps a database of the insurer contains a discrepancy

on the policyholder’s address, for one reason or another. Or the insurer may have reasons

to suspect fraud in a claim, in which case due diligence in verifying such a matter lies in the

insurer’s financial interests. Such situations, with a lag between the claim being reported

and the time when the policyholder receives the compensation they expect, are known as

instances of “reported but not settled” claims, or RBNS.
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The insurer’s risk process refers to the expressionU (t) = u+C(t)−
∑N (t)

i=1 X i, where

U (t) represent’s the insurer’s funds at time t. First,U (0) = u is the insurer’s aforementioned

initial capital. The premium collection process C(t) is the total premiums the insurer has

received by time t; classically this is set to be C(t) = ct. N (t) is the number of claims that

have occurred by time t, and the X i terms are the severity (amount) of each individual claim.

This risk process U (t) is the classical context for considering questions like the probability

of ultimate ruin, the severity of (deficit at) ruin, or the surplus before ruin.

The problem of a unified framework for ruin-theoretic quantities was first addressed

by Gerber and Shiu (1998), in which they introduced the “expected discounted penalty

function,” where a random penalty is due at the time of ruin. The penalty in that paper was

a function of the insurer’s surplus (funds) immediately before ruin and the deficit at ruin

(severity of the insurer’s bankruptcy), as well as possibly being discounted with respect

to the time of ruin. These “EDPFs” quickly became known as “Gerber-Shiu” functions

(GSFs). Whereas Gerber and Shiu (1998) introduced GSFs in the classical risk model

(compound Poisson, also called “Cramér-Lundberg”), myriad extensions quickly emerged.

Some papers in the years following Gerber and Shiu (1998) included Ahn and

Badescu (2007), Pitts and Politis (2007), Tang and Wei (2010), Li and Sendova (2015),

and Chau et al. (2015). An early approach to the unit GSF in the classical risk model with

heavy-tailed claim sizes appeared in Šiaulys and Asanavičiūtė (2006), who assumed claims

had a subexponential distribution (to be defined below); that paper gave an asymptotic

approximation. Ahn and Badescu (2007) observed that their phase-type setup could fit

GSFs arbitrarily closely, but would in general be poor under heavy-tailed claims. An

approach via functional analysis to the problem of approximating GSFs was given by Pitts

and Politis (2007) also in the classical risk model, but did not handle heavy-tailed claims.

In the renewal generalization of the classical risk model allowing interclaim times to have

an arbitrary distribution, Tang and Wei (2010) comprehensively established the asymptotic

behavior of GSFs with claims being either subexponential or convolution-equivalent; they
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commented that their formulas could perform rather poorly for smaller initial capital under

subexponential claims. A more recent approach to approximating Gerber-Shiu functions,

without modeling individual claims (or hence dependencies at that level), came from Chau

et al. (2015). Their numerical examples did not include heavy-tailed distributions.

In Albrecher and Boxma (2004), the proposal was to compare each claim to a

random threshold, upon which the Poisson arrival rate parameter (or, the distribution of the

time until the next claim) could be adjusted. However, they only allowed one premium rate

for both risk classes, besides only treating the survival probability. The authors of Li and

Sendova (2015) generalized Albrecher and Boxma (2004) to Gerber-Shiu functions with

distinct premium rates for each risk class. However, they left out how to handle heavy-tailed

claims. The premium rate assumed only a single value in Albrecher and Boxma (2005),

although the model for GSFs there subsumed that of Albrecher and Boxma (2004). A

promising approach to feasibly modeling heavy-tailed claims appeared in Vatamidou et al.

(2013), but they only addressed the ultimate ruin probability and the aggregate total losses in

the classical risk model. Likewise, Vatamidou et al. (2014a) only addressed the equivalent

of the ruin probability in a (more involved) queuing model.

Herein lies the starting point for our work in Section 2. We generalize the corrected

phase-type approximations (CPTA) of Vatamidou et al. (2013) to arbitrary penalty functions

w(·, ·) (nonnegative functions on R+ × R+) and discount rate δ ≥ 0 in the risk model of Li

and Sendova (2015), utilizing a couple parts of Vatamidou et al. (2014a) in the process.

Synthesizing results found in Tang and Wei (2010), we show that CPTA of GSFs behave

“as desired” (to be made precise later) for large capital in the classical risk model, much

like Vatamidou et al. (2013, 2014a) did so for the ruin probability only in the classical risk

model.

The starting point for our work in Section 3 is the paper by Landriault et al. (2017).

As far as the distribution of aggregate claims is concerned, Léveillé and Garrido (2001a,b)

assumed a constant discount rate for claims arriving according to a renewal process, both
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in finite time and in the asymptotic limit as time goes to infinity. Therefore, they assumed

claims to arrive one at a time, disregarding catastrophic events causing multiple claims.

Additionally, they assumed claims to be reported upon occurrence, meaning without any

reporting lag, thus omitting IBNR setups. Likewise, the work by Léveillé and Adékambi

(2011) allowing the discount rate to be stochastic also ignored reporting lags and multiple

claims from single events, and they only considered up to second moments. The aforemen-

tioned work by Landriault et al. (2017) found the finite-time moments of IBNR claims and

the joint moments of incurred and reported (IR) claims and IBNR claims possibly at a later

time. They allowed multiple claims to be incurred at once, specifically mentioning this

could handle catastrophes. While they thus addressed this catastrophe-related shortcoming

of the earlier literature, they assumed the sizes of these batches of claims were independent

of all other model quantities and of each other, thus continuing to neglect the possibility of

the magnitude of one catastrophe affecting the time until the next potentially catastrophic

event. Lastly, they continued to assume a constant discount rate.

Where we improve matters is in extending Landriault et al. (2017) to allow multiple

choices of interevent time distributions and general deterministic time-discounting of claim

severities. We use the semi-Markov dependency structure of Albrecher and Boxma (2004);

Li and Sendova (2015) applied to the number of claims caused by an event (“batch sizes”).

However, instead of just two classes (levels) of riskiness as in those papers, we allow any

positive number of such classes. As a consequence, the random thresholds now become

random intervals on the positive integers, to which we compare the claim batch sizes to

see in which interval one such batch size falls. Then the interval into which the batch size

of claims from the current event falls determines the distribution of the time until the next

event. Thus we have Markov renewal processes (e.g. Janssen and Manca (2006)) where

previously Landriault et al. (2017) had renewal processes. Furthermore, we show that

some particular cases of time-varying discount rates can produce different results than the

constant discount rate assumption.
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1.2. SOME TECHNICAL CONCEPTS

Now we shall lay out some technical concepts which arise in both parts of our work.

For limiting relationships in which a parameter tends towards +∞, we follow some notation

from Tang and Wei (2010). Let α(x) and β(x) be two (eventually) positive functions,

i.e. there exists x0 such that x > x0 implies α(x) > 0, and likewise for β(x). Denote c∗ and

c∗ to be values for which c∗ ≤ lim inf
x→∞

α(x)
β(x) ≤ lim sup

x→∞

α(x)
β(x) ≤ c∗. Then, α(x) = O

(
β(x)

)
and

α(x) = o
(
β(x)

)
respectively mean c∗ < ∞ and c∗ = 0. The relation α(x) � β(x) means

0 < c∗ ≤ c∗ < ∞; Klüppelberg (1989) called this “weak asymptotic equivalence.” Further,

α(x) . β(x) and α(x) & β(x) respectively mean c∗ = 1 and c∗ = 1. When c∗ = c∗ = 1,

we write the usual α(x) ∼ β(x).

In this work, we mean Lebesgue-Stieltjes integration by

∫
A

f (x) dα(x) ≡
∫

A
f (x)α(dx),

for A a subset of the domain of α(x). If α(x) = x is the identity function, then we mean

Lebesgue integration by
∫

A f (x) dx. We understand
∫ b

a to mean integrating over the set

(a, b], and
∫ b

a− to mean over the set [a, b]: that is, in the latter we include any atom at a,

while in the former we omit any such atom. If b = ∞, we mean the usual limiting sense:

lim
R→∞

∫ R
a . As in Tang and Wei (2010), we call a nonnegative function f (x) on R+ locally

integrable if
∫ x0

0 f (x) dx is finite for all x0 > 0, and also globally integrable if
∫ ∞

0 f (x) dx

is finite. The following integral transform arises throughout our work in both sections.

Definition 1 (Laplace-Stieltjes Transform, Widder (1941)). Let α(t) be a real-valued func-

tion of bounded variation in t ∈ [0, R] for all R > 0. Let also s be a complex variable.

The Laplace-Stieltjes transform of α(t) evaluated at s is given by α̃(s) =
∫ ∞

0− e−st dα(t) =

lim
R→∞

∫ R
0− e−st dα(t), as long as the limit exists.
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Widder (1941) defined the LST with α(t) being a complex-valued function of

the real variable t; letting α(t) be real-valued suffices for our purposes. When α(t) is

absolutely continuous (possesses a derivative for t ≥ 0), if β(t) = α(1) (t), we call β̂(s) =∫ ∞
0 e−st β(t) dt the Laplace transform (LT) of β(t) evaluated at s ∈ C, (given convergence

at s of course). The immediately following comments about convolutions and Laplace

transforms may be found in detail in Widder (1941): the convolution of two integrable

functions α(x) and β(x) on R+ is γ(x) =
∫ x

0 α
(
x − y

)
β
(
y
)

dy =
∫ x

0 β
(
x − y

)
α
(
y
)

dy.

If α(x) and β(x) are locally integrable, then γ̂(s) = α̂(s) β̂(s) given existence of the two

Laplace transforms on the right-hand side; this is (Widder, 1941, Theorem 2.12.1a). This

“product theorem” generalizes to Stieltjes convolutions (
∫ x

0− α
(
x − y

)
dβ

(
y
)
) when suitable

regularity conditions are placed on α(x) and β(x); see (Widder, 1941, Section 2.11) for

details. Besides the Laplace and Laplace-Stieltjes transforms, the Dickson-Hipp transform

(or operator) arises frequently in Section 2.

Definition 2 (Dickson-Hipp Transform, Dickson and Hipp (2001); Li and Garrido (2004)).

Let f (t) be a real-valued function and integrable. Let s ∈ C have <(s) ≥ 0. Then, for

t ≥ 0, Ts f (t) =
∫ ∞

t e−s(x−t) f (x) dx is the Dickson-Hipp transform of f (t).

Notice thatTr f (0) = f̂ (r), such that the translation operator generalizes the Laplace

transform. Along with this, some other properties given in Li and Garrido (2004) will be

used in our work:

Ts1 Ts2 f (t) =
Ts1 f (t) − Ts2 f (t)

s2 − s1
, s1 , s2 ∈ C, t ≥ 0;

Tn
s1 f (t) =

(−1)n−1

(n − 1)!
∂n−1

∂sn−1
1

Ts1 f (t), t ≥ 0.

The Dickson-Hipp transform also appears frequently in our work on Gerber-Shiu functions,

where its usage is as standard as that of the Laplace transform.
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Because of its fundamental importance in the derivation of corrected phase-type

approximations of Gerber-Shiu functions with time discounting or multiple Lundberg roots,

we quote for completeness (Vatamidou et al., 2014a, TheoremA.3) (fromArXiv:1405.4853,

licensed under CC-BY-NC-SA 3.0):

Lemma 1. Let r be a simple root of an analytic function f (s). For some function h(s, ε )

and for all small real values ε , we define the perturbed function

F (s, ε ) = f (s) + h(s, ε ).

If h(s, ε ) is analytic in s and ε near (r, 0), then F (s, ε ) has a unique simple root (x(ε ), ε )

near (r, 0) for all small values of ε . Moreover, x(ε ) is an analytic function in ε , and if
∂n

∂sn h(s, 0) ≡ 0, n = 0, 1, . . . , then it holds

x(ε ) = r − ε
∂
∂ε h(r, 0)

f (1) (r)
+O

(
ε2

)
.

In our demonstration of how corrected phase-type approximations correctly capture

the tail behavior of the exact value for general w(·, ·) and δ ≥ 0 in the compound Poisson

risk model, we use some properties which may be found, for example, in Tang and Wei

(2010):

Definition 3 (The density classes L d (α) and S d (α)). A function f : [0,∞) → [0,∞),

measurable and eventually positive, belongs toL d (α), α ≥ 0, if lim
x→∞

f (x−y)
f (x) = eαy,∀y ∈ R.

If also lim
x→∞

f ∗2(x)
f (x) = 2 f̂ (−α), then f ∈ S d (α).

We make such frequent usage of (Tang and Wei, 2010, Lemma 4.3 (1)) that we

regard it worth recalling; see Tang and Wei (2010) for the original statement.

Lemma 2. Let f 1 and f 2 be locally integrable functions from [0,∞) to [0,∞). Suppose

there exist some γ ≥ 0 and some γ̃ > γ such that f 1 ∈ L d
(
γ
)
and f 2(x) = O

(
e−γ̃x

)
. Then

as x → ∞, it is the case that f 1 ∗ f 2(x) ∼ f 1(x) f̂ 2
(
−γ

)
.
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Concerning phase-type distributions, we give the following definition and basic

properties; see for example Asmussen and Albrecher (2010) or Bladt and Nielsen (2017).

Throughout this dissertation, an underscore signifies a vector or matrix; e.g.,
¯
.א

Definition 4 (Phase-type distributions). Let
¯
T be a subintensity matrix of finite dimensions

p × p, and
¯
α a 1 × p vector of probabilities such that

¯
α

¯
e ≤ 1, where

¯
e is a p × 1 vector

with each entry 1. Then we call F (x) = 1 −
¯
αe¯

T x

¯
e a phase-type distribution, which has

density f (x) =
¯
αe¯

T x

¯
t on (0,∞) and possibly an atom at 0. Equivalently, X ∼ PH

(
¯
α,

¯
T
)
is

the time until absorption of a Markov jump process with p < ∞ transient states (with initial

probability vector
¯
α) and one absorbing state, where the intensity matrix of this process

has the form
*..
,

¯
T

¯
t

¯
0 0

+//
-
, with

¯
t = −

¯
T

¯
e.

Some important properties which may be found in the aforementioned references

are that phase-type distributions are closed under convolution, are light-tailed, and have

rational LT
¯
α(s

¯
I −

¯
T )−1

¯
t, where

¯
I is the identity matrix.

The “Bell polynomial” will arise in the material pertaining to IBNR claims. In John-

son (2002), this polynomial is given as

Bm,k (x1, x2, . . . , xm−k+1) =
1
k!

∑
j1+···+ jk=m

ji≥1

(
m

j1, . . . , jk

)
x j1 · · · x jk ,

or, equivalently, in Landriault et al. (2017) as

Bm,k (x1, x2, . . . , xm−k+1) =
∑

∑
i ji=k,

∑
i i ji=m

i=1,...,m−k+1

m!
j1! j2! · · · jm−k+1!

( x1
1!

) j1 ( x2
2!

) j2
· · ·

(
xm−k+1

(m − k + 1)!

) jm−k+1

.

Lastly, we recall some notions from renewal theory which arise in our work. One

reference is that of Janssen and Manca (2006) (plenty of other references exist on renewal

theory). The basic concepts are that of a “renewal process” and of a “renewal equation.”
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Definition 5 (Renewal process). Let τk
iid
∼ F (·) for k ∈ N+ ≡ {1, 2, 3, . . .}. Assume τ0

as
= 0.

Then Tn =
∑n

k=1 τk is a “renewal process.”

A “renewal equation” is one of the form

m(u) = φ
∫ u

0
m(u − x)k (x) dx + v(u),

for suitably constrained nonnegative functions k (·) and v(·). If φ ∈ (0, 1), the renewal

equation is called “defective,” and if φ = 1, called “proper”; the “excessive” case of φ > 1

is outside of our area of concern.



11

2. CORRECTED PHASE-TYPE APPROXIMATIONS OF GERBER-SHIU
FUNCTIONS IN A HEAVY-TAILED RISK MODELWITH BOTH

INTERCLAIM TIMES AND PREMIUMS DEPENDING ON CLAIM SIZES

2.1. OVERVIEW OF SECTION

We model heavy-tailed Gerber-Shiu functions by making claims be a mixture of

phase-type and heavy-tailed components, weighted more heavily towards the former. We

do so in a recently introduced risk model where both interclaim times and the premiums col-

lected depend on the claim sizes. First, we find the Lundberg roots of the full mixture model

as perturbation of those in the phase-type base models. From there, we proceed to find the

approximations for general penalty functions in the dependent risk model, then simplifying

these to the compound Poisson risk model. The first term of our approximations is the

Gerber-Shiu function with the phase-type claims, and the “correction” term (multiplied by

ε) contains the heavy-tailed component at most once per summand. Calling our expressions

“corrected phase-type approximations” like the extant literature, we generalize these from

the ultimate ruin probability in the classical risk model to Gerber-Shiu functions in the

aforementioned dependent risk model. Without being asymptotic expressions themselves,

our corrected phase-type approximations continue to capture the heavy-tailed behavior of

the true value, which wemake specific in the classical risk model. We numerically study the

approximations’ relative errors for some specific penalty functions and claims distributions,

and finally give an application. This section is an expanded form of Geiger and Adekpedjou

(2018).
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2.2. GENERAL DISCUSSION

In the famous paper by Gerber and Shiu (1998), Hans Gerber and Elias Shiu in-

troduced the functions which now bear their names as a framework for modeling insurer

ruin-related quantities. However, throughout their paper, they implicitly assumed the ex-

istence of a negative root of what they called the “Lundberg equation” (l (s) = 0, to be

introduced formally in Section 2.3); that root fails to exist for heavy-tailed claims distribu-

tions. Even for the special case of ultimate ruin probabilities in the classical risk model, the

computationally tractable phase-type distributions are known to handle heavy-tailed behav-

ior badly; see Vatamidou et al. (2014b) for an extensive discussion of that. For heavy-tailed

claims, one may find the asymptotic tail behavior of Gerber-Shiu functions in Tang andWei

(2010), where renewal risk models were considered. The paper by Vatamidou et al. (2013)

proposed a non-asymptotic method of approximation for ruin probabilities which properly

captures heavy-tailed behavior, retains computational tractability, and has quantifiable error.

They hinted at their method being broadly applicable to risk theory; in Vatamidou et al.

(2014a) they applied their approach to a more complicated queuing model.

In this section we take that comment in a rather different direction, namely ap-

proximating Gerber-Shiu functions with heavy-tailed claims. Furthermore, we do so in a

more general setting than the classical risk model Gerber and Shiu (1998) considered: the

dependent risk model introduced in Li and Sendova (2015) allowing multiple classes of

insureds with differing premium rates. Letting J (t) be the class of the insured at time t,

they proposed a dependent risk model, where

U (t) = u +
2∑

i=1
ci

∫ t

0
I (J (s) = i) ds −

N (t)∑
j=1

X j (2.1)
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is the insurer’s capital on hand at time t, X j are the iid claim sizes, and N (t) is the number

of claims in the interval [0, t]. With Q j
iid
∼ H

(
y
)
, the interclaim times are specified by

W j+1
���
(
X j > Q j

)
∼ Exp(λ1),

W j+1
���
(
X j < Q j

)
∼ Exp(λ2).

If i ∈ {1, 2} is the initial class of the insured, T i = inf {t ≥ 0 | U (t) < 0} denotes the time of

ruin for that class. We consider an unspecified penalty function w
(
x, y

)
≥ 0, x ≥ 0, y ≥ 0

with the discount rate δ ≥ 0. That is, we denote the Gerber-Shiu function analyzed in Li

and Sendova (2015) by

mi (u) = E
(
e−δT iw(U (T i−), |U (T i) |) I(T i < ∞) | U (0) = u

)
, u ≥ 0, i ∈ {1, 2}.

Later on, we also consider the compound Poisson risk model with constant premium rate

of 1, mostly following the notation used by Gerber and Shiu (1998).

The key idea presented inVatamidou et al. (2013)was as follows: tomodel the claims

distribution as a mixture of phase-type and heavy-tailed components (respectively B(·) and

C(·)), namely Pε (x) = (1 − ε )B(x) + εC(x), and to view ε ∈ [0, 1) as a perturbation

parameter. This “mixture model” then had two associated phase-type base models: the

“discard” and the “replace.” The former had as claims law P•ε (x) = (1 − ε )B(x) + ε ,

while the latter had P0(x) = B(x). What Vatamidou et al. (2013) called collectively

“corrected phase-type approximations” of the ruin probability consisted of the “phase-type

approximations” thereof (with claims laws P•ε (x) and P0(x)), and a “correction term”

containing the heavy-tailed component only once.

Whereas we propose approximating heavy-tailed Gerber-Shiu functions by a sub-

stantial generalization of Vatamidou et al. (2013), some other approaches were recently

proposed in the literature. First, while it only tackles approximating ruin probabilities

like Vatamidou et al. (2013), a method of a somewhat similar spirit may be found in Peralta
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et al. (2018); Rojas-Nandayapa and Xie (2017), and references therein. As for Gerber-

Shiu functions, one early, functional analytic approach appeared in Pitts and Politis (2007);

we note that their illustrative example used (non-Erlang) gamma claim sizes. The article

by Chau et al. (2015) applied Fourier-cosine series expansion techniques to approximate

Gerber-Shiu functions for a risk process with claims modeled in the aggregate by a Lévy

subordinator. Their approach provided approximations of linear complexity, seemingly

comparable to the computational complexity in Vatamidou et al. (2013). We were not

convinced, however, that their Fourier-cosine method would capture heavy-tailed behavior

of individual claims in compound laws; indeed, none of their numerical examples came

from the subexponential density class. For an aggregate approach to heavy-tailedness in

particular, the recent paper by Kolkovska and Martín-González (2016) derived Gerber-Shiu

functions for the compound Poisson risk model with an α-stable motion as a perturbation

term. After building up several propositions about the scale functions of their considered

risk process, those authors presented a form for the corresponding Gerber-Shiu function as

an infinite series of convolutions. Finally, for several types of heavy-tailed individual claims

distributions (i.e. in the compound Poisson part of the perturbed process), they provided

asymptotic formulas for the joint tail distribution of the deficit at and surplus prior to ruin;

we note their Theorem 2 was in the non-discounted δ = 0 case.

Like the authors in Vatamidou et al. (2013, 2014a), we seek results which provide

benefits not only in the asymptote, but for all initial capital u; they showed this is possible for

infinite-time ruin probabilities, finite-time aggregate losses, and waiting times in queues,

tractably capturing heavy-tailed behavior directly in their approximations of these. The

asymptotes in general were as initial capital u → ∞; this is as in Tang andWei (2010), where

the authors asserted that good asymptotic formulas somewhat alleviate needing very large

initial capital amounts. However, Vatamidou et al. (2013) went beyond this, demonstrating

the existence of a bound on the relative error for arbitrary initial surplus, when using the

corrected discard approximation to the probability of ultimate ruin. They conjectured this
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because they demonstrated that the corrected discard approximation always underestimates

the true ultimate ruin probability in the compound Poisson risk model. At least for specific

penalty function choices (such as w(·, ·) = 1 with δ ≥ 0), it might be possible in the

classical risk model to find such a bound for all u ∈ [a(δ),∞), where seemingly a(0) = 0

and a(δ) > 0 for δ > 0. However, desiring to promote our generalization of Vatamidou

et al. (2013) for more than just the classical risk model, we have not pursued establishing our

above-suggested generalization of (Vatamidou et al., 2013, Theorem 8). Specifically, for

some parameter choices in the Li-Sendova risk model, the corrected discard approximation

of the unit GSF with δ > 0 can overestimate the exact value evidently for all large u.

We generalize the other key results of Vatamidou et al. (2013) to Gerber-Shiu

functions in the risk model (2.1) of Li and Sendova (2015). We follow the basic idea used

in Vatamidou et al. (2013) of modeling individual claims by Pε (x) = (1− ε )B(x) + εC(x).

Now, in time-discounted quantities (which they left untouched), the Lundberg root depends

on the claims law; this must be accounted for in perturbation expansions of Gerber-Shiu

functions. It turns out that the correct way to handle the Lundberg roots depending on

the claims law is by perturbation expansions in terms of the “base model” Lundberg root,

the perturbation parameter, and some “pieces” of Gerber-Shiu functions. Using a theorem

from Vatamidou et al. (2014a), we derive in Lemma 3 below the Lundberg roots for the

Li-Sendova risk model in perturbed form, for all non-negative δ; we then proceed to use

these in finding perturbation expansions for mi (u) with general penalties w(·, ·). These

provide the basis for our corrected phase-type approximations, given after Theorem 1.

To get the analogues in the compound Poisson risk model, we let c1 = c2 = 1

and λ1 = λ2 = λ, and provide in Corollary 1 the perturbation expansions for Gerber-Shiu

functions in this special case of (2.1). We note that, for either the Li-Sendova risk model, or

the classical compound Poisson special case, our approximations may be made precise in

the limit ε → 0 following the proof of (Vatamidou et al., 2014a, Proposition 3.8), albeit with

an extra step for the corrected discard approximation. Due to the method of handling the



16

mixture-model Lundberg roots (where extending (Vatamidou et al., 2014a, Theorem A.3)

to find a complete series expansion in the perturbation parameter would require evaluating

subsequent derivatives of Laplace transforms of heavy-tailed distributions at a base-model

Lundberg root), we expect this limiting form of convergence to propagate through any

Gerber-Shiu functions when Lundberg root perturbation occurs.

We establish in the compound Poisson risk model that, under mild regularity con-

ditions, md,ε (u) and mr,ε (u) capture the tail behavior of mε (u) up to constant scalars,

basing this upon results in Tang and Wei (2010). Namely, their Corollary 3.2 and Lemma

4.3 are fundamental to establishing our Propositions 1, 2, and 3, analogously to the role

basic subexponential properties in Asmussen and Albrecher (2010) played in the proofs

of (Vatamidou et al., 2013, Theorems 5–7). An initial venture into finding the asymptotic

tail behavior of Gerber-Shiu functions in the Li-Sendova risk model indicated the basic

process is largely analogous to the ideas in Tang and Wei (2010), just noticing that (for

example) with threshold df H
(
y
)
= 1 − e−νy, ξ2

(
y
)
= H̄

(
y
)
p
(
y
)
is in the density class

S d (ν) provided p
(
y
)
∈ S d (0). Vatamidou et al. (2014a) found corrected phase-type

approximations for a queuing model in a Markovian Arrival Process (MArP), a more com-

plicated setup than the compound Poisson risk model. In that paper, they briefly noted that

they showed in Vatamidou et al. (2013) that a single (linear in convolution) appearance

of the heavy-tailed component captures the correct tail behavior, up to a constant, of the

true value; however, they did not formally show this for the MArP. Likewise, we explicitly

show our generalizations for Gerber-Shiu functions to capture the heavy-tailed behavior

in the compound Poisson risk model only. See also Asmussen and Albrecher (2010) for

comments on expecting heavy-tailed dependent risk models generally to behave similarly

in the asymptote in a manner to reduce the impact of dependency. We observe now that

we do not explicitly consider finite time horizons in this section, unlike Vatamidou et al.

(2013), but as Gerber and Shiu (1998) noticed, proper choices of the penalty function can

retrieve various finite-time quantities.
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We organize the section as follows: first we give some preliminary notation in

Section 2.3. Next, in Section 2.4 we provide the perturbation expansions of some claims

law-dependent quantities, followed by those of m̂ε,i (s) as the basis for mi
d,ε (u) and mi

r,ε (u),

and likewise in the classical risk model. Simplifying to said model in Section 2.5, we show

that the corrected phase-type approximations of Gerber-Shiu functions capture the exact

value’s heavy-tailed behavior, up to multiplication by logical scalar constants; we comment

on how the correction terms impact the error of the phase-type approximations. We return

to the dependent risk model in Section 2.6 for a numerical illustration, and we close the

section with an application in the classical risk model in Section 2.7.

2.3. NOTATION

With א denoting a generic entity, the meanings of εא , ε•א , and 0א are the same as

in Vatamidou et al. (2013). That is, for an entity in the full mixture model (which depends

on ε), we write εא . For the “discard” base case, we write ε•א ; for the “replace” base case,

we write 0א ≡ εא |ε=0, as the “replace” case corresponds to setting ε = 0 in the full model

(Vatamidou et al. (2013)). If F (x) = Pr(א ≤ x), then we write F̄ (x) = Pr(א > x). We

denote the Laplace-Stieltjes transform of א by F̃ (s), and the Laplace transform of the density

of ,א f (x) = F (1) (x), by f̂ (s). Like Vatamidou et al. (2013), we assume claims have the

“mixture-model” distribution Pr(X ε ≤ x) = (1 − ε ) Pr(B ≤ x) + ε Pr(C ≤ x). We assume

that the phase-type (see Bladt and Nielsen (2017) for a recent overview) generic random

variable (rv) B has an absolutely continuous density b(x), and likewise for the heavy-tailed

generic rv C, for which ηc = E(C) < ∞. Furthermore, we assume that B(x) = C(x) = 0

for x ≤ 0 and that lim
x→∞

B(x) = lim
x→∞

C(x) = 1. We use פ to denote any of the claims laws

related to the full mixture model.

When we consider the classical risk model, we generally follow the notational

style used by Gerber and Shiu (1998), and we set the constant premium income rate to

1. We denote the Gerber-Shiu function introduced in Gerber and Shiu (1998) by mε (u).
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When the penalty w(·, ·) ≡ 1, we write φε (u) instead, and if the discount rate δ = 0 as

well, we write ψε (u). These special cases of mε (u) will appear frequently in Section 2.5.

We assume the usual condition 1 > ληε = (1 − ε )ληb + εληc for the mixture model,

from which 1 > λη•ε ≡ (1 − ε )ληb follows immediately, and 1 > λη0 follows if we

assume ηc ≥ ηb. As in Tang and Wei (2010), we let Ω̄פ(u) =
∫ ∞

u ωפ(x) dx, where

ωפ(u) =
∫ ∞

u w(u, x − u)dPפ(x) as in Gerber and Shiu (1998).

For the dependent risk model of Li and Sendova (2015), the subscript i ∈ {1, 2}

denotes the initial class of insured. We assume that H
(
y
)
, the proper distribution function

of the random thresholds Q, has H
(
y
)
= 0 for y ≤ 0. We define, as in Albrecher and

Boxma (2004):

χ1,פ(s) = E
(
e−sXפ I (Xפ > Q)

)
=

∫
y∈[0,∞)

e−syH
(
y
)

dPפ
(
y
)
,

χ2,פ(s) = E
(
e−sXפ I (Xפ ≤ Q)

)
=

∫
y∈[0,∞)

e−sy H̄
(
y
)

dPפ
(
y
)
.

We set ξ1,פ
(
y
)
= H

(
y
)
pפ

(
y
)
and ξ2,פ

(
y
)
= H̄

(
y
)
pפ

(
y
)
; note that χ2,פ(s) = ξ̂2,פ(s)+P(0)פ.

We use the shorthand notation ◦ χפ,i (s) = χפ,i (s) − I(i = 2). The “Lundberg functions”

lפ(s) = ν̂(s) − µ̂פ(s) have roots rפ, ρפ ≥ 0 (see (Li and Sendova, 2015, Lemmas 3.1, 3.2));

here ν̂(s) =
(
s − δ+λ1

c1

) (
s − δ+λ2

c2

)
, and µ̂פ(s) = λ1

c1
χ1,פ(s)

(
δ+λ2

c2
− s

)
+
λ2
c2
χ2,פ(s)

(
δ+λ1

c1
− s

)
.

With the notation Rפ =
∑2

i=1
ci
λi
χפ,i (0) and ◦Rפ =

∑2
i=1

ci
λi ◦

χפ,i (0), we assume the

positive security loading condition Rε > ηε of Li and Sendova (2015). With the assumption

Rb − ηb ≥ Rc − ηc, we also get R0 > η0; ◦Rc < ηc implies R•ε > η•ε . The intuition of

Rb − ηb ≥ Rc − ηc is that, to the contrary, Rε > ηε would imply ε < 0; ◦Rc < ηc is just

ηc > 0 in the classical risk model.

From Li and Garrido (2004), we use some properties of the translation operator T

(introduced by Dickson and Hipp (2001)):

Tr f (x) =
∫ ∞

x
e−r(y−x) f

(
y
)

dy,
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where r is a possibly complex number and has non-negative real part. We denote the

compound geometric rv associated with the solution of defective renewal equations (see Lin

and Willmot (1999)) by Gפ for δ > 0 and by Mפ for δ = 0.

2.4. CORRECTEDPHASE-TYPEAPPROXIMATIONSOFGERBER-SHIUFUNC-
TIONS

We now derive corrected phase-type approximations of Gerber-Shiu functions. The

first step is to find perturbation expansions for the Lundberg roots; using these expansions,

we obtain perturbation expansions for another term which depends on the claims law.

Finally, we derive CPTA in the Li-Sendova dependent risk model, afterwards reducing

these CPTA to the simpler compound Poisson risk model.

2.4.1. Lundberg Root Perturbation Expansions. For the existence, uniqueness

and distinctness of the Lundberg roots, see (Li and Sendova, 2015, Lemmas 3.1, 3.2).

As observed before, the Lundberg roots depend on the claims distribution; therefore, we

need to express the mixture-model Lundberg roots as perturbation expansions in ε of the

base-model Lundberg roots. The following simple lemma is crucial to deriving mi
d,ε (u) and

mi
r,ε (u); it turns out that the correction terms of these contain the “coefficients” of ε .

Lemma 3. Let ε > 0 and δ ≥ 0. If rε is either Lundberg root of the Li-Sendova dependent

risk model with claims law Pε (x), it follows that (i) rε = r•ε + ε
◦ µ̂c (r•ε )
l•(1)
ε (r•ε )

+ O
(
ε2

)
; and (ii)

rε = r0 + ε
◦ µ̂c (r0)−◦ µ̂b (r0)

l (1)
0 (r0)

+O
(
ε2

)
.

Proof of Lemma 3. We let rפ > ρפ ≥ 0 without loss of generality (wlog). We first note

that (i) and (ii) trivially hold by construction for ρε when δ = 0. For, by (Li and Sendova,

2015, Lemma 3.1), ρε = ρ•ε = ρ0 = 0 also; because we have assumed C̃(0) = B̃(0) = 1,

it follows that ◦ µ̂c(0) = ◦ µ̂b(0) = 0. Now we handle the case of rε with δ ≥ 0 (or ρε

with δ > 0). The expansion (ii) follows by applying (Vatamidou et al., 2014a, Theorem

A.3), the conditions of which are easily verified, to the mixture-model Lundberg function

lε (s) = l0(s) − ε (◦ µ̂c(s) − ◦ µ̂b(s)). As for (i), by (Vatamidou et al., 2014a, Theorem A.3),
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rε and ρε are analytic in ε (the same being true for r•ε and ρ•ε ); this allows us to say, in

what follows, that ε
(
rε − r•ε

)
◦ µ̂

(1)
c

(
r•ε

)
= O

(
ε2

)
, for by applying that theorem to l•ε (s) =

l0(s) + ε◦ µ̂b(s), we see that rε − r•ε = O(ε ). Next, recalling that lε (s) = l•ε (s) − ε◦ µ̂c(s),

we use Taylor’s expansion of lε (rε ) about r•ε : 0 = lε
(
r•ε

)
+

(
rε − r•ε

)
l (1)
ε

(
r•ε

)
+ O

(
ε2

)
=

−ε◦ µ̂c
(
r•ε

)
+

(
rε − r•ε

)
l•(1)
ε

(
r•ε

)
+O

(
ε2

)
. As noted in the proof of (Vatamidou et al., 2014a,

Theorem A.3), l•(1)
ε

(
r•ε

)
, 0 because r•ε is a simple root of l•ε (s); hence, (i) follows.

Now we give the details of applying (Vatamidou et al., 2014a, Theorem A.3) to

establish (ii) with δ ≥ 0: −ε (◦ µ̂c(s) − ◦ µ̂b(s)) is analytic by (s, ε ) = (r0, 0), since wlog

r0 > 0, and the Laplace transforms in −ε (◦ µ̂c(s) − ◦ µ̂b(s)) are well-known to be analytic

in s for <(s) > 0. Thus, by (Vatamidou et al., 2014a, Theorem A.3), (rε (ε ), ε ) := rε is

a unique simple root of lε (s) near (rε, 0) for all small ε , and is analytic in ε . Obviously

−ε (◦ µ̂c(s) − ◦ µ̂b(s)) |ε=0 ≡ 0 satisfies the condition of (Vatamidou et al., 2014a, Theorem

A.3) for expressing rε as an expansion of ε , so furthermore, (ii) holds.

Lastly, we elaborate how to establish (i) (showing (ii) works the same) for ρε when

δ = 0; recall that now ρε = ρ
•
ε = ρ0 = 0. Thus,

ρε = 0 = 0 + ε ◦
µ̂c(0)

l•(1)
ε (0)

= ρ•ε + ε
◦ µ̂c

(
ρ•ε

)
l•(1)
ε

(
ρ•ε

) = ρ•ε + ε ◦ µ̂c
(
ρ•ε

)
l•(1)
ε

(
ρ•ε

) +O
(
ε2

)
.

Using (i) allows direct Lundberg root-based analysis for generalizing (Vatamidou

et al., 2013, Definition 1) from ψd,ε (u) to mi
d,ε (u), where w(·, ·) is arbitrary and δ ≥ 0.

In Vatamidou et al. (2014a), the derivations of corrected discard approximations linked

through the “replace” base model, rather than directly using the “discard” base model.

Vatamidou et al. (2013) commented that the “discard” case was simpler than the “replace”

case for ruin probabilities, and in a similar sense we find this for Gerber-Shiu functions,

after a few additional steps in deriving rε as perturbation of r•ε .
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2.4.2. Zero Initial Surplus. The expressions Li and Sendova (2015) gave for

mε,i (u) contained the term λ2
c2

mε,1(0) − λ1
c1

mε,2(0), which depends on the claims law;

therefore, we need perturbation expansions for that term before proceeding to derive the

expansions from which we define mi
d,ε (u) and mi

r,ε (u). Now, we shall denote i,פ∆ (u) =

λ3−i
c3−i

mפ,i (u) − λi
ci

m3,פ−i (u). Then, corresponding to (Li and Sendova, 2015, Eqn 4.3), we

have that i,פ∆ (0) = λi
ci
γ3,פ−i (rפ,ρפ)
ζ3,פ−i (rפ,ρפ) ; here

γפ,i
(
r, ρ

)
=

(
ρ −

δ + λi

ci

) (
r −

δ + λi

ci

) (
ω̂פ(r) − ω̂פ

(
ρ
))
,

ζפ,i
(
r, ρ

)
= χפ,i (r)

(
ρ −

δ + λi

ci

)
− χפ,i

(
ρ
) (

r −
δ + λi

ci

)
.

Next, we denote:

∇c
אפ

(
r, ρ

)
=
◦ µ̂c(r)

l (1)
פ (r)

∂

∂r
א
(
r, ρ

)
+
◦ µ̂c

(
ρ
)

l (1)
פ

(
ρ
) ∂

∂ρ
א
(
r, ρ

)
,

and

∇b
אפ

(
r, ρ

)
=
◦ µ̂b(r)

l (1)
פ (r)

∂

∂r
א
(
r, ρ

)
+
◦ µ̂b

(
ρ
)

l (1)
פ

(
ρ
) ∂

∂ρ
א
(
r, ρ

)
.

Using the Lundberg root perturbation expansions given in Lemma 3 above, one may show

that
∆ε,i (0) = ∆•ε,i (0) + ε κ•cε,i (0) +O

(
ε2

)
,

∆ε,i (0) = ∆0,i (0) + ε
(
κc

0,i (0) − κb
0,i (0)

)
+O

(
ε2

)
,

(2.2)

in which, we have:

κc
i,פ (0) =

λi

ci

1
ζ3,פ−i

(
rפ, ρפ

) (
γc,3−i

(
rפ, ρפ

)
+ ∇c

פ γ3,פ−i
(
rפ, ρפ

))
(2.3)

−
λi

ci

γ3,פ−i
(
rפ, ρפ

)(
ζ3,פ−i

(
rפ, ρפ

))2
(
◦ζ c,3−i

(
rפ, ρפ

)
+ ∇c

פ ζ3,פ−i
(
rפ, ρפ

))
,

κb
i,פ (0) =

λi

ci

1
ζ3,פ−i

(
rפ, ρפ

) (
γb,3−i

(
rפ, ρפ

)
+ ∇b

פ γ3,פ−i
(
rפ, ρפ

))
(2.4)
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−
λi

ci

γ3,פ−i
(
rפ, ρפ

)(
ζ3,פ−i

(
rפ, ρפ

))2

(
◦ζ b,3−i

(
rפ, ρפ

)
+ ∇b

פ ζ3,פ−i
(
rפ, ρפ

))
.

To see the validity of the first expansion in (2.2), note that

γε,i
(
rε, ρε

)
=

(
ρε −

δ + λi

ci

) (
rε −

δ + λi

ci

) (
ω̂ε (rε ) − ω̂ε

(
ρε

))
= γ•ε,i

(
rε, ρε

)
+ εγc,i

(
rε, ρε

)
= γ•ε,i

(
r•ε, ρ

•
ε

)
+

(
rε − r•ε

) ∂
∂r
γ•ε,i

(
r•ε, ρ

•
ε

)
+

(
ρε − ρ

•
ε

) ∂
∂ρ

γ•ε,i
(
r•ε, ρ

•
ε

)
+ ε

(
γc,i

(
r•ε, ρ

•
ε

)
+

(
rε − r•ε

) ∂
∂r
γc,i

(
r•ε, ρ

•
ε

)
+

(
ρε − ρ

•
ε

) ∂
∂ρ

γc,i
(
r•ε, ρ

•
ε

))
+O

(
ε2

)
= γ•ε,i

(
r•ε, ρ

•
ε

)
+ ε

(
∇•cε γ

•
ε,i

(
r•ε, ρ

•
ε

)
+ γc,i

(
r•ε, ρ

•
ε

))
+O

(
ε2

)
. (2.5)

The first step follows from ω̂ε (s) = ω̂•ε (s) + εω̂c(s); in the second step, we use the bivariate

Taylor expansion; in the third step, we use Lemma 3 (i) and the definition of ∇•cε . Also, as

χε,i (s) = χ•ε,i (s) + ◦ χc,i (s),

ζ ε,i
(
rε, ρε

)
= χε,i (rε )

(
ρε −

δ + λi

ci

)
− χε,i

(
ρε

) (
rε −

δ + λi

ci

)
= ζ•ε,i

(
rε, ρε

)
+ ε◦ζ c,i

(
rε, ρε

)
= ζ•ε,i

(
r•ε, ρ

•
ε

)
+

(
rε − r•ε

) ∂
∂r
ζ•ε,i

(
r•ε, ρ

•
ε

)
+

(
ρε − ρ

•
ε

) ∂
∂ρ

ζ•ε,i
(
r•ε, ρ

•
ε

)
+ ε

(
◦ζ c,i

(
r•ε, ρ

•
ε

)
+

(
rε − r•ε

) ∂
∂r ◦

ζ c,i
(
r•ε, ρ

•
ε

)
+

(
ρε − ρ

•
ε

) ∂
∂ρ
◦ζ c,i

(
r•ε, ρ

•
ε

))
+O

(
ε2

)
= ζ•ε,i

(
r•ε, ρ

•
ε

)
+ ε

(
∇•cε ζ

•
ε,i

(
r•ε, ρ

•
ε

)
+ ◦ζ c,i

(
r•ε, ρ

•
ε

))
+O

(
ε2

)
.

Then

1
ζ ε,i

(
rε, ρε

) = 1
ζ•ε,i

(
r•ε, ρ•ε

)
+ ε

(
∇•cε ζ

•
ε,i

(
r•ε, ρ•ε

)
+ ◦ζ c,i

(
r•ε, ρ•ε

))
+O

(
ε2)
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=
1

ζ•ε,i
(
r•ε, ρ•ε

) *
,
1 −

1
ζ•ε,i

(
r•ε, ρ•ε

) ε (∇•cε ζ•ε,i (r•ε, ρ•ε ) + ◦ζ c,i
(
r•ε, ρ

•
ε

))
+O

(
ε2

)+
-
;

combining this with (2.5) gives the first line of (2.2).

2.4.3. GSF Laplace Transform Perturbation Expansions. Using Lemma 3 and

the perturbation expansions for∆ε,i (0) given in (2.2), in Theorem 1we give two perturbation

expansions of the Laplace transforms m̂ε,i (s) for which the base term is respectively m̂•ε,i (s)

and m̂0,i (s), and the next term contains C(x) linearly at most once per convolution in any

component. Our Theorem 1 giving the Laplace transforms is more similar to (Vatamidou

et al., 2014a, Propositions 3.6, 4.5) than (Vatamidou et al., 2013, Theorems 1, 2). Unlike

either pair of existing results, we leave w(·, ·) and δ ≥ 0 unspecified. Consequently, we

do not make explicit every part of the correction terms. Like in Vatamidou et al. (2014a),

we only specify the expansions up to O
(
ε2

)
; this is one of the alluded consequences of

Lemma 3.

Theorem 1. We have the following “discard” and “replace” perturbation expansions for

the Laplace transform of the general Gerber-Shiu function in the Li-Sendova dependent risk

model:

(i) m̂ε,i (s) = m̂•ε,i (s) + ε G̃•ε (s)
1−δυ•ε

Ts Tr•ε Tρ•ε ε,i•ק (0) +O
(
ε2

)
, and

(ii) m̂ε,i (s) = m̂0,i (s) + ε G̃0(s)
1−δυ0

Ts Tr0 Tρ0

(
i,0ק − i,0ב

)
(0) +O

(
ε2

)
.

In (i) and (ii), the term δυפ = T0 Trפ Tρפ µ(0)פ, and G̃פ(s) = 1−δυפ
1−Ts Trפ Tρפ µ(0)פ is the Laplace-

Stieltjes transform of the common compound geometric distribution arising from (Li and

Sendova, 2015, Theorem 4.1) with claims df Pפ
(
y
)
. With κc

i,פ (0) and κb
i,פ (0) given by (2.3)

and (2.4), the functions i,פק (·) and i,פב (·) are specified by the Laplace transforms

i,פק̂ (s) =
λi

ci

(
δ + λ3−i

c3−i
− s

)
ω̂c(s) + ◦ µ̂c(s)m̂פ,i (s) + i,פ∆ (0) ξ̂c,3−i (s) + κc

i,פ (0) ξ̂3,פ−i (s),

i,פב̂ (s) =
λi

ci

(
δ + λ3−i

c3−i
− s

)
ω̂b(s) + ◦ µ̂b(s)m̂פ,i (s) + i,פ∆ (0) ξ̂b,3−i (s) + κb

i,פ (0) ξ̂3,פ−i (s).
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Proof of Theorem 1. The techniques used in deriving (i) apply to deriving (ii); therefore,

we simply demonstrate (i). With our usage of i,פ∆ (0) in which we use the equation with

i ∈ {1, 2} to derive the equivalent of (Li and Sendova, 2015, Eqn (4.3)) (they only used that

of i = 1 or Eqn (3.9)), we may show (i) simultaneously for i = 1 and i = 2. First, as in Li

and Sendova (2015) define β̂פ,i (s) = λi
ci

(
δ+λ3−i

c3−i
− s

)
ω̂פ(s) + i,פ∆ (0) χ3,פ−i (s). Next, we use

lε (s) = l•ε (s) − ε◦ µ̂c(s) and (Li and Sendova, 2015, Eqns (4.15, 4.16)), to obtain

m̂ε,i (s) =

(s−rε )(s−ρε )
(s−r•ε )(s−ρ•ε ) Ts Trε Tρε βε,i (0)

1 − Ts Tr•ε Tρ•ε µ
•
ε (0) − ε ◦ µ̂c (s)

(s−r•ε )(s−ρ•ε )
. (2.6)

First we handle the numerator of (2.6). Note that

(s − rε )
(
s − ρε

)
(s − r•ε )

(
s − ρ•ε

) Ts Trε Tρε βε,i (0)

=
(rε − s)

(
β̂ε,i (s) − β̂ε,i

(
ρε

))
− (ρε − s)

(
β̂ε,i (s) − β̂ε,i (rε )

)
(r•ε − s)

(
ρ•ε − s

)
(rε − ρε )

.

From the definitions of the respective quantities and (2.2), we have

β̂ε,i (s) =
λi

ci

(
δ + λ3−i

c3−i
− s

) (
ω̂•ε (s) + εω̂c(s)

)
+

(
∆
•
ε,i (0) + ε κ•cε,i (0) +O

(
ε2

))
×

(
χ•ε,3−i (s) + ε◦ χc,3−i (s)

)
=
λi

ci

(
δ + λ3−i

c3−i
− s

)
ω̂•ε (s) + ∆•ε,i (0) χ•ε,3−i (s)

+ ε

(
λi

ci

(
δ + λ3−i

c3−i
− s

)
ω̂c(s) + ∆•ε,i (0)◦ χc,3−i (s) + κ•cε,i (0) χ•ε,3−i (s)

)
+O

(
ε2

)
= β̂•ε,i (s) + ε

(
ε,i•ק̂ (s) − ◦ µ̂c(s)m̂•ε,i (s) − I(i = 1)∆•ε,i (0)

)
+O

(
ε2

)
. (2.7)

For, ε χ•ε,3−i (s) + O
(
ε2

)
= ε ξ̂•ε,3−i (s) + O

(
ε2

)
and χc,3−i (s) = ξ̂c,3−i (s) for i ∈ {1, 2}.

Observe that

β̂ε,i
(
ρε

)
= β̂•ε,i

(
ρε

)
+ ε

(
ε,i•ק̂

(
ρε

)
− ◦ µ̂c

(
ρε

)
m̂•ε,i

(
ρε

)
− I(i = 1)∆•ε,i (0)

)
+O

(
ε2

)
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= β̂•ε,i
(
ρ•ε

)
+

(
ρε − ρ

•
ε

)
β̂•(1)
ε,i

(
ρ•ε

)
+ ε

(
ε,i•ק̂

(
ρ•ε

)
− ◦ µ̂c

(
ρ•ε

)
m̂•ε,i

(
ρ•ε

)
− I(i = 1)∆•ε,i (0)

)
+O

(
ε2

)
= β̂•ε,i

(
ρ•ε

)
+ ε

(
◦ µ̂c

(
ρ•ε

)
l•(1)
ε

(
ρ•ε

) β̂•(1)
ε,i

(
ρ•ε

)
+ ε,i•ק̂

(
ρ•ε

)
(2.8)

− ◦ µ̂c
(
ρ•ε

)
m̂•ε,i

(
ρ•ε

)
− I(i = 1)∆•ε,i (0)

)
+O

(
ε2

)
.

For, e.g., ε
(
ρε − ρ

•
ε

)
(1)•ק̂
ε,i

(
ρ•ε

)
= O

(
ε2

)
by Lemma 3 (i). Clearly, (2.8) also holds with rε

and r•ε instead of ρε and ρ•ε . So, we have that

(rε − s)
(
β̂ε,i (s) − β̂ε,i

(
ρε

))
(2.9)

=
(
r•ε − s

) (
ρ•ε − s

) {
Ts Tρ•ε β

•
ε,i (0) + ε

(
Ts Tρ•ε

(
ε,i•ק − ◦µc ∗ m•ε,i

)
(0)

−
◦ µ̂c

(
ρ•ε

)
l•(1)
ε

(
ρ•ε

) β̂•(1)
ε,i

(
ρ•ε

)
ρ•ε − s

+
◦ µ̂c

(
r•ε

)
l•(1)
ε (r•ε )

Ts Tρ•ε β
•
ε,i (0)

r•ε − s

)
+O

(
ε2

)}
,

and we also have

(
ρε − s

) (
β̂ε,i (s) − β̂ε,i (rε )

)
(2.10)

=
(
ρ•ε − s

) (
r•ε − s

) {
Ts Tr•ε β

•
ε,i (0) + ε

(
Ts Tr•ε

(
ε,i•ק − ◦µc ∗ m•ε,i

)
(0)

−
◦ µ̂c

(
r•ε

)
l•(1)
ε (r•ε )

β̂•(1)
ε,i

(
r•ε

)
r•ε − s

+
◦ µ̂c

(
ρ•ε

)
l•(1)
ε

(
ρ•ε

) Ts Tr•ε β
•
ε,i (0)

ρ•ε − s

)
+O

(
ε2

)}
.

Therefore, substituting (2.9) and (2.10) into the numerator of (2.6),

(s − rε )
(
s − ρε

)
(s − r•ε )

(
s − ρ•ε

) Ts Trε Tρε βε,i (0)

= Ts Tr•ε Tρ•ε β
•
ε,i (0) + ε

{
1

r•ε − ρ•ε
*
,
◦ µ̂c

(
ρ•ε

)
l•(1)
ε

(
ρ•ε

) − ◦ µ̂c
(
r•ε

)
l•(1)
ε (r•ε )

+
-

Ts Tr•ε Tρ•ε β
•
ε,i (0)

+ Ts Tr•ε Tρ•ε

(
ε,i•ק − ◦µc ∗ m•ε,i

)
(0) + ◦

µ̂c
(
r•ε

)
l•(1)
ε (r•ε )

β̂•(1)
ε,i

(
r•ε

)
+ Ts Tρ•ε β

•
ε,i (0)

(r•ε − s)
(
r•ε − ρ•ε

)
−
◦ µ̂c

(
ρ•ε

)
l•(1)
ε

(
ρ•ε

) β̂•(1)
ε,i

(
ρ•ε

)
+ TsTr•ε β

•
ε,i (0)(

ρ•ε − s
) (

r•ε − ρ•ε
) }

+O
(
ε2

)
, (2.11)
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because Lemma 3 implies

(
rε − ρε

)−1
=

(
r•ε − ρ

•
ε

)−1*
,
1 − ε

1
r•ε − ρ•ε

*
,
◦ µ̂c

(
r•ε

)
l•(1)
ε (r•ε )

−
◦ µ̂c

(
ρ•ε

)
l•(1)
ε

(
ρ•ε

) +
-
+O

(
ε2

)+
-
.

Now, considering the property Tr Tr β(0) = − β̂(1) (r) found in Li and Garrido (2004),

β̂(1) (r) + Ts Tρ β(0)
(r − s)

(
r − ρ

) =
1

r − ρ
Ts Tr Tρ β(0) +

1
r − s

Tr Tr Tρ β(0), and

β̂(1) (ρ) + Ts Tr β(0)(
ρ − s

) (
r − ρ

) =
1

r − ρ
Ts Tr Tρ β(0) −

1
ρ − s

Tρ Tr Tρ β(0)

follow by adding Tr Tρ β(0) − Tr Tρ β(0) to the numerators on the left-hand side. There-

fore, (2.11) becomes

(s − rε )
(
s − ρε

)
(s − r•ε )

(
s − ρ•ε

) Ts Trε Tρε βε,i (0)

= Ts Tr•ε Tρ•ε β
•
ε,i (0) + ε

{
Ts Tr•ε Tρ•ε

(
ε,i•ק − ◦µc ∗ m•ε,i

)
(0)

+
◦ µ̂c

(
r•ε

)
l•(1)
ε (r•ε )

Tr•ε Tr•ε Tρ•ε β
•
ε,i (0)

r•ε − s
+
◦ µ̂c

(
ρ•ε

)
l•(1)
ε

(
ρ•ε

) Tρ•ε Tr•ε Tρ•ε β
•
ε,i (0)

ρ•ε − s

}
+O

(
ε2

)
. (2.12)

We easily see for the Lundberg roots that

l (1)
פ (rפ) =

(
rפ − ρפ

) (
1 − Trפ Trפ Tρפ µ(0)פ

)
, and

l (1)
פ

(
ρפ

)
=

(
ρפ − rפ

) (
1 − Tρפ Trפ Tρפ µ(0)פ

)
.

For,

l (1)
פ (s) =

∂

∂s
(s − rפ)

(
s − ρפ

) (
1 − Ts Trפ Tρפ µ(0)פ

)
=

(
2s −

(
rפ + ρפ

)) (
1 − Ts Trפ Tρפ µ(0)פ

)
− (s − rפ)

(
s − ρפ

) ∂
∂s

Ts Trפ Tρפ µ(0)פ.
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Hence,

(s − rε )
(
s − ρε

)
(s − r•ε )

(
s − ρ•ε

) Ts Trε Tρε βε,i (0)

= Ts Tr•ε Tρ•ε β
•
ε,i (0) + ε

{
Ts Tr•ε Tρ•ε

(
ε,i•ק − ◦µc ∗ m•ε,i

)
(0) +

◦ µ̂c
(
r•ε

)
m̂•ε,i

(
r•ε

)
(r•ε − ρ•ε )(r•ε − s)

−
◦ µ̂c

(
ρ•ε

)
m̂•ε,i

(
ρ•ε

)
(r•ε − ρ•ε )

(
ρ•ε − s

) } +O
(
ε2

)
= Ts Tr•ε Tρ•ε β

•
ε,i (0) + ε

{
Ts Tr•ε Tρ•ε ε,i•ק (0) −

◦ µ̂c(s)m̂•ε,i (s)

(r•ε − s)
(
ρ•ε − s

) } +O
(
ε2

)
, (2.13)

by the identity

Ts Tr Tρ a(0) =
â(r)

(r − s)
(
r − ρ

) − â
(
ρ
)(

ρ − s
) (

r − ρ
) + â(s)

(r − s)
(
ρ − s

) . (2.14)

Reassembling m̂ε,i (s), we get

m̂ε,i (s) =
{

Ts Tr•ε Tρ•ε β
•
ε,i (0) + ε

(
Ts Tr•ε Tρ•ε ε,i•ק (0) −

◦ µ̂c(s)m̂•ε,i (s)

(r•ε − s)
(
ρ•ε − s

) ) +O
(
ε2

)}
×

(
1 − Ts Tr•ε Tρ•ε µ

•
ε (0) − ε ◦ µ̂c(s)

(s − r•ε )
(
s − ρ•ε

) )−1

=

{
m̂•ε,i (s) + ε

G̃•ε (s)
1 − δυ

•
ε

(
Ts Tr•ε Tρ•ε ε,i•ק (0) −

◦ µ̂c(s)m̂•ε,i (s)

(r•ε − s)
(
ρ•ε − s

) ) +O
(
ε2

)}
×

(
1 + ε ◦ µ̂c(s)

(s − r•ε )
(
s − ρ•ε

) G̃•ε (s)
1 − δυ

•
ε
+O

(
ε2

))
= m̂•ε,i (s) + ε

G̃•ε (s)
1 − δυ

•
ε

Ts Tr•ε Tρ•ε ε,i•ק (0) +O
(
ε2

)
.

The second equality follows by multiplying the numerator and denominator of the first

equality by G̃•ε (s)
1−δυ•ε

= 1
1−Ts Tr•ε

Tρ•ε µ
•
ε (0) , then expanding

1
1−z with z = ε 1

1−δυ•ε
◦ µ̂c (s)G̃•ε (s)

(s−r•ε )(s−ρ•ε ) .

We use Theorem 1 as the basis for the corrected phase-type approximations mi
d,ε (u)

and mi
r,ε (u). That is, truncating the O

(
ε2

)
-terms in Theorem 1 (i) and Theorem 1 (ii), then

inverting with respect to s, we have the following definition:
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Definition 6 (Corrected Phase-Type Approximations of Gerber-Shiu Functions). In the Li-

Sendova dependent risk model, the corrected “discard” and “replace” approximations for

initial insured classes i = 1, 2 with general penalty function w(·, ·) are

mi
d,ε (u) = m•ε,i (u) +

ε

1 − δυ
•
ε

∫ u

0−
Tr•ε Tρ•ε ε,i•ק (u − x) dG•ε (x),

mi
r,ε (u) = m0,i (u) +

ε

1 − δυ0

∫ u

0−
Tr0 Tρ0

(
i,0ק − i,0ב

)
(u − x) dG0(x).

By essentially the procedure used to derive (Li and Sendova, 2015, Eqn 4.19), one

may get an explicit expression for the correction terms. Now we simplify Theorem 1 to the

compound Poisson risk model.

Corollary 1. The Laplace transform m̂ε (s) may be expressed as:

m̂ε (s) = m̂•ε (s) +
ελ

1 − φ•ε (0)
G̃•ε (s) Ts Tρ•ε

(
ωc + c ∗ m•ε − m•ε

)
(0) +O

(
ε2

)
,

m̂ε (s) = m̂0(s) +
ελ

1 − φ0(0)
G̃0(s) Ts Tρ0 (ωc + c ∗ m0 − ωb − b ∗ m0)(0) +O

(
ε2

)
.

Proof of Corollary 1. While Li and Sendova (2015) did not explicitly state this, it is clear

that when λ1 = λ2 = λ and c1 = c2 = 1, we have rפ = δ + λ, so that i,פ∆ (0) ≡ 0. Also,

γc,i
(
rפ, ρפ

)
= γb,i

(
rפ, ρפ

)
≡ 0 in this case, such that κc

i,פ (0) = κb
i,פ (0) ≡ 0 as well. Then we

have

(s)פק̂ = λ(δ + λ − s)(ω̂c(s) + (ĉ(s) − 1)m̂פ(s)),

(s)פב̂ = λ(δ + λ − s)
(
ω̂b(s) +

(
b̂(s) − 1

)
m̂פ(s)

)
.

By (2.14), we readily see that Ts Trפ Tρפ (0)פק = λ Ts Tρפ (ωc + c ∗ mפ − m(0)(פ and

Ts Trפ Tρפ (0)פב = λ Ts Tρפ (ωb + b ∗ mפ − m(0)(פ. We make this use of (2.14) explicit

in showing δυפ = φ(0)פ. Denoting ĝפ(s) = Ts Trפ Tρפ µ(0)פ, we observe that δυפ =

T0 Trפ Tρפ µ(0)פ = ĝ(0)פ. Now, in the compound Poisson risk model with unit premium
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rate, µ̂פ(s) = λ(δ + λ − s)P̃פ(s); thus by identity (2.14),

ĝפ(s) =
µ̂פ(rפ)

(rפ − s)
(
rפ − ρפ

) − µ̂פ
(
ρפ

)(
ρפ − s

) (
rפ − ρפ

) + µ̂פ(s)
(rפ − s)

(
ρפ − s

)
= 0 −

λ
(
δ + λ − ρפ

)
P̃פ

(
ρפ

)(
ρפ − s

) (
δ + λ − ρפ

) + λ(δ + λ − s)P̃פ(s)
(δ + λ − s)

(
ρפ − s

)
= λ

P̃פ(s) − P̃פ
(
ρפ

)
ρפ − s

= λ Ts Tρפ p(0)פ.

Therefore also G̃פ(s) = 1−δυפ
1−Ts Trפ Tρפ µ(0)פ =

1−φ(0)פ
1−λ Ts Tρפ p(0)פ .

2.5. QUANTIFYING THE UTILITY OF CORRECTED PHASE-TYPE APPROXI-
MATIONS OF GERBER-SHIU FUNCTIONS

Whereas in Section 2.4 we gave the basis for CPTA of Gerber-Shiu functions, now

we turn to demonstrating that our approximations are useful in more than the special case

of GSFs which Vatamidou et al. (2013) considered. We examine this from two angles:

first, the asymptotic tail behavior of our CPTA for large initial capital u, and then the error

of the phase-type approximations (meaning without the respective correction terms) as the

perturbation parameter ε goes to 0.

2.5.1. Asymptotic Tail Behavior. Because phase-type approximations of heavy-

tailed ruin probabilities inherently fail in capturing the correct behavior in the tail (see for

example Vatamidou et al. (2014b)), Vatamidou et al. (2013) proposed adding the correction

term. In their Theorems 5, 6, and 7, they showed that the correction term would properly

capture the heavy-tailedness of the exact value (up to multiplication by a constant). We

consider such a property important for the correction term to hold any usefulness when

claims are heavy-tailed. Therefore, we establish this in our Propositions 1, 2, and 3 below.
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In Vatamidou et al. (2013, 2014a), they formally showed corrected phase-type ap-

proximations to capture the heavy-tailed behavior only in the classical riskmodel. Similarly,

in this subsection, we set λ1 = λ2 = λ and c1 = c2 = 1. Then for all δ ≥ 0, we may use

Corollary 1 to reduce Definition 6 to:

md,ε (u) = m•ε (u) +
ελ

1 − φ•ε (0)

∫ u

0−
Tρ•ε

(
ωc + c ∗ m•ε − m•ε

)
(u − x) dG•ε (x),

mr,ε (u) = m0(u) +
ελ

1 − φ0(0)

∫ u

0−
Tρ0 (ωc + c ∗ m0 − ωb − b ∗ m0)(u − x) dG0(x).

To derive the asymptotic tail behavior of md,ε (u) and mr,ε (u), we place assumptions

both on the claims laws Pפ(x), and on the choice of penalty w(·, ·) through the function

ωפ(x). We will speak of the quantities based upon the rv C in terms of the density classes

L d (α) andS d (α) as used inTang andWei (2010). Namely, a function f : [0,∞) → [0,∞),

measurable and eventually positive, belongs toL d (α), α ≥ 0, if lim
x→∞

f (x−y)
f (x) = eαy,∀y ∈ R.

If also lim
x→∞

f ∗2(x)
f (x) = 2 f̂ (−α), then f ∈ S d (α). Assumption 1 gives the constraints that we

place on the distributions of B and C, as well as on their associated functions ωb(u) and

ωc(u).

Assumption 1. The distributions B(u) and C(u) are both absolutely continuous, with

bounded densities b(u) and c(u), b(u) phase-type and c(u) heavy-tailed, respectively. The

functionsωb(u) andωc(u) are locally integrable, and also globally integrable if δ = α = 0.

1. When δ > 0, c(u) ∈ S d (0) and ωc(u) ∈ L d (α). When furthermore α = 0: if

ωc(u) ∈ S d (0), then c(u) = O(ωc(u)); if ωc(u) ∈ L d (0) only, then ωc(u) =

O(c(u)).

2. When δ = 0, c(u) is eventually non-increasing, and C̄(u) ∈ S d (0). When α > 0,

ωc(u) ∈ L d (α). When instead α = 0: ωc(u) is eventually non-increasing, and

Ω̄c(u) ∈ L d (0). If Ω̄c(u) ∈ S d (0) also, then C̄(u) = O
(
Ω̄c(u)

)
; otherwise,

Ω̄c(u) = O
(
C̄(u)

)
.
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By some discussion in (Asmussen and Albrecher, 2010, Section IX.1), b(u) ∼

Auk e−γu with k ∈ {0, 1, 2, . . . } and A, γ > 0. Therefore, b(u) ∈ L d
(
γ
)
. By (Tang andWei,

2010, Lemma 4.1 (2)), b(u) = O
(
e−γ̃u

)
for all γ̃ ∈

(
0, γ

)
: just set γ̃ := γ − η, η ∈

(
0, γ

)
, in

which η > 0 has the role which ε does in (Tang andWei, 2010, Lemma 4.1 (2)). From (Foss

et al., 2013, Lemma 2.17), g(u) = o(h(u)) for g(u) = O
(
e−γu) and h(u) ∈ L d (0),

so b(u) = o(c(u)) when δ > 0. Since b(u) is phase-type, basic phase-type properties

(Asmussen and Albrecher (2010) or Bladt and Nielsen (2017)) mean that B̄(u) is phase-

type also, with the same matrix
¯
T ; in other words, B̄(u) ∼ A′uk e−γu, with k ∈ {0, 1, 2, . . .},

and A′, γ > 0 and so B̄(u) ∈ L d
(
γ
)
. So under Assumption 1, when δ = 0, B̄(u) = o

(
C̄(u)

)
follows by the same reasoning as above for b(u) = o(c(u)) (but see Vatamidou et al. (2013)

for an alternate demonstration).

Observe that b(u) = o(c(u)) impliesωb(u) = o(ωc(u)). Letting k0 > 0 be arbitrary,

choose u0 such that u > u0 implies b(u) ≤ k0c(u). Thus, for u > u0, since x > 0 means

also u + x > u0,

ωb(u) =
∫ ∞

0
w(u, x)b(u + x) dx ≤

∫ ∞

0
w(u, x)k0c(u + x) dx = k0ωc(u).

So the same k0 and u0 also correspond to the statementωb(u) = o(ωc(u)). It also holds that

Ω̄b(u) = o
(
Ω̄c(u)

)
because b(u) = o(c(u)). Letting k0 > 0, choose u0 such that u > u0

implies b(u) ≤ k0c(u). Then, for u > u0,

Ω̄b(u) =
∫ ∞

0
ωb(u + x) dx ≤

∫ ∞

0
k0ωc(u + x) dx = k0Ω̄c(u).

We will frequently use some basic properties about the operator T on functions in

L d (α) in proving Propositions 1, 2, and 3; the following lemma establishes said properties.

Note that α ∨ ρ = max
(
α, ρ

)
.

Lemma 4. Let ρ ≥ 0 and α ≥ 0; assume that h(u) ∈ L d (α). We have: if ρ > 0, then

Tρ h(u) ∈ L d (α); and if α ∨ ρ > 0, then Tρ h(u) ∼ 1
ρ+α h(u).
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Proof of Lemma 4. First we show Tρ h(u) ∈ L d (α). For ρ > 0, let y ∈ R. Canceling

eρu, then using L’Hopital’s rule, followed by applying h(u) ∈ L d (α), we easily see that

lim
u→∞

Tρ h(u−y)
Tρ h(u) = eαy. Namely,

lim
u→∞

Tρ h
(
u − y

)
Tρ h(u)

= lim
u→∞

∫ ∞
u−y e−ρ(v−(u−y))h(v) dv∫ ∞

u e−ρ(v−u)h(v) dv

= lim
u→∞

∫ ∞
u e−ρ(w−u)h

(
w − y

)
dw∫ ∞

u e−ρ(v−u)h(v) dv

= lim
u→∞

∫ ∞
u e−ρwh

(
w − y

)
dw∫ ∞

u e−ρvh(v) dv

= lim
u→∞

−e−ρuh
(
u − y

)
−e−ρuh(u)

= lim
u→∞

h
(
u − y

)
h(u)

= eαy.

For the second assertion, notice that lim
u→∞

Tρ h(u)
h(u) = lim

u→∞

∫ ∞
0 e−ρv h(u+v)

h(u) dv. By (Tang and

Wei, 2010, Lemma 4.1 (1)), for all η > 0, there exist constants c0 > 0 and u0 > 0 such

that for all u ≥ u0 and y ≥ 0, h(u+y)
h(u) ≤ c0e−(α−η)y. So, choosing η ∈

(
0, ρ + α

)
, we

have
∫ ∞

0 e−ρv h(u+v)
h(u) dv ≤

∫ ∞
0 e−ρvc0e−(α−η)v dv < ∞. Then by the dominated convergence

theorem, lim
u→∞

Tρ h(u)
h(u) =

∫ ∞
0 e−ρv lim

u→∞
h(u+v)

h(u) dv =
∫ ∞

0 e−ρve−αv dv.

Either α = 0 or α > 0 may occur in Propositions 1, 2, and 3. For, consider the

penalty function w
(
x, y

)
= e−s1 x−s2y, where s1 ∈ [0,∞) and s2 ∈ (0,∞). The authors

in Tang and Wei (2010) discussed that pε (u) ∈ L d (0) implies ωε (u) ∼ 1
s2

e−s1upε (u); from

this it follows that ωε (u) ∈ L d (s1). Each asymptotic relation in Propositions 1, 2, and 3 is

meant in the limit u → ∞.
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Proposition 1. Let Assumption 1 hold; then

mε (u) ∼




ελ2

δ2 ρε
ˆ̄Ωε

(
ρε

)
c(u) if δ > 0, α > 0

ελ2

δ2 ρε
ˆ̄Ωε

(
ρε

)
c(u) +

ελ

δ
ωc(u) if δ > 0, α = 0

ελ2(
1 − ψε (0)

)2
ˆ̄Ωε (0)C̄(u) if δ = 0, α > 0

ελ2(
1 − ψε (0)

)2
ˆ̄Ωε (0)C̄(u) +

ελ

1 − ψε (0)
Ω̄c(u) if δ = 0, α = 0

holds.

Proof of Proposition 1. To establish Proposition 1, we need to show that our assumptions on

c(u) and ωc(u) imply the conditions (Tang and Wei, 2010, Corollary 3.2 (2, 3, 5, 6)) placed

on pε (u) and ωε (u) are met. Then our result rather easily follows by way of pε (u) ∼ εc(u)

and ωε (u) ∼ εωc(u). That the quantity λ
∫ ∞

0

∫ ∞
0 e−ρפ pפ

(
x + y

)
dxdy in equation (3.19)

of Tang and Wei (2010) is less than 1 obviously holds in the mixture model. For δ ≥ 0, by

ωb(u) = o(ωc(u)), ωc(u) ∈ L d (α) implies ωε (u) ∈ L d (α) for all α ≥ 0. Letting y ∈ R,

lim
u→∞

ωε
(
u − y

)
ωε (u)

= lim
u→∞

(1 − ε )ωb
(
u − y

)
+ εωc

(
u − y

)
(1 − ε )ωb(u) + εωc(u)

= lim
u→∞

(1 − ε )o
(
ωc

(
u − y

))
+ εωc

(
u − y

)
(1 − ε )o(ωc(u)) + εωc(u)

= lim
u→∞

((1 − ε )o(1) + ε )ωc
(
u − y

)
((1 − ε )o(1) + ε )ωc(u)

= eαy. (2.15)

First consider δ > 0; by (Klüppelberg, 1989, Lemma 1.2), pε (u) ∈ S d (0) follows from

c(u) ∈ S d (0) and b(u) = o(c(u)). Because b(u) = o(c(u)) and c(u) ∈ L d (0), pε (u) ∈

L d (0) in the sense of (2.15). As probability density functions, c(u) and pε (u) are globally,

and thus locally, integrable. Then for α > 0, Proposition 1 follows from (Tang and Wei,

2010, Corollary 3.2 (2)). That is,

mε (u) ∼
λ2

δ2 ρε
ˆ̄Ωε

(
ρε

)
pε (u)
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=
λ2

δ2 ρε
ˆ̄Ωε

(
ρε

)
((1 − ε )o(c(u)) + εc(u))

∼
ελ2

δ2 ρε
ˆ̄Ωε

(
ρε

)
c(u).

On the other hand, for δ > 0 and α = 0, because ωb(u) = o(ωc(u)) and we assumed ωb(u)

and ωc(u) locally integrable, ωc(u) ∈ S d (0) implies ωε (u) ∈ S d (0) by (Klüppelberg,

1989, Lemma 1.2). Specifically, lim
u→∞

ωε (u)/ωc(u) = ε because ωb(u) = o(ωc(u)). The

relation c(u) = O(ωc(u)) implies pε (u) = O(ωε (u)) because b(u) = o(c(u)). Choose

k0 > 0 and u0 such that u > u0 implies c(u) ≤ k0ωc(u); also choose u1 such that u > u1

implies b(u) ≤ ε
1−ε c(u). Letting u > u0 ∨ u1,

pε (u) = (1 − ε )b(u) + εc(u) ≤ 2εc(u) ≤ 2k0εωc(u)

≤ 2k0((1 − ε )ωb(u) + εωc(u)) = 2k0ωε (u).

Likewise,ωc(u) = O(c(u)) impliesωε (u) = O
(
pε (u)

)
becauseωb(u) = o(ωc(u)). Choose

k0 > 0 and u0 such that u > u0 implies ωc(u) ≤ k0c(u); also choose u1 such that u > u1

implies ωb(u) ≤ ε
1−εωc(u). Letting u > u0 ∨ u1,

ωε (u) = (1 − ε )ωb(u) + εωc(u) ≤ 2εωc(u) ≤ 2k0εc(u)

≤ 2k0((1 − ε )b(u) + εc(u)) = 2k0pε (u).

Therefore, Proposition 1 follows from (Tang and Wei, 2010, Corollary 3.2 (3)). That is,

mε (u) ∼
λ

δ
ωε (u) +

λ2

δ2 ρε
ˆ̄Ωε

(
ρε

)
pε (u)

= (1 − ε )o(1)
(
λ

δ
ωc(u) +

λ2

δ2 ρε
ˆ̄Ωε

(
ρε

)
c(u)

)
+ ε

(
λ

δ
ωc(u) +

λ2

δ2 ρε
ˆ̄Ωε

(
ρε

)
c(u)

)
∼
ελ

δ
ωc(u) +

ελ2

δ2 ρε
ˆ̄Ωε

(
ρε

)
c(u).
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Now we let δ = 0: the density pε (u) is eventually non-increasing because we

assume so for c(u), and b(u) is phase-type. As commented previously, B̄(u) = o
(
C̄(u)

)
;

thus C̄(u) ∈ S d (0) implies P̄ε (u) ∈ S d (0) by (Klüppelberg, 1989, Lemma 1.2). In the

sense of (2.15), P̄ε (u) ∈ L d (0), and lim
u→∞

P̄ε (u)C̄(u)−1
= ε . Because we assumed ηε < ∞

and ηc < ∞, the densities P̄ε (u) and C̄(u) are globally integrable, and locally as well. Then

for α > 0, Proposition 1 follows from (Tang andWei, 2010, Corollary 3.2 (5)). Specifically,

mε (u) ∼
λ2(

1 − ψε (0)
)2

ˆ̄Ωε (0)P̄ε (u)

=
λ2(

1 − ψε (0)
)2

ˆ̄Ωε (0)
(
(1 − ε )o

(
C̄(u)

)
+ εC̄(u)

)
∼

ελ2(
1 − ψε (0)

)2
ˆ̄Ωε (0)C̄(u).

Meanwhile, when δ = α = 0, having assumed Ω̄c(u) ∈ L d (0), we have Ω̄ε (u) ∈ L d (0)

because Ω̄b(u) = o
(
Ω̄c(u)

)
. Again, this holds in the sense of (2.15) with α = 0. Clearly,

ωε (u) is eventually non-increasing given the same property for b(u), c(u), and ωc(u). The

relation C̄(u) = O
(
Ω̄c(u)

)
implies P̄ε (u) = O

(
Ω̄ε (u)

)
because B̄(u) = o

(
C̄(u)

)
. Choose

k0 > 0 and u0 such that u > u0 implies C̄(u) ≤ k0Ω̄c(u); also choose u1 such that u > u1

implies B̄(u) ≤ ε
1−ε C̄(u). Letting u > u0 ∨ u1,

P̄ε (u) = (1 − ε )B̄(u) + εC̄(u) ≤ 2εC̄(u) ≤ 2k0εΩ̄c(u)

≤ 2k0((1 − ε )Ω̄b(u) + εΩ̄c(u)) = 2k0Ω̄ε (u).

Likewise, Ω̄c(u) = O
(
C̄(u)

)
implies Ω̄ε (u) = O

(
P̄ε (u)

)
because Ω̄b(u) = o

(
Ω̄c(u)

)
.

Choose k0 > 0 and u0 such that u > u0 implies Ω̄c(u) ≤ k0C̄(u); also choose u1 such that

u > u1 implies Ω̄b(u) ≤ ε
1−ε Ω̄c(u). Letting u > u0 ∨ u1,

Ω̄ε (u) = (1 − ε )Ω̄b(u) + εΩ̄c(u) ≤ 2εΩ̄c(u) ≤ 2k0εC̄(u)

≤ 2k0((1 − ε )B̄(u) + εC̄(u)) = 2k0P̄ε (u).
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Finally, Ω̄b(u) = o
(
Ω̄c(u)

)
with ωb(u) and ωc(u) globally integrable implies by (Klüppel-

berg, 1989, Lemma 1.2) that Ω̄ε (u) ∈ S d (0) when Ω̄c(u) ∈ S d (0). The fact that ωפ(u) is

globally integrable implies that for all u0 > 0,
∫ u0

0 Ω̄פ(u) du =
∫ u0

0

∫ ∞
0 ωפ(u + x) dx du =∫ ∞

0

∫ u0
0 ωפ(u + x) du dx < ∞, as discussed in the proof of (Tang and Wei, 2010, Lemma

5.2). In other words, Ω̄b(u) and Ω̄c(u) are locally integrable. Therefore, Proposition 1

follows from (Tang and Wei, 2010, Corollary 3.2 (6)). That is,

mε (u) ∼
λ

1 − ψε (0)
Ω̄ε (u) +

λ2(
1 − ψε (0)

)2
ˆ̄Ωε (0)P̄ε (u)

= (1 − ε )o(1)*
,

λ

1 − ψε (0)
Ω̄c(u) +

λ2(
1 − ψε (0)

)2
ˆ̄Ωε (0)C̄(u)+

-

+ ε*
,

λ

1 − ψε (0)
Ω̄c(u) +

λ2(
1 − ψε (0)

)2
ˆ̄Ωε (0)C̄(u)+

-

∼
ελ

1 − ψε (0)
Ω̄c(u) +

ελ2(
1 − ψε (0)

)2
ˆ̄Ωε (0)C̄(u).

When we consider the corrected discard and corrected replace approximations of

the exact-valued Gerber-Shiu function mε (u), the asymptotic tail behavior retains the same

form. The one difference is that the constant coefficients change their associated claims

distribution: instead of Pε (u), we find P•ε (u) in Proposition 2 and P0(u) in Proposition 3.

That is, for mε (u), in Proposition 1 the relevant coefficients follow the mixture-model

distribution Pε (u), whereas for the corrected phase-type approximations, in Propositions 2

and 3 those coefficients follow the corresponding base-model phase-type distribution.
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Proposition 2. Let Assumption 1 hold; then

md,ε (u) ∼




ελ2

δ2 ρ•ε
ˆ̄Ω•ε

(
ρ•ε

)
c(u) if δ > 0, α > 0

ελ2

δ2 ρ•ε
ˆ̄Ω•ε

(
ρ•ε

)
c(u) +

ελ

δ
ωc(u) if δ > 0, α = 0

ελ2(
1 − ψ•ε (0)

)2
ˆ̄Ω•ε (0)C̄(u) if δ = 0, α > 0

ελ2(
1 − ψ•ε (0)

)2
ˆ̄Ω•ε (0)C̄(u) +

ελ

1 − ψ•ε (0)
Ω̄c(u) if δ = 0, α = 0

holds.

Proof of Proposition 2. By (Tang and Wei, 2010, Lemmas 5.1, 5.2), m•ε (u) is locally inte-

grable. For phase-type density b(u), it is easy to show that Tρ b(u) is also phase-type. Let

<
(
ρ
)
≥ 0. Suppose b(u) =

¯
αe¯

Tu

¯
t; then

Tρ b(u) =
∫ ∞

u
e−ρ(y−u)

¯
αe¯

T y

¯
t dy

= eρu
∫ ∞

u ¯
αe−(ρ

¯
I−

¯
T)y

¯
t dy

= eρu

¯
α
(
ρ
¯
I −

¯
T
)−1e−(ρ

¯
I−

¯
T)u

¯
t

=
¯
α
(
ρ
¯
I −

¯
T
)−1e¯

Tu

¯
t.

That means, for a phase-type distribution b(u) with representation PH
(
¯
α,

¯
T
)
, Tρ b(u) has

representation PH
(
¯
α
(
ρ
¯
I −

¯
T
)−1,

¯
T
)
. Since all eigenvalues of

¯
T are located strictly in the

negative half plane (e.g., (Bladt and Nielsen, 2017, Corollary 3.1.15)) and R
(
ρ
)
≥ 0, the

matrix
(
ρ
¯
I −

¯
T
)−1 is well-defined. It is known (e.g., (Lin and Willmot, 1999, Section 2))

that the base distribution of the compound geometric df Gפ(u) = 1 −mפ(u) is proportional

to the form Tρ b(u), so by (Bladt and Nielsen, 2017, Theorem 3.1.28), Gפ(u) is phase-

type for δ ≥ 0 whenever claims are as well. By (Tang and Wei, 2010, Lemma 4.3 (1)),
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∫ u
0− h(u − x) dGפ(x) ∼ h(u) for h(u) ∈ S d (0), or locally integrable h(u) ∈ L d (0). For,

∫ u

0−
h(u − x) dGפ(x) =

∫ u

0
h(u − x)

{
−Ḡ(1)

פ (x)
}

dx + h(u)G(0)פ

∼ h(u)
(
−
(
0 · ˆ̄G(0)פ − Ḡ(0)פ

)
+ G(0)פ

)
.

It follows from (Gerber and Shiu, 1998, Equation 4.7) that m•ε (u) = O
(
e−R•εu

)
, in which

−R•ε < 0 is the negative root of l•ε (s) = 0. The significance is that m•ε (u) is o(·) of any

function in L d (0).

First we let δ > 0: by (Tang and Wei, 2010, Lemma 4.3 (1)), c ∗ m•ε (u) ∈ L d (0),

and c ∗ m•ε (u) ∼ c(u)m̂•ε (0); by (Klüppelberg, 1989, Lemma 1.2), c ∗ m•ε (u) ∈ S d (0) also.

Specifically, if y ∈ R, c ∗ m•ε
(
u − y

)
∼ c

(
u − y

)
m̂•ε (0) ∼ c(u)m̂•ε (0) ∼ c ∗ m•ε (u). The latter

half (that c(u)m̂•ε (0) ∼ c ∗ m•ε (u)) demonstrates the subexponentiality of c ∗ m•ε (u) due to

that of c(u). By Lemma 4 and (Klüppelberg, 1989, Lemma 1.2), Tρ•ε c ∗ m•ε (u) ∈ S d (0)

itself. For, Tρ•ε c ∗ m•ε (u) ∈ L d (0) and Tρ•ε c ∗ m•ε (u) ∼ 1
ρ•ε

c ∗ m•ε (u). One may show that∫ u
0− Tρ•ε m•ε (u − x) dG•ε (x) = O

(
e−R•εu

)
. It follows fromm•ε (u) = O

(
e−R•εu

)
thatTρ•ε m•ε (u) =

O
(
e−R•εu

)
also. Choose k0 > 0 and u0 such that u > u0 implies m•ε (u) ≤ k0e−R•εu; then

Tρ•ε m•ε (u) =
∫ ∞

0
e−ρ

•
ε vm•ε (u + v) dv ≤ k0

∫ ∞

0
e−ρ

•
ε ve−R•ε (u+v) dv =

k0
ρ•ε + R•ε

e−R•εu.

Since −Ḡ•(1)
ε (u) ∈ L d

(
γ
)
for some γ > 0 by having a phase-type distribution, by Lemma 4

and (Tang and Wei, 2010, Lemma 4.1 (2)) we have that −Ḡ•(1)
ε (u) := g•ε (u) = O

(
e−γ̃u

)
for some γ̃ ∈

(
0, γ

)
. Now, we will choose γ̃ ∈

(
R•ε, γ

)
. Choose k0 > 0 and u0 such that

u > u0 implies Tρ•ε m•ε (u) ≤ k0e−R•εu, and choose k1 > 0 and u1 such that u > u1 implies

g•ε (u) ≤ k1e−γ̃u. In what immediately follows, we let u > 2(u0 ∨ u1):

∫ u

0−
Tρ•ε m•ε (u − x) dG•ε (x) = G•ε (0) Tρ•ε m•ε (u) +

∫ u

0
Tρ•ε m•ε (u − x)g•ε (x) dx

= G•ε (0) Tρ•ε m•ε (u) +
(∫ u−(u0∨u1)

0
+

∫ u

u−(u0∨u1)

)
Tρ•ε m•ε (u − x)g•ε (x) dx
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≤ k2e−R•εu +

∫ u−(u0∨u1)

0
k0e−R•ε (u−x)

g
•
ε (x) dx +

∫ u

u−(u0∨u1)
k1e−γ̃x Tρ•ε m•ε (u − x) dx

= k2e−R•εu + k0e−R•εu
∫ u−(u0∨u1)

0
eR•ε x

g
•
ε (x) dx + k1

∫ (u0∨u1)

0
e−γ̃(u−v) Tρ•ε m•ε (v) dv

≤
(
k2 + k0ĝ

•
ε

(
−R•ε

))
e−R•εu + k1e−γ̃u

∫ u0∨u1

0
eγ̃v Tρ•ε m•ε (v) dv ≤ k3e−R•εu. (2.16)

Therefore,
∫ u

0− Tρ•ε m•ε (u − x) dG•ε (x) = O
(
e−R•εu

)
. Now, suppose α > 0: by Lemma 4,

Tρ•ε ωc(u) ∈ L d (α); so by (Tang and Wei, 2010, Lemma 4.1 (2)), Tρ•ε ωc(u) = O
(
e−α̃u

)
,

∀α̃ ∈ (0, α). Then choose α̃ ∈
(
0, α ∧ γ

)
where −Ḡ•(1)

ε (u) = O
(
e−γu); in the sense

of (2.16), it follows that
∫ u

0− Tρ•ε ωc(u − x) dG•ε (x) = O
(
e−α̃u

)
. Therefore, md,ε (u) ∼

ελ
1−φ•ε (0) Tρ•ε c ∗ m•ε (u); Proposition 2 follows for δ > 0, α > 0 by Lemma 4, (Tang and Wei,

2010, Lemma 4.3 (1)), and the relations δ = ρפ
(
1 − φ(0)פ

)
and m̂(0)פ = λ

δ ρפ
ˆ̄Ωפ

(
ρפ

)
. In

particular,

md,ε (u) ∼
ελ

1 − φ•ε (0)
Tρ•ε c ∗ m•ε (u) ∼

ελ

1 − φ•ε (0)
1
ρ•ε

c ∗ m•ε (u)

∼
ελ

δ
m̂•ε (0)c(u) =

ελ2

δ2 ρ•ε
ˆ̄Ω•ε

(
ρ•ε

)
c(u).

Now suppose α = 0: Tρ•ε ωc(u) ∈ L d (0) by Lemma 4. To get Proposition 2 when

δ > 0 and α = 0, apply Lemma 4 again; whetherωc(u) = O(c(u)) or c(u) = O(ωc(u)), one

may show that ωc(u) + c ∗ m•ε (u) ∼ ωc(u) + c(u)m̂•ε (0) by (Tang and Wei, 2010, Lemma

4.3 (1)). That is,

md,ε (u) ∼
ελ

1 − φ•ε (0)
Tρ•ε

(
ωc + c ∗ m•ε

)
(u) ∼

ελ

ρ•ε
(
1 − φ•ε (0)

) (
ωc + c ∗ m•ε

)
(u)

=
ελ

δ

(
ωc + c ∗ m•ε

)
(u) ∼

ελ

δ

(
ωc(u) + m̂•ε (0)c(u)

)
=
ελ

δ
ωc(u) +

ελ2

δ2 ρ•ε
ˆ̄Ω•ε

(
ρ•ε

)
c(u).
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For the assertion that ωc(u) + c ∗ m•ε (u) ∼ ωc(u) + m̂•ε (0)c(u),

�����
ωc(u) + c ∗ m•ε (u)
ωc(u) + m̂•ε (0)c(u)

− 1
�����
=

�������

c∗m•ε (u)
c(u)m̂•ε (0) − 1
ωc (u)

c(u)m̂•ε (0) + 1

�������
≤

�����
c ∗ m•ε (u)
c(u)m̂•ε (0)

− 1
�����
→ 0 as u → ∞.

The inequality follows because the denominator of the second step is greater than 1 for all

large u by virtue of c(u), ωc(u) ∈ L d (0) being eventually positive. The zero limit of course

follows from c ∗ m•ε (u) ∼ c(u)m̂•ε (0).

Now we let δ = 0: we have

md,ε (u) = m•ε (u) +
ελ

1 − ψ•ε (0)

∫ u

0−

(
Ω̄c + C̄ ∗ m•ε

)
(u − x) dM•ε (x). (2.17)

For, setting δ = 0 also produces ρ•ε = 0. Then, taking the Laplace transform of md,ε (u),

m̂d,ε (s) = m̂•ε (s) + ελ
1−ψ•ε (0) Ts T0

(
ωc + c ∗ m•ε − m•ε

)
(0)M̃•ε (s); noting that ĉ(0)m̂•ε (0) −

m̂•ε (0) = 0 and 1−ĉ(s)
s = ˆ̄C(s), (2.17) follows. Analogously to the δ > 0 cases, C̄ ∗ m•ε (u) ∈

S d (0). That is, if y ∈ R, then C̄ ∗ m•ε
(
u − y

)
∼ C̄

(
u − y

)
m̂•ε (0) ∼ C̄(u)m̂•ε (0) ∼

C̄ ∗ m•ε (u). Suppose α > 0: by (Tang and Wei, 2010, Lemma 4.1 (2)), Ω̄c(u) = O
(
e−α̃u

)
,

∀α̃ ∈ (0, α). Let η ∈ (0, α); choose u0 and k1 such that u > u0 impliesωc(u) ≤ k1e−(α−η)u.

Then, for u > u0,

Ω̄c(u) =
∫ ∞

u
ωc

(
y
)

dy ≤
∫ ∞

u
k1e−(α−η)y dy =

k1
α − η

e−(α−η)u.

Now set α̃ = α − η. Let γ > 0 be the largest number for which −M̄•(1)
ε (u) = O

(
e−γu);

choosing α̃ ∈
(
0, α ∧ γ

)
we similarly have

∫ u
0− Ω̄c(u − x) dM•ε (x) = O

(
e−α̃u

)
. Choose

k0, u0 > 0 such that u > u0 implies Ω̄c(u) ≤ k0e−α̃u, and k1, u1 > 0 such that u > u1 implies

m•ε (u) := −M̄•(1)
ε (u) ≤ k1e−γu. Then for u > 2(u0 ∨ u1),

∫ u

0−
Ω̄c(u − x) dM•ε (x) = M•ε (0)Ω̄c(u) +

∫ u

0
Ω̄c(u − x)m•ε (x) dx
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= M•ε (0)Ω̄c(u) +
(∫ u−(u0∨u1)

0
+

∫ u

u−(u0∨u1)

)
Ω̄c(u − x)m•ε (x) dx

≤ k2e−α̃u +

∫ u−(u0∨u1)

0
k0e−α̃(u−x)

m
•
ε (x) dx +

∫ u

u−(u0∨u1)
k1e−γx

Ω̄c(u − x) dx

= k2e−α̃u + k0e−α̃u
∫ u−(u0∨u1)

0
eα̃x

m
•
ε (x) dx + k1

∫ (u0∨u1)

0
e−γ(u−v)

Ω̄c(v) dv

≤
(
k2 + k0m̂

•
ε (−α̃)

)
e−α̃u + k1e−γu

∫ u0∨u1

0
eγvΩ̄c(v) dv ≤ k3e−α̃u. (2.18)

In the second term of the third line, x ∈ (0, u − (u0 ∨ u1)) means u − x ∈ (u0 ∨ u1, u),

and in the third term, x > u − (u0 ∨ u1) > u0 ∨ u1. So md,ε (u) ∼ ελ
1−ψ•ε (0) C̄ ∗ m•ε (u);

Proposition 2 follows for δ = 0, α > 0 by (Tang and Wei, 2010, Lemma 4.3 (1)) and the

relation m̂(0)פ = λ
1−ψ(0)פ

ˆ̄Ω(0)פ. That is,

md,ε (u) ∼
ελ

1 − ψ•ε (0)

∫ u

0−
C̄ ∗ m•ε (u − x) dM•ε (x) ∼

ελ

1 − ψ•ε (0)
C̄ ∗ m•ε (u)

∼
ελ

1 − ψ•ε (0)
m̂•ε (0)C̄(u) =

ελ2(
1 − ψ•ε (0)

)2
ˆ̄Ω•ε (0)C̄(u).

Now suppose α = 0: by assuming ωc(u) globally integrable, Ω̄c(u) is locally

integrable (see the proof of (Tang and Wei, 2010, Lemma 5.2)), and we assumed Ω̄c(u) ∈

L d (0). Then md,ε (u) ∼ ελ
1−ψ•ε (0)

(
Ω̄c + C̄ ∗ m•ε

)
(u); whether Ω̄c(u) = O

(
C̄(u)

)
or C̄(u) =

O
(
Ω̄c(u)

)
, onemay show by (Tang andWei, 2010, Lemma 4.3 (1)) that Ω̄c(u)+C̄ ∗ m•ε (u) ∼

Ω̄c(u) + C̄(u)m̂•ε (0), and Proposition 2 follows for δ = 0, α = 0. For the assertion that

Ω̄c(u) + C̄ ∗ m•ε (u) ∼ Ω̄c(u) + m̂•ε (0)C̄(u),

�����
Ω̄c(u) + C̄ ∗ m•ε (u)
Ω̄c(u) + m̂•ε (0)C̄(u)

− 1
�����
=

��������

C̄∗m•ε (u)
C̄(u)m̂•ε (0) − 1
Ω̄c (u)

C̄(u)m̂•ε (0) + 1

��������
≤

�����
C̄ ∗ m•ε (u)
C̄(u)m̂•ε (0)

− 1
�����
→ 0 as u → ∞.
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The inequality follows because the denominator of the second step is greater than 1 for

all large u by virtue of C̄(u), Ω̄c(u) ∈ L d (0) being eventually positive. The zero limit of

course follows from C̄ ∗ m•ε (u) ∼ C̄(u)m̂•ε (0). And finally,

md,ε (u) ∼
ελ

1 − ψ•ε (0)

∫ u

0

(
Ω̄c + C̄ ∗ m•ε

)
(u − x) dM•ε (x) ∼

ελ

1 − ψ•ε (0)

(
Ω̄c + C̄ ∗ m•ε

)
(u)

∼
ελ

1 − ψ•ε (0)

(
Ω̄c(u) + C̄(u)m̂•ε (0)

)
=

ελ

1 − ψ•ε (0)
Ω̄c(u) +

ελ2(
1 − ψ•ε (0)

)2
ˆ̄Ω•ε (0)C̄(u).

Proposition 3. Let Assumption 1 hold; then

mr,ε (u) ∼




ελ2

δ2 ρ0
ˆ̄Ω0

(
ρ0

)
c(u) if δ > 0, α > 0

ελ2

δ2 ρ0
ˆ̄Ω0

(
ρ0

)
c(u) +

ελ

δ
ωc(u) if δ > 0, α = 0

ελ2(
1 − ψ0(0)

)2
ˆ̄Ω0(0)C̄(u) if δ = 0, α > 0

ελ2(
1 − ψ0(0)

)2
ˆ̄Ω0(0)C̄(u) +

ελ

1 − ψ0(0)
Ω̄c(u) if δ = 0, α = 0

holds.

Establishing Proposition 3 is mostly analogous to establishing Proposition 2, so we

omit the details. We simply point out that λ
1−φ0(0)

∫ u
0− Tρ0 ωb(u − x) dG0(x) is precisely

m0(u), and showing that (b ∗ m0)(u) = O
(
e−R0u

)
works similarly to (2.16) and (2.18).

Also, when δ = 0, we find that mr,ε (u) becomes

mr,ε (u) = m0(u) +
ελ

1 − ψ0(0)

∫ u

0−

(
Ω̄c + C̄ ∗ m0 − Ω̄b − B̄ ∗ m0

)
(u − x) dM0(x).

2.5.2. The Contribution of the Correction Terms. Another important aspect of

determining the helpfulness of the generalized correction terms is the approximation errors

with and without those terms. Due to Lemma 3, finding bounds on the errors of mi
d,ε (u)
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and mi
r,ε (u) appears not straightforward. However, the vantage point of (Vatamidou et al.,

2014a, Proposition 3.8) does apply, with the same interpretation. Those authors did not

explicitly formulate how to use that approach for the corrected discard approximation, in

which the correction term depends on ε ; we now illustrate this.

Recall that mε,i (u) is the exact value of the Gerber-Shiu function, while m•ε,i (u) and

m0,i (u) are respectively the discard and replace phase-type approximations thereof. We

have:

lim
ε→0

1
ε

(
mε,i (u) − m•ε,i (u)

)
=

1
1 − δυ0

∫ u

0−
Tr0 Tρ0 i,0ק (u − x) dG0(x). (2.19)

Similar to the derivation of Theorem 1 (i) and Theorem 1 (ii), we may show that m̂•ε,i (s) =

m̂0,i (s) − ε
1−δυ0

Ts Tr0 Tρ0 i,0ב (0)G̃0(s) +O
(
ε2

)
. Subtracting this expansion of m̂•ε,i (s) from

the “replace” expansion of m̂ε,i (s), we get m̂ε,i (s) = m̂•ε,i (s)+ ε
1−δυ0

Ts Tr0 Tρ0 i,0ק (0)G̃0(s)+

O
(
ε2

)
. Fromhere, establishing (2.19)works just like themethod used in proving the existing

Proposition 3.8 of Vatamidou et al. (2014a).

Notice that the right-hand side of (2.19) is simply the correction term of mi
d,ε (u)

with ε := 0. That is, as the perturbation parameter ε tends to 0, for a given value of initial

capital u, the error of the discard approximation m•ε,i (u) converges to the correction term in

mi
d,ε (u) with ε := 0. The obvious equivalent of (2.19) holds in the case of the corrected

replace approximation mi
r,ε (u); then, however, one does not need intermediate perturbation

expansions such as m̂•ε,i (s) in terms of m̂0,i (s).

2.6. NUMERICAL ILLUSTRATIONS

We give a numerical illustration of the effectiveness of corrected phase-type ap-

proximations of Gerber-Shiu functions in the Li-Sendova risk model. Like Vatamidou

et al. (2013) we use a specific claims distribution for which the exact values of Gerber-Shiu

functions may be found (we employ multiprecision numerical Laplace transform inversion
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algorithms given in Abate and Valkó (2004); Trefethen et al. (2006)), and we retain ηb =
1
3

and ηc =
1
2 such that ηb < ηc. Unlike Vatamidou et al. (2013), here we choose the heavy-

tailed component to be the more commonly used (and less heavy-tailed) Weibull with shape

parameter α = 1
2 ; see equation 29.3.118 of Abramowitz and Stegun (1965) for the Laplace

transform of this distribution. Since the insured class i = 1 is selected when a claim is

larger than the random threshold, we can consider class 1 “high-risk” and class 2 “low-risk”;

therefore we set c1
λ1

> c2
λ2
; specifically we set c1 = 8, λ1 = 6, c2 = 4.5, λ2 = 4. We set

the threshold H (u) to be exponential with rate ν = 0.5, which gives
∫ ∞

0 u dH (u) > ηc.

In the exponential/Weibull mixture, we set ε = 0.001 to explore a “worst-case” scenario

similar to that in Vatamidou et al. (2013). We seek our demonstration to go beyond the (non

time-discounted) ultimate ruin probability, so we choose a penalty mentioned in Gerber and

Shiu (1998), namely w
(
·, y

)
= 1−e−ρפy

δ with δ = 50; this penalty choice is interesting by

including a claims law-dependent parameter.

Table 2.1. “Annuity” penalty, initial class i = 1

u mε,1(u) m•ε,1(u) m0,1(u) m1
d,ε (u) m1

r,ε (u)

0 1.068774e−3 1.067958e−3 1.068981e−3 1.068775e−3 1.068774e−3
2 4.049021e−6 3.929837e−6 3.935074e−6 4.049019e−6 4.049022e−6
4 5.308547e−8 1.485092e−8 1.487655e−8 5.308383e−8 5.308518e−8
6 1.588628e−8 5.646873e−11 5.658844e−11 1.588554e−8 1.588599e−8
8 7.500555e−9 2.150154e−13 2.155560e−13 7.500197e−9 7.500384e−9

10 3.876637e−9 8.189702e−16 8.213521e−16 3.876455e−9 3.876543e−9

Table 2.2. “Annuity” penalty, initial class i = 2

u mε,2(u) m•ε,2(u) m0,2(u) m2
d,ε (u) m2

r,ε (u)

0 8.392050e−4 8.385886e−4 8.393871e−4 8.392053e−4 8.392049e−4
2 3.168762e−6 3.083271e−6 3.087359e−6 3.168761e−6 3.168763e−6
4 3.881568e−8 1.164948e−8 1.166950e−8 3.881452e−8 3.881548e−8
6 1.123994e−8 4.429368e−11 4.438728e−11 1.123941e−8 1.123973e−8
8 5.289782e−9 1.686549e−13 1.690778e−13 5.289529e−9 5.289662e−9

10 2.728609e−9 6.423867e−16 6.442507e−16 2.728481e−9 2.728542e−9
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In discussing their numerical studies, Vatamidou et al. (2013) observed that the

correction terms greatly improved the accuracy of ψ•ε (u) and ψ0(u) even when ε � 1. As

C in their test distribution only had the first-order moment finite, one might wonder how

the correction terms fare for lighter-tailed subexponential distributions such as Weibull.

In Tables 2.1 and 2.2, the phase-type approximations of mε,i (u) initially estimate these

well, like through u ≤ 2; quickly, however, they decay to give relative errors close to 1,

by about u = 6. On the other hand, the decay of mi
d,ε (u) and mi

r,ε (u) clearly follows that

of mε,i (u) more closely; specifically, for i = 1, the maximal absolute relative errors for

the given values are 4.773e − 5 and 2.438e − 5, respectively. We see, therefore, that for

such a choice of C, mi
d,ε (u) and mi

r,ε (u) continue to approximate mε,i (u) well for small ε .

Furthermore, whereas Vatamidou et al. (2013) set δυε = 0.5, in our example with δ = 50,

δυε ≈ 0.0637 < 0.5. In the setup of Propositions 1, 2, and 3, it follows that ωc(u) ∈ L d (0)

and c(u) = o(ωc(u)). (In this ωc(u), the Lundberg root is ρ•ε , that of the “discard” base

model). With our numerical illustration, we thus show that the comments of Vatamidou

et al. (2013) about the advantage of adding the correction terms in a “worst-case scenario”

can still apply after introducing considerable time discounting, selecting a much lighter

heavy-tailed component, allowing for two classes of insureds, and modeling a quantity

dependent upon the claims law.

Beyond the previous example, our code implements two phase-type distributions and

two heavy-tailed distributions, allowing thus four choices of the mixture-model distribution.

The phase-type distributions we implement are the exponential and Erlang-2, respectively

with LSTs B̃(s) =
1
ηb

1
ηb
+s

and B̃(s) =
( 2

ηb
2
ηb
+s

)2
. On the other hand, for the heavy-tailed

distributions, we implement theAbate-Whitt distributionwith LST C̃(s) = 1− s(
1
ηc
+
√

s
)
(1+
√

s)
(see Abate and Whitt (1999)), and the Weibull with shape parameter 1

2 , which has LST

C̃(s) =
√

π
2ηc s erfcx

(
1√

2ηc s

)
(see Eqn (29.3.118) of Abramowitz and Stegun (1965)). In all



46

of these LSTs, we parametrized them to make the mean be the parameter. As in our specific

example above, we set ηb =
1
3 and ηc =

1
2 to correspond to the values chosen by Vatamidou

et al. (2013).

The four penalties we implement are respectively w(·, ·) = 1, w(x, ·) = e−σx ,

w
(
·, y

)
= e−τy, and the aforementioned w

(
·, y

)
= 1−e−ρפy

δ . Our reason for using multipreci-

sion Laplace transform inversion is to allow our code to handle multiple penalty functions

(one may find the unit Gerber-Shiu function explicitly for the exponential/Abate-Whitt mix-

ture as a generalization of (Vatamidou et al., 2013, Theorem 9); we have omitted such

details). As we have given an example of results from the fourth penalty (the “annuity”:

see Gerber and Shiu (1998)), and the unit penalty is a special case of the Laplace trans-

forms of the surplus before and the deficit at ruin, in the following we shall give examples

from these latter two LT penalties. In addition, we have found the qualitative conclusions

about the tail relative error of the phase-type approximations in Tables 2.1 and 2.2 to hold

quite broadly across choices of penalty and model parameters; we recall also the findings

in Vatamidou et al. (2014b) about the special case of GSFs considered in Vatamidou et al.

(2013). In the asymptote (of initial capital u becoming large), we found mi
d,ε (u) had the

same relative error for both initial classes of insured i ∈ {1, 2}, and likewise for mi
r,ε (u).

Again, our Propositions 1, 2, and 3 establish that adding the correction term to m•ε (u) and

m0(u) captures the heavy-tailed behavior of mε (u) (with the nuances of allowing general

w(·, ·)) in the compound Poisson risk model. So we will focus more on comparing md,ε (u)

and mr,ε (u) to the asymptotic result given by our Proposition 1, specifically in terms of the

relative errors for small initial capital u (in the compound Poisson risk model, of course).

However, we will first finish summarizing our general numerical observations. For

the compound Poisson risk model specifically, we observed that md,ε (u) would initially

overestimate mε (u) when δ > 0, but underestimate mε (u) for all u when δ = 0. This

is in contradistinction to Vatamidou et al. (2013), who merely stated that the corrected

discard approximation underestimated the true value for all u ≥ 0. More like Vatamidou
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et al. (2013), we found that mr,ε (u) generally gave better numerical estimates of mε (u) than

md,ε (u), by which we mean smaller maximum error (in absolute value) and lesser relative

error in the tail. When δ = 0, we have found that md,ε (u) and mr,ε (u) do not always reach

a maximum value (seemingly for larger values of ε and the safety loading θ, when C(x) is

Abate-Whitt); this type of potential limit to the utility of CPTAwas present even in the extant

cases of ψd,ε (u) and ψr,ε (u). On the other hand, when we relax the compound Poisson risk

model to the Li-Sendova risk model, evidently much more can happen. Namely, we found

that mi
d,ε (u) could overestimate mε,i (u) for small u even with δ = 0, or for all large u under

some parameter combinations.

For illustrative examples of comparing the performance of CPTA against asymptotic

approximations, we choose the penalties w(x, ·) = e−50x , and w
(
·, y

)
= e−50y. We set the

discount rate δ = 1.5 and the safety loading θ = 0.15. We do so with perturbation parameter

choices ε = 0.1 and ε = 0.001. We use a mixture of Erlang-2 and Abate-Whitt; Tables 2.3-

2.6 show the relative errors of md,ε (u), mr,ε (u), and the Proposition 1 for some small u. We

point out here that for these values the asymptotic results perform considerably worse than

the CPTA, but better for ε = 0.1 than for ε = 0.001.
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Table 2.3. w(x, ·) = e−50x , ε = 0.001

u md,ε (u) mr,ε (u) masy(u)

0.2 9.9077e−8 1.1796e−7 9.9805e−1
0.4 1.3389e−7 2.9383e−7 9.9892e−1
0.6 2.0918e−7 5.1306e−7 9.9911e−1
0.8 3.1932e−7 7.6210e−7 9.9914e−1
1 4.7262e−7 1.0180e−6 9.9909e−1

1.2 6.8244e−7 1.2556e−6 9.9898e−1
1.4 9.6717e−7 1.4464e−6 9.9881e−1
1.6 1.3517e−6 1.5561e−6 9.9857e−1
1.8 1.8695e−6 1.5423e−6 9.9824e−1
2 2.5660e−6 1.3516e−6 9.9780e−1

2.2 3.5025e−6 9.1627e−7 9.9719e−1
2.4 4.7625e−6 1.4926e−7 9.9638e−1
2.6 6.4592e−6 −1.0623e−6 9.9528e−1
2.8 8.7472e−6 −2.8656e−6 9.9378e−1
3 1.1837e−5 −5.4533e−6 9.9174e−1

Table 2.4. w(x, ·) = e−50x , ε = 0.1

u md,ε (u) mr,ε (u) masy(u)

0.2 1.3289e−3 1.5472e−3 8.0616e−1
0.4 1.7787e−3 3.6039e−3 8.8900e−1
0.6 2.7145e−3 6.1578e−3 9.0579e−1
0.8 4.0625e−3 9.0255e−3 9.0620e−1
1 5.8986e−3 1.1875e−2 8.9848e−1

1.2 8.3369e−3 1.4323e−2 8.8450e−1
1.4 1.1511e−2 1.5933e−2 8.6443e−1
1.6 1.5561e−2 1.6226e−2 8.3780e−1
1.8 2.0610e−2 1.4717e−2 8.0397e−1
2 2.6737e−2 1.0980e−2 7.6248e−1

2.2 3.3936e−2 4.7384e−3 7.1330e−1
2.4 4.2080e−2 −4.0236e−3 6.5716e−1
2.6 5.0905e−2 −1.4990e−2 5.9568e−1
2.8 6.0028e−2 −2.7505e−2 5.3131e−1
3 6.9002e−2 −4.0675e−2 4.6698e−1
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Table 2.5. w
(
·, y

)
= e−50y, ε = 0.001

u md,ε (u) mr,ε (u) masy(u)

0.2 −3.5039e−8 −9.0050e−8 9.9807e−1
0.4 −4.1447e−8 1.7812e−8 9.9888e−1
0.6 −4.4369e−8 1.8125e−7 9.9906e−1
0.8 −3.7896e−8 3.8235e−7 9.9908e−1
1 −1.5953e−8 6.0340e−7 9.9903e−1

1.2 2.9202e−8 8.2484e−7 9.9891e−1
1.4 1.0781e−7 1.0240e−6 9.9872e−1
1.6 2.3357e−7 1.1740e−6 9.9847e−1
1.8 4.2493e−7 1.2423e−6 9.9811e−1
2 7.0680e−7 1.1889e−6 9.9763e−1

2.2 1.1129e−6 9.6409e−7 9.9698e−1
2.4 1.6890e−6 5.0533e−7 9.9610e−1
2.6 2.4975e−6 −2.6655e−7 9.9491e−1
2.8 3.6229e−6 −1.4526e−6 9.9329e−1
3 5.1805e−6 −3.1823e−6 9.9109e−1

Table 2.6. w
(
·, y

)
= e−50y, ε = 0.1

u md,ε (u) mr,ε (u) masy(u)

0.2 −3.3945e−4 −8.3636e−4 8.0730e−1
0.4 −3.5400e−4 4.0504e−4 8.8400e−1
0.6 −3.0661e−4 2.2732e−3 8.9997e−1
0.8 −1.2633e−4 4.5457e−3 8.9978e−1
1 2.5634e−4 6.9749e−3 8.9124e−1

1.2 9.2211e−4 9.2669e−3 8.7616e−1
1.4 1.9632e−3 1.1080e−2 8.5466e−1
1.6 3.4784e−3 1.2036e−2 8.2629e−1
1.8 5.5622e−3 1.1751e−2 7.9047e−1
2 8.2861e−3 9.8891e−3 7.4680e−1

2.2 1.1675e−2 6.2365e−3 6.9543e−1
2.4 1.5684e−2 7.7836e−4 6.3730e−1
2.6 2.0182e−2 −6.2470e−3 5.7425e−1
2.8 2.4964e−2 −1.4353e−2 5.0890e−1
3 2.9779e−2 −2.2883e−2 4.4428e−1
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2.7. AN APPLICATION

To illustrate how onemight use corrected phase-type approximations of Gerber-Shiu

functions, we approximate E(T ε I(T ε < ∞) | Uε (0) = u) in the compound Poisson risk

model; the basic inspiration comes from Section 8.6.5 of Dickson (2017). To begin, denote

H [n]
פ (u) = ∂n

∂δn φפ(u) |δ=0, and ϕפ(u) = −H [1]
פ (u) = E(Tפ I(Tפ < ∞) | U(0)פ = u). Now, one

may show that φ̂d,ε (s) = φ̂•ε (s) + εληc (s−ρ•ε )
l•ε (s) Ts Tρ•ε (ce ∗ G•ε )(0), where ce(u) = 1

ηc
C̄(u).

Rearranging this form of φ̂d,ε (s) gives l•ε (s)φ̂d,ε (s) = l•ε (s)φ̂•ε (s) + εληc(ĉe (ρ•ε )G̃•ε
(
ρ•ε

)
−

ĉe(s)G̃•ε (s)). Note that l•ε (s) = δ− (s− λ+ λ P̃•ε (s)) = δ− s(1− λη•ε P̃•eε (s)) = δ− s 1−ψ•ε (0)
M̃•ε (s)

.

Then we have

δ
(
φ̂d,ε (s) − φ̂•ε (s)

)
= s

1 − ψ•ε (0)
M̃•ε (s)

(
φ̂d,ε (s) − φ̂•ε (s)

)
(2.20)

+εληc
(
ĉe (ρ•ε )G̃•ε

(
ρ•ε

)
− ĉe(s)G̃•ε (s)

)
.

Now, it holds that G̃פ(s) = 1 − sφ̂פ(s); we differentiate (2.20) with respect to δ, and set

δ = 0, which results in

Ĥ [0]
d,ε (s) − Ĥ•[0]

ε (s) = s
1 − ψ•ε (0)

M̃•ε (s)

(
Ĥ [1]

d,ε (s) − Ĥ•[1]
ε (s)

)
(2.21)

+εληc

(
∂

∂δ
ĉe (ρ•ε )G̃•ε

(
ρ•ε

)
|δ=0 + sĉe(s)Ĥ•[1]

ε (s)
)
.

By setting s = 0, we see that εληc
∂
∂δ ĉe (ρ•ε )G̃•ε

(
ρ•ε

)
|δ=0 = Ĥ [0]

d,ε (0) − Ĥ•[0]
ε (0). There-

fore, (2.21) becomes

1
s

(
Ĥ [0]

d,ε (s) − Ĥ [0]
d,ε (0) −

(
Ĥ•[0]
ε (s) − Ĥ•[0]

ε (0)
))

(2.22)

=
1 − ψ•ε (0)

M̃•ε (s)

(
Ĥ [1]

d,ε (s) − Ĥ•[1]
ε (s)

)
+ εληc ĉe(s)Ĥ•[1]

ε (s).
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The left-hand side of (2.22) may be expressed as Ts T0
(
H•[0]
ε − H [0]

d,ε

)
(0), where H•[0]

ε (u) −

H [0]
d,ε (u) = − εληc

1−ψ•ε (0)
(
Pr(M•ε,0 + M•ε,1 + Ce > u) − Pr(M•ε,0 > u)

)
(see also Definition

1 of Vatamidou et al. (2013)). Let Ξc
(u)פ = ληc

(1−ψ(0)פ)2

∫ u
0− T0(Pr(M0,פ + M1,פ + Ce >

u − x) − Pr(M0,פ > u − x)) d Pr(M2,פ ≤ x) − ληc
1−ψ(0)פ

∫ u
0− ϕפ(u − x) d Pr(M0,פ + Ce ≤ x),

and let Ξb
(u)פ be the equivalent with B instead of C; in both, Mפ,i (x) are iid with tail

φפ(x). Rearranging (2.22) and inverting the Laplace transforms gives the corrected discard

approximation ϕd,ε (u) = ϕ•ε (u) + εΞ•cε (u). Likewise, we also have the corrected replace

approximation ϕr,ε (u) = ϕ0(u) + ε (Ξc
0(u) − Ξb

0(u)).

2.8. CONCLUDING DISCUSSION

We have demonstrated how to generalize the method of Vatamidou et al. (2013)

to Gerber-Shiu functions; this works not only in the classical risk model, but also in the

dependent generalization thereof considered by Li and Sendova (2015). We expect our

generalization of the extant technique to apply in other dependency structures as well;

possible future work could involve working out our results in the general semi-Markov

framework considered by Albrecher and Boxma (2005). Corrected phase-type approxi-

mations of Gerber-Shiu functions continue to have the proper heavy-tailed behavior like

in the particular case Vatamidou et al. (2013) considered. The correction terms possess

an intuitive, precisely quantifiable interpretation of their improvement upon the error of

phase-type approximations. In the future, we might extend Propositions 1, 2, and 3 to the

Li-Sendova risk model. We could also look more closely at choices of the threshold distri-

bution H
(
y
)
and the resulting impact on mi

d,ε (u) and mi
r,ε (u). Lastly, it could be interesting

to add additional classes of insureds.
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3. RESERVING FOR INCURRED CLAIMS: RECURSIONS UNDER A MARKOV
RENEWALMODEL AND NON-CONSTANT DISCOUNT RATE

3.1. OVERVIEW OF SECTION

We model the finite-time moments of IBNR and IR claims, extending a recently

proposed model. Our proposed extensions are to allow the time between claim-causing

events to depend on the severity of the previous event, and to allow the discount rate to

vary continuously with time. In the former, we adapt a dependency structure from the risk-

theory literature which involved comparing claim sizes to a random threshold, now instead

comparing the number of claims caused by an event to any number of random intervals.

In the latter, we demonstrate the use of an unspecified, deterministic non-constant discount

rate within our proposed dependency structure. We give the special cases where either

one of our extensions are omitted, and we discuss some particular examples of the latter

extension regarding discount rates.

3.2. GENERAL DISCUSSION

Whereas in Section 2 we considered problems involving startup capital of an insurer

on an infinite time horizon, nowwe turn to finite time horizons and examine certain problems

pertaining to the day-to-day reserves an insurer needs to stay solvent. In real life, events

which cause claims may trigger more than one claim in a single event, like in a pandemic

or an earthquake. Whether or not these claims have been reported to the insurer at the

time of the incident’s occurrence, the insurer must pay every single claim meeting the

policy’s criteria. A health epidemic could easily leave numerous policyholders hospitalized

or quarantined for some time, and a major-enough earthquake could displace thousands,

if not millions, of people, especially in densely populated regions. A policyholder with a
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severe illness might be unable to report their expenses quickly, whether related to worker’s

compensation, the bill for a hospital stay, or otherwise. After an earthquake, homeowners

or automobile owners might not return home immediately, and hence be unaware of how

much damage their properties sustained, whether from the seismic activity or after-effects

like tsunamis or simply people looting. The point of these examples is that catastrophes can

cause many IBNR claims, conceivably in a manner proportional to the event’s severity.

Like our previous work on Gerber-Shiu functions, we model individual claims,

rather than in the aggregate. There is good reason for this; as we mentioned before, claims

may neither come to the insurer’s attention immediately upon being incurred, nor be settled

(paid) by the insurer immediately upon being reported. Nevertheless, traditionally insurers

modeled reserves in the aggregate; for a survey of classical methods (such as the chain

ladder) based on “run-off triangles” used by practicing actuaries to determine the reserves

needed for making all loss payments, one may consult Schmidt and Zocher (2008). In

fact, per Bornhuetter and Ferguson (1972), for much of the 20th century, the actuarial

literature mostly overlooked the situation of IBNR claims; they responded sharply and with

an “alarm-sounding.” In the early 1990s, Gile (1994) proposed for practicing actuaries a

particular stochastic model for IBNR, allowing some dependency between loss severity and

the reporting lag. However, that paper aggregated claims per reporting period and the like,

thus ignoring the severity of individual claims, the so-called “micro-level.” Additionally,

only the mean and variance of IBNR liabilities were considered, rather than the overall

distribution.

On the front of compound random sums, Léveillé and Garrido (2001a,b) found the

moments of what they called a “compound renewal present value process.” They did so for

an ordinary renewal process, a delayed renewal process, and a stationary renewal process, in

all cases with a constant discount rate. Meanwhile, Léveillé and Adékambi (2011) modeled

much the same, but with a stochastic discount rate. Besides continuing to neglect reporting

lags and multiple claims from single events, they only considered up to second moments.
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The paper byLandriault et al. (2017) considered a compound renewal claims process,

with time value of money at a constant discount rate, reporting lags, batches of claims per

event; and dependencies among the claim time, reporting lag, and claim severity for a

given claim from a given event. They primarily investigated the discounted IBNR claim

amounts under such a setup, also incorporating discounted incurred and reported (IR) claim

amounts; later they specialized these results to examine the number of IBNR claims. Their

basic methodology was deriving expressions for the Laplace transforms of these quantities,

differentiating to get a renewal equation of the recursivemoments, then solving that equation.

In this section, we build upon their main results in two directions; since the IBNR

claim count is just a special case of the quantities Landriault et al. (2017) considered,

we focus on extending their Theorems 1 and 3. We relax their assumption that the batch

sizes of claims are all independent of each other and the time to the next event; consider

the 2017 US hurricane season, in particular Harvey and Irma, as a real-world suggestion

that such an assumption may prove faulty. So, we propose allowing the time to the next

event to depend on the number of claims produced by the current event. In a ruin-theoretic

context, Albrecher and Boxma (2004) and Li and Sendova (2015) compared each individual

claim (without batches of claims) to a random threshold and then adjusted the claim arrival

rate accordingly; they only modeled two such classes, albeit Li and Sendova (2015) hinting

at the possibility ofmore classes. Previously, we showed how to approximate such quantities

under one type of catastrophic assumption, by a generalization of Vatamidou et al. (2013);

here we apply a similar sort of dependency to a different type of catastrophic assumption,

namely claim numbers, and we demonstrate one way to have more than two categories, such

that the random threshold becomes random intervals.

The other direction we take things is to let the discount rate vary with time in a

deterministic manner. In settings other than what we consider here, a few papers have

examined stochastic discount rates. The first in the context of Gerber-Shiu functions was

apparentlyWang and Ling (2017), which only considered the compound Poisson risk model
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with light-tailed claims. In a discrete risk model, Deng et al. (2017) studied Gerber-Shiu

functions with random discounts as well. An earlier study of stochastic discount rates

in compound renewal sums for first and second moments was conducted in Léveillé and

Adékambi (2011), and more recently in Rabehasaina and Woo (2016). For our Markovian

generalization of Landriault et al. (2017), we showhow the formulasworkwith deterministic

general real D(x), which includes of course D(x) = δx. Kennedy (1992) contains a

discussion of the benefits of modeling the discount rate as a deterministic function of time,

even if a stochastic discount rate could be still more realistic. In the context of time-varying

discount rates, we choose some particular cases of δ(u), and in an example considered

by Landriault et al. (2017) we numerically contrast the effects of these cases with the

existing choice of δ(·) ≡ δ.

We organize the rest of the section as follows: in Section 3.3, we articulate the

model under consideration and the associated notation. In Section 3.4, we give a recursive

relation for the finite-time IBNR moments under our proposed generalization of the model

of Landriault et al. (2017). We likewise give a recursive relation for the finite-time IBNR and

IR joint moments in Section 3.5. We provide some numerical illustrations of time-varying

discount rates in Section 3.6, and we close the section in Section 3.7.

3.3. NOTATION AND MODEL

We use the model of Landriault et al. (2017), mostly following their notation. We

also extend their model, one main way being that we let τ1 ∼ F l (t), for l ∈ I, where

I = {1, 2, . . . ,m}. These τk represent the interevent times, for k ≥ 2; τ1 is the time

until the first claim-causing event. Also, we assume τ0 = 0 almost surely (a.s.). For each

l ∈ I, we assume F l (0) = 0, meaning no atom at 0; this makes intuitive sense because

we allow claims to occur in batches, much like Landriault et al. (2017). The number of

claims random variables Ct
iid
∼ Pr(C = c) with “generic rv” C. That is, if an event at time t

causes claims, Ct is the number of such claims associated with that event. Unlike Landriault
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et al. (2017), at event time T k =
∑k

j=1 τ j, k ∈ {1, 2, 3, . . . }, we compare CTk
to m random

intervals (over N). To this end, let Ql,k
iid
∼ Rl

(
q
)
, with

{
Ql,k

}m−1
l=1 independent of each other

and of all other random variables in the model. Then we say τk+1 | CTk
∈ I l ∼ F l (t), in

which I 1 =
(
Q1,k,∞

)
, I l =

(
Ql,k,Ql−1,k

]
, l = 2, . . . ,m − 1, and I m =

(
0,Qm−1,k

]
. The

intuition for excluding Q = 0 is that T k are claim-causing event times, i.e. which produce

one or more claims. Note that the functions Rl
(
q
)
need to be stochastically increasing

for well-definedness of Pr(C ∈ I l ). Now, as a discrete analog to the functions introduced

by Albrecher and Boxma (2004), we set χl (z) = E
(
zC I(C ∈ I l )

)
, so that

χl (z) =
∞∑

c=1
zc(Rl (c − 1) − Rl−1(c − 1)) Pr(C = c),

where R0(·) ≡ 0, and Rm (·) ≡ 1. Our idea is that, viewing the number of claims caused by

a particular event as a “metric” of the severity of that event, after such an event an insurer

might wish to reevaluate the assumed distribution of the time until the next claim-causing

event. Then we can interpret l ∈ I as a level of event severity in terms of how many claims

resulted.

Now we recall quantities from Landriault et al. (2017) which we use without gener-

alizing much further. A policyholder might not immediately file a claim over a loss incurred

from an incident, which leads to the notion of a “reporting lag.” If k is the number of the

event, and i is the number of the claim resulting from said event, then we denote the corre-

sponding reporting lag by W i,k
iid
∼ K (·); furthermore, l (·) is some nonnegative function of

this lag. With the same meaning for the indices i and k, X i,k is the (non-negative) deflated

claim severity (valued at the time of the event k). We assume X i,k
iid
∼ P(·). If (·)א is a df,

then we write the Laplace-Stieltjes transform as (s)א̃ =
∫ ∞

0− e−sxא(dx). For example, the

LST corresponding to X i,k is P̃(s). In a slight extension of the notation of Landriault et al.

(2017), we say the random vectors
(
τk,W i,k, X i,k

)
jointly follow J l (·, ·, ·) in k ∈ N+; given

τk , we assume independence of X i,m and W j,n whenever either i , j or m , n. In other
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words, denoting W i,k |τk ∼ KW |τ (w |t) and X i,k |
(
τk,W i,k

)
∼ PX |τ,W (x |t,w) like Landriault

et al. (2017), our extended form of their Eqn (2.1) is

J l (t,w, x) = F l (t)KW |τ (w |t)PX |τ,W (x |t,w).

Some functions will appear later in much the same way they do in Landriault et al. (2017):

with µn(t,w) = E
(
X n

i,k |τk = t,W i,k = w
)
, for n ∈ N,

ξi (x, t) =
∫ ∞

t−x
l (w)iµi (x,w)KW |τ (dw |x), 0 ≤ x ≤ t, (3.1)

ηi (x, t) =
∫ t−x

0
l (w)iµi (x,w)KW |τ (dw |x), 0 ≤ x ≤ t. (3.2)

Now we elaborate on the Markovian nature of our generalization of the model

of Landriault et al. (2017), one reference on Markov renewal theory being Janssen and

Manca (2006). We can formulate the τk setup as a semi-Markov chain; define the bivariate

process {(Jn, τn), n ≥ 0}, where τn | Jn−1 = l ∼ F l (t), for l ∈ I and n > 0. For n ≥ 0, Jn

tracks the distribution of τn+1, the time until event n+1; in other words, the event {Jn = l} is

the same as the event
{
Cτn ∈ I l | τn

}
. As in (Janssen and Manca, 2006, Section (4.2)), we

have assumed Pr(τ0 = 0) = 1 a.s.; writing Pr(J0 = l) = pl , then we suppose
∑

l∈I pl = 1.

For our model, we can see that for all n > 0 and i, j ∈ I, we have

Qi j (t) = Pr
(
Jn = j, τn ≤ t | (Jk, τk ), k = 0, . . . , n − 1; Jn−1 = i

)
= χ j (1)Fi (t), (3.3)

a so-called “semi-Markov matrix.” Then (J, τ) = {(Jn, τn), n ≥ 0} is a semi-Markov chain

with state space I × R+ as per (Janssen and Manca, 2006, Definition 4.2.2), defined by(
¯
p,

¯
Q(t)

)
, and is homogeneous. By (Janssen and Manca, 2006, Proposition 3.1), the

embedded Markov chain Jn has transition matrix
¯
Q(∞). As T k =

∑k
i=1 τi, {(Jn,Tn), n ≥ 0}

is the Markov renewal process of kernel
¯
Q(t).
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We define N l (t) = sup
{
k ≥ 0 :

∑k
i=1 τi ≤ t | J0 = l

}
, the number of claim-causing

events by time t, given that the initial class is l. We denote the “Markov renewal function”

associated with N l (t) by H l (t) = E(N l (t)); using iterated expectation conditioning on τ1,

we get

H l (t) =
∫ ∞

0
E(N l (t) | τ1 = v)F l (dv)

=

∫ ∞

0

∞∑
n=0

n Pr(N l (t) = n | τ1 = v)F l (dv)

=

∫ ∞

0

∞∑
n=0

n Pr*
,

n+1∑
i=1

τi > t | τ1 = v+
-
F l (dv)

=

∫ ∞

0

∞∑
n=0

n Pr*
,

n+1∑
i=2

τi > t − v+
-
F l (dv)

=

∫ t

0

∑
m∈I

∞∑
n=0

n Pr*
,

n+1∑
i=2

τi > t − v | J1 = m+
-
χm(1)F l (dv).

By regenerativity, then

H l (t) =
∫ t

0

∑
m∈I

χm(1)
∞∑

n=0
n Pr(Nm(t − v) = n − 1)F l (dv)

=

∫ t

0

∑
m∈I

χm(1) E(Nm(t − v) + 1)F l (dv)

= F l (t) +
∑
m∈I

χm(1)
∫ t

0
Hm(t − v)F l (dv).

With H̃ l (s) =
∫ ∞

0 e−st H l (t)dt and F̃ l (s) =
∫ ∞

0 e−st F l (dt), we have H̃ l (s) = F̃ l (s) +∑
m∈I χm(1)H̃m(s)F̃ l (s). In matrix form, this is

¯
H̃ (s) =

¯
F̃ (s) +

¯
χ(1)>

¯
H̃ (s)

¯
F̃ (s) =

¯
F̃ (s) +

¯
F̃ (s)

¯
χ(1)>

¯
H̃ (s); following some matrix arithmetic, we get

¯
H̃ (s) =

(
¯
I −

¯
F̃ (s)

¯
χ(1)>

)−1

¯
F̃ (s).
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Since
(
¯
I −

¯
F̃ (s)

¯
χ(1)>

)−1
=

∑∞
n=0

(
¯
F̃ (s)

¯
χ(1)>

)n
,

¯
H̃ (s) =

∞∑
n=0

(
¯
F̃ (s)

¯
χ(1)>

)n

¯
F̃ (s) =

¯
F̃ (s)

∞∑
n=0

(
¯
χ(1)>

¯
F̃ (s)

)n
=

¯
F̃ (s)

(
1 −

¯
χ(1)>

¯
F̃ (s)

)−1
.

Thus H̃ l (s) =
(
1 −

¯
χ(1)>

¯
F̃ (s)

)−1
F̃ l (s).

We will let the discount rate vary with time, such that δ(x) ≡ δ might not hold.

The cumulative force of discount at time x ≥ 0 will be D(x) =
∫ x

0 δ(u) du; see Section 3.6

for some further discussion. We allow D(x) to assume values in (−∞,∞] except on

A ⊂ (0,∞), with A at most countably infinite; this guarantees that e−D(x) ∈ [0,∞) except

on the same A. In subsequent sections, we will use the notation Fnδ |l (dx) = e−nD(x)F l (dx)

and Fnδ (dx) =
¯
χ(1)>

¯
Fnδ (dx) = e−nD(x)

¯
χ(1)>

¯
F (dx).

3.4. MOMENTS OF IBNR CLAIMS

Denote

Z l (t) =
N l (t)∑
k=1

Y k (t), (3.4)

Y k (t) =
CTk∑
i=1

e−(D(Tk+τ0)−D(τ0))l
(
W i,k

)
I
(
W i,k + T k > t

)
X i,k .

This is the same as (Landriault et al., 2017, Eqn (2.2)), except the subscript l tracks the

distribution of τ1, and we have D(x) instead of simply δx. Then we write the Laplace

transform of Z l (t) as L̃γ |l (t). Paralleling (Landriault et al., 2017, Eqn (3.1)), we get that

¯
L̃γ (t) =

¯
F̄ (t) +

∫ t

0 ¯
χ
(
ζ
(
γ; t |x

))>
¯
L̃γe−D(x) (t − x)

¯
F (dx).
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Now, however, we have also conditioned on the number of claims caused by the event at

τ1. The function ζ
(
γ; t |x

)
is given by 1+

∫ ∞
t−x

(
P̃X |τ,W

(
γe−D(x)l (w) |x,w

)
− 1

)
KW |τ (dw |x).

Here we give the details of finding each component of
¯
L̃γ (t) as given several lines above;

first,

L̃γ |l (t) = E
(
exp

(
−γZ l (t)

))
= E

(
E
(
exp

(
−γZ l (t)

)
|σ(N l (t) + 1)

))
= E*.

,

N l (t)∏
k=1

exp
(
−γY k (t)

)+/
-

=

∫ ∞

0
E*.

,

N l (t)∏
k=1

exp
(
−γY k (t)

) ������
τ1 = x+/

-
F l (dx)

= F̄ l (t) +
∫ t

0
E*.

,

N l (t)∏
k=1

exp
(
−γY k (t)

) ������
τ1 = x+/

-
F l (dx).

In the last line, if τ1 = x > t, the product inside E(·) becomes 1 because Z l (t) = N l (t) = 0.

Taking the integrand in the second term,

E*.
,

N l (t)∏
k=1

exp
(
−γY k (t)

) ������
τ1 = x+/

-

= E*.
,
E*.

,
exp

(
−γY 1(t)

) N l (t)∏
k=2

exp
(
−γY k (t)

) ������
τ1 = x,Cx = C+/

-

+/
-

=
∑
m∈I

E*.
,
E*.

,
exp

(
−γY 1(t)

) N l (t)∏
k=2

exp
(
−γY k (t)

)
I(C ∈ I m)

������
τ1 = x,Cx = C+/

-

+/
-

=
∑
m∈I

E
(
E
(
exp

(
−γY 1(t)

) ��τ1 = x,Cx = C
)

×E*.
,

N l (t)∏
k=2

exp
(
−γY k (t)

)
I(C ∈ I m)

������
τ1 = x,Cx = C+/

-

+/
-
,
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since, given τ1 = x and Cx = C, the random variates

exp
(
−γY 1(t)

)
and

N l (t)∏
k=2

exp
(
−γY k (t)

)
I(C ∈ I m)

are independent. Now,

E
(
exp

(
−γY 1(t)

) ��τ1 = x,Cx = C
)

= E*
,
exp*

,
−γ

C∑
i=1

e−D(x)l
(
W i,1

)
I
(
W i,1 > t − x

)
X i,1+

-

������
τ1 = x,Cx = C+

-

= E*
,

C∏
i=1

exp
(
−γe−D(x)l

(
W i,1

)
I
(
W i,1 > t − x

)
X i,1

) ������
τ1 = x,Cx = C+

-

=
(
E
(
exp

(
−γe−D(x)l

(
W 1,1

)
I
(
W 1,1 > t − x

)
X1,1

) ���τ1 = x
))C

=
(
ζ
(
γ; t |x

))C .

Next, by regenerativity of N l (t) at τ1 = x,

E*.
,

N l (t)∏
k=2

exp
(
−γY k (t)

)
I(C ∈ I m)

������
τ1 = x,Cx = C+/

-

= E
*...
,

N l (t)∏
k=2

exp
*...
,

−γ

C
x+

∑k
j=2 τ j∑

i=1
e−

(
D

(
x+

∑k
j=2 τ j

))
l
(
W i,k

)
I*.
,
W i,k + x +

k∑
j=2

τ j > t+/
-

X i,k

+///
-

× I(C ∈ I m) |τ1 = x,Cx = C)

= E
*...
,

Nm(t−x)+1∏
k=2

exp
*...
,

−γe−D(x)

C∑k
j=2 τ j∑

i=1
e−

(
D

(
x+

∑k
j=2 τ j

)
−D(x)

)

× l
(
W i,k

)
I*.
,
W i,k +

k∑
j=2

τ j > t − x+/
-

X i,k
+/
-

�������
τ1 = x,Cx = C+/

-
I(C ∈ I m)

= E
*...
,

Nm(t−x)+1∏
k=2

exp
(
− γe−D(x)

C∑k
j=2 τ j∑

i=1
e−

(
D

(∑k
j=2 τ j+τ1

)
−D(τ1)

)
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× l
(
W i,k

)
I*.
,
W i,k +

k∑
j=2

τ j > t − x+/
-

X i,k

) �������
τ1 = x,Cx = C+/

-
I(C ∈ I m)

= E*.
,

Nm(t−x)+1∏
k=2

exp
(
− γe−D(x)

CTk∑
i=1

e−(D(Tk+τ1)−D(τ1))

× l
(
W i,k

)
I
(
W i,k + T k > t − x

)
X i,k

) �����
τ1 = x,Cx = C

)
I(C ∈ I m)

= E*.
,

Nm(t−x)+1∏
k=2

exp
(
−γe−D(x)Y k (t − x)

) ������
τ1 = x+/

-
I(C ∈ I m)

= L̃γe−D(x) |m(t − x) I(C ∈ I m).

In the second to third lines, Cx
d
= Cy, and N l (t) |(J1 = m) d

= Nm(t − x) + 1. The key

observation for allowing general D(x) =
∫ x

0 δ(u) du instead of δ(u) ≡ δ is that after

conditioning on τ1 = x, τ1
as
= x takes the same role as τ0

as
= 0 with respect to regenerativity

of the process N l (t), and hence in the definition of Y k (t). Reassembling the previous two

runs of expressions,

E*.
,

N l (t)∏
k=1

exp
(
−γY k (t)

) ������
τ1 = x+/

-
=

∑
m∈I

E
((
ζ
(
γ; t |x

))C I(C ∈ I m) L̃γe−D(x) |m(t − x)
)

=
∑
m∈I

χm
(
ζ
(
γ; t |x

))
L̃γe−D(x) |m(t − x) =

¯
χ
(
ζ
(
γ; t |x

))>
¯
L̃γe−D(x) (t − x).

Thus,
¯
L̃γ (t) =

¯
F̄ (t) +

∫ t
0 ¯
χ
(
ζ
(
γ; t |x

))>
¯
L̃γe−D(x) (t − x)

¯
F (dx) as claimed.

Taking ∂n

∂γn L̃γ |l (t) |γ=0, we get the analog of (Landriault et al., 2017, Eqn (3.2)):

E
(
Zn

l (t)
)
=

∫ t

0
e−nD(x)

∑
m∈I

χm(1) E
(
Zn

m
(
t − y

))
F l (dx) + vn|l (t); (3.5)

vn|l (t) =
n∑

q=1

(
n
q

) ∫ t

0
e−nD(x)

∑
m∈I

E
(
Zn−q

m (t − x)
) q∑

k=1
χ(k)

m (1)Bq,k
(
¯
ξ (x, t)>

)
F l (dx).



63

The dimension of
¯
ξ (x, t) is q− k+1, Bq,k (· · ·) is the Bell polynomial, and ξi (x, t) is given in

Section 3.3. To verify (3.5), note that ∂n

∂γn a
(
γ
)
b
(
γ
)
=

∑n
i=0

(
n
i

)
a(i) (γ)b(n−i) (γ) somewhat

like the binomial expansion. This applies to each summand in
¯
χ
(
ζ
(
γ; t |x

))>
¯
L̃γe−D(x) (t − x),

where a
(
γ
)
= χm

(
ζ
(
γ; t |x

))
and b

(
γ
)
= L̃γe−D(x) |m(t − x). Using “Faà di Bruno’s formula”

(e.g. (Johnson, 2002, Eqn (2.2))), we get

∂i

∂γi χm
(
ζ
(
γ; t |x

))
=

i∑
q=0

χ
(q)
m

(
ζ
(
γ; t |x

))
Bi,q

(
¯
∇ζ

(
γ; t |x

)>) .
Here,

¯
∇ζ

(
γ; t |x

)
has dimension i − q + 1, and the pth entry is ∂p

∂γp ζ
(
γ; t |x

)
. Therefore,

∂n

∂γn L̃γ |l (t) becomes

(−1)n E
(
Zn

l (t)e−γZ l (t)
)
=

∑
m∈I

∫ t

0

n∑
i=0

i∑
q=0

χ
(q)
m

(
ζ
(
γ; t |x

))
Bi,q

(
¯
∇ζ

(
γ; t |x

)>)
×
(
−e−D(x)

)n−i
E
(
Zn−i

m (t)e−γe−D(x) Zm(t−x)
)
F l (dx).

Setting γ = 0, followed by some basic algebra noting B0,0(·) ≡ 1 and that 0 < i =
∑i−q+1

j=1 jb j

requires at least one b j > 0, gives (3.5).

The following theorem generalizes (Landriault et al., 2017, Theorem 1).

Theorem 2. Let n ∈ N+. Assume D(x) is such that
∫ ∞

0 e−nD(x)F l (dx) ∈ (0, 1] for all l ∈ I

and n ∈ N+. Then, for each l ∈ I, we have:

E
(
Zn

l (t)
)
= vn|l (t) +

∫ t

0 ¯
χ(1)>

¯
vn(t − x)

∞∑
q=0

(
Fnδ |l ∗ F∗qnδ

)
(dx). (3.6)

Proof of Theorem 2. The assumption on D(x) ensures that (3.5) is a defective or proper re-

newal equation for all l ∈ I. Furthermore,
∫ ∞

0 Fnδ (dx) =
¯
χ(1)>

∫ ∞
0 e−nD(x)

¯
F (dx) ≤

¯
χ(1)>

¯
1 = 1, because of the assumption on D(x). Setting Mn|l (t) = E

(
Zn

l (t)
)
, we

write (3.5) in matrix form as
¯
Mn(t) =

∫ t
0 ¯
χ(1)>

¯
Mn(t − x)

¯
Fnδ (dx) +

¯
vn(t). Taking Laplace
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transforms with respect to t, we get

¯
M̃n(s) =

¯
χ(1)>

¯
M̃n(s)

¯
F̃nδ (s) +

¯
ṽn(s) =

¯
F̃nδ (s)

¯
χ(1)>

¯
M̃n(s) +

¯
ṽn(s),

as
¯
χ(1)>

¯
M̃n(s) is a scalar. Here, M̃n|l (s) =

∫ ∞
0 e−st Mn|l (t) dt and likewise ṽn|l (s) =∫ ∞

0 e−stvn|l (t) dt. Now, since
¯
F̃nδ (s)

¯
χ(1)> is a matrix, rearranging gives

¯
M̃n(s) =(

¯
I −

¯
F̃nδ (s)

¯
χ(1)>

)−1

¯
ṽn(s). Then

¯
M̃n(s) =

∞∑
q=0

(
¯
F̃nδ (s)

¯
χ(1)>

)q

¯
ṽn(s)

=
¯
ṽn(s) +

∞∑
q=1

(
¯
F̃nδ (s)

¯
χ(1)>

)q

¯
ṽn(s)

=
¯
ṽn(s) +

¯
F̃nδ (s)

∞∑
q=1

(
¯
χ(1)>

¯
F̃nδ (s)

)q−1

¯
χ(1)>

¯
ṽn(s)

=
¯
ṽn(s) + ¯

χ(1)>
¯
ṽn(s)

¯
F̃nδ (s)

1 −
¯
χ(1)>

¯
F̃nδ (s)

.

In componentwise form, M̃n|l (s) = ṽn|l (s) +
¯
χ(1)>

¯
ṽn(s) ¯

F̃nδ |l (s)
1−

¯
χ(1)>

¯
F̃nδ (s)

; (3.6) follows upon

Laplace transform inversion.

We can simplify Theorem 2 if we let either the discount rate be constant, or if we

assume there is only one risk level (or possible df for each τk+1 | CTk
). Both cases of

Corollary 2 still generalize (Landriault et al., 2017, Theorem 1).

Corollary 2. Let n ∈ N+.

1. Let the discount rate be constant, namely δ(·) = δ. Then, for each l ∈ I:

E
(
Zn

l (t)
)
= vn|l (t) +

∫ t

0
e−nδx

∑
m∈I

χm(1)vn|m(t − x)H l (dx). (3.7)

Here, H l (t) = E(N l (t)) is the Markov renewal function associated with initial risk

class l.
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2. Let τk
iid
∼ F (·) for k ∈ N+, that is, |I| = 1. Also assume

∫ ∞
0 e−nD(x)F (dx) ∈ (0, 1]

for all n ∈ N+. Then,

E
(
Zn(t)

)
= vn(t) +

∫ t

0
vn(t − x)

∞∑
q=1

F∗qnδ (dx). (3.8)

Here, F∗qnδ (dx) is the q-fold convolution of Fnδ (dx) = e−nD(x)F (dx) with itself.

In either case, we set E
(
Z0

l (t)
)
≡ 1, t > 0.

In Corollary 2 (1), note that E
(
Zn

l (t)
)
depends on E

(
Zq

m(t)
)
, q ∈ {1, . . . , n − 1},m ∈

I, which includes all possible initial distributions of τ1. Writing (3.7) of Corollary 2

in matrix form results in
¯
Mn(t) =

¯
vn(t) +

∫ t
0 e−nδx

¯
χ(1)>

¯
vn(t − x)

¯
H (dx). When |I| =

m = 1,
¯
χ(1)> becomes B(1) = 1, and

¯
Mn(·),

¯
vn(·), and

¯
H (·) revert to each one’s

scalar form, retrieving (Landriault et al., 2017, Theorem 1). In Corollary 2 (2), we also

retrieve (Landriault et al., 2017, Theorem 1). For, setting δ(·) = δ, D(x) = δx, and since∫ ∞
0 e−sxFnδ (dx) = F̃ (s + nδ), it follows that

∫ ∞
0 e−sx ∑∞

q=1 F∗qnδ (dx) = F̃ (s+nδ)
1−F̃ (s+nδ)

, which is

precisely H̃ (s + nδ) =
∫ ∞

0 e−sxe−nδx H (dx).

Proof of Corollary 2. For both cases, themethodology involvesLaplace-transforming (3.8),

rearrangement, and Laplace inversion.

1. Taking Laplace transforms in (3.5) and writing things in matrix form, we have:

¯
M̃n(s) =

¯
F̃ (s + nδ)

¯
χ(1)>

¯
M̃n(s) +

¯
ṽn(s).

Solving this in the manner of deriving H̃ l (s) above, we get

¯
M̃n(s) =

¯
ṽn(s) +

¯
χ(1)>

¯
ṽn(s)

¯
H̃ (s + nδ).

Inverting each component Laplace transform in this latter gives the expression (3.7).
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2. When I = {1}, (3.5) becomes

E
(
Zn(t)

)
=

∫ t

0
e−nD(x) E

(
Zn(t − x)

)
F (dx) + vn(t);

vn(t) =
n∑

q=1

(
n
q

) ∫ t

0
e−nD(x) E

(
Zn−q(t − x)

) q∑
k=1

B(k) (1)Bq,k
(
¯
ξ (x, t)>

)
F (dx).

Taking Laplace transforms again, now M̃n(s) = M̃n(s)F̃nδ (s) + ṽn(s); rearranged,

this is M̃n(s) = ṽn(s) + ṽn(s)
∑∞

q=1

(
F̃nδ (s)

)q
. Inverting this Laplace-transformed

equation gives (3.8).

3.5. JOINT MOMENTS OF IBNR AND IR CLAIMS

Now we shall generalize (Landriault et al., 2017, Theorem 3) in the same manner.

For incurred and reported claims, we define

Z ir |l (t) =
N l (t)∑
k=1

Y ir |k (t), (3.9)

Y ir |k (t)
CTk∑
i=1

e−(D(Tk+τ0)−D(τ0))l
(
W i,k

)
I
(
W i,k + T k ≤ t

)
X i,k .

Letting ∆ ≥ 0, for u, v ≥ 0 we define a joint Laplace transform:

L̃u,v |l (t,∆) = E
(
exp

(
−uZ ir |l (t) − vZ l (t + ∆)

))
. (3.10)

Next we find an expression for (3.10) which will be suitable for the generalized form

of (Landriault et al., 2017, Eqn (3.17)). Starting,

L̃u,v |l (t,∆) = E
(
exp

(
−uZ ir |l (t) − vZ l (t + ∆)

))
= E

(
E
(
exp

(
−uZ ir |l (t) − vZ l (t + ∆)

)
|σ(N l (t + ∆) + 1)

))
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=

∫ ∞

0
E*.

,

N l (t)∏
k=1

exp
(
−uY ir |k (t)

) N l (t+∆)∏
k=1

exp(−vY k (t + ∆))
������
τ1 = x+/

-
F l (dx)

= F̄ l (t + ∆) +
∫ t+∆

t
E*.

,

N l (t+∆)∏
k=1

exp(−vY k (t + ∆))
������
τ1 = x+/

-
F l (dx)

+

∫ t

0
E*.

,

N l (t)∏
k=1

exp
(
−uY ir |k (t)

) N l (t+∆)∏
k=1

exp(−vY k (t + ∆))
������
τ1 = x+/

-
F l (dx).

Taking the integrand in the second term,

E*.
,

N l (t+∆)∏
k=1

exp(−vY k (t + ∆))
������
τ1 = x+/

-

= E*.
,
E*.

,
exp(−vY 1(t + ∆))

N l (t+∆)∏
k=2

exp(−vY k (t + ∆))
������
τ1 = x,Cx = C+/

-

+/
-

=
∑
m∈I

E*.
,
E*.

,
exp(−vY 1(t + ∆))

N l (t+∆)∏
k=2

exp(−vY k (t + ∆)) I(C ∈ I m)
������
τ1 = x,Cx = C+/

-

+/
-

=
∑
m∈I

E
(
E
(
exp(−vY 1(t + ∆))��τ1 = x,Cx = C

)
×E*.

,

N l (t+∆)∏
k=2

exp(−vY k (t + ∆)) I(C ∈ I m)
������
τ1 = x,Cx = C+/

-

+/
-
.

Now,

E
(
exp(−vY 1(t + ∆))��τ1 = x,Cx = C

)
= E*

,
exp*

,
−v

C∑
i=1

e−D(x)l
(
W i,1

)
I
(
W i,1 > t + ∆ − x

)
X i,1+

-

������
τ1 = x,Cx = C+

-

= E*
,

C∏
i=1

exp
(
−ve−D(x)l

(
W i,1

)
I
(
W i,1 > t + ∆ − x

)
X i,1

) ������
τ1 = x,Cx = C+

-

=
(
E
(
exp

(
−ve−D(x)l

(
W 1,1

)
I
(
W 1,1 > t + ∆ − x

)
X1,1

) ���τ1 = x
))C

=
(
ζ (v; t + ∆|x)

)C .
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Then, continuing,

E*.
,

N l (t+∆)∏
k=1

exp(−vY k (t + ∆))
������
τ1 = x+/

-

=
∑
m∈I

E*.
,

(
ζ (v; t + ∆|x)

)C E*.
,

N l (t+∆)∏
k=2

exp(−vY k (t + ∆)) I(C ∈ I m)
������
τ1 = x,Cx = C+/

-

+/
-
.

Now, by regenerativity of N l (t + ∆) at τ1 = x,

E*.
,

N l (t+∆)∏
k=2

exp(−vY k (t + ∆)) I(C ∈ I m)
������
τ1 = x,Cx = C+/

-

= E*.
,

Nm(t+∆−x)+1∏
k=2

exp
(
−ve−D(x)Y k (t + ∆ − x)

) ������
τ1 = x+/

-
I(C ∈ I m)

= L̃ve−D(x) |m(t + ∆ − x) I(C ∈ I m).

That is,

E*.
,

N l (t+∆)∏
k=1

exp(−vY k (t + ∆))
������
τ1 = x+/

-
=

∑
m∈I

χm
(
ζ (v; t + ∆|x)

)
L̃ve−D(x) |m(t + ∆ − x).

Defining

ζ (u, v; t,∆|x)

= E
(
exp

(
−e−D(x)l

(
W 1,1

)
X1,1

(
u I

(
W 1,1 ≤ t − x

)
+ v I

(
W 1,1 > t + ∆ − x

))) ���τ1 = x
)
,

we may similarly show

∫ t

0
E*.

,

N l (t)∏
k=1

exp
(
−uY ir |k (t)

) N l (t+∆)∏
k=1

exp(−vY k (t + ∆))
������
τ1 = x+/

-
F l (dx)

=

∫ t

0 ¯
χ
(
ζ (u, v; t,∆|x)

)>
¯
L̃ue−D(x),ve−D(x) (t − x,∆)F l (dx),
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finally getting

L̃u,v |l (t,∆) = F̄ l (t + ∆) +
∫ t+∆

t ¯
χ
(
ζ (v; t + ∆|x)

)>
¯
L̃ve−D(x) (t + ∆ − x)F l (dx) (3.11)

+

∫ t

0 ¯
χ
(
ζ (u, v; t,∆|x)

)>
¯
L̃ue−D(x),ve−D(x) (t − x,∆)F l (dx).

The first term corresponds to τ1 = x ∈ (t + ∆,∞), the second to τ1 = x ∈ (t, t + ∆], and

the third to τ1 = x ∈ (0, t]. In the first term, N l (t + ∆) = N l (t) = 0; in the second term,

N l (t) = 0. In these cases, then, having zero claim-causing events means the total claims,

Z l (t + ∆) and Z ir |l (t), are zero also.

Denoting Mm,n|l (t;∆) = E
(
Zm

ir |l (t)Zn
l (t + ∆)

)
, analogously to (Landriault et al.,

2017, Eqn (3.17)) we get that

Mm,n|l (t;∆) =
∫ t

0
e−(m+n)D(x)

¯
χ(1)>

¯
Mm,n(t − x;∆)F l (dx) + vm,n|l (t;∆); (3.12)

vm,n|l (t;∆) =
∑n

j=0
∑m

i=0
i+ j>0

(
m
i

) (
n
j

) ∫ t

0
e−(m+n)D(x)

¯
Mm−i,n− j (t − x;∆)>

¯
B∗i, j (x; t, t + ∆)F l (dx),

¯
B∗i, j (x; t1, t2) =

i∑
k=1∧i

j∑
l=1∧ j ¯

χ(k+l) (1)Bi,k
(
¯
η(x, t1)>

)
B j,l

(
¯
ξ (x, t2)>

)
, 0 ≤ t1 ≤ t2.

The dimension of the vector
¯
η(x, t1) is i − k + 1, and likewise

¯
ξ (x, t2) has dimension

j − l + 1. The p-th entry of the latter is given by (3.1), and the p-th entry of the former is

given by (3.2). To get (3.12), in (3.11) we only need to concern ourselves with the third

term on the right-hand side, since we will take the ∂m+n

∂um∂vn derivative, with m ≥ 1. That is,

∂m+n

∂um∂vn L̃u,v |l (t,∆) =
∫ t

0

∂m+n

∂um∂vn ¯
χ
(
ζ (u, v; t,∆|x)

)>
¯
L̃ue−D(x),ve−D(x) (t − x,∆)F l (dx).

Now, note that ∂m+n

∂um∂vn ζ (u, v; t,∆|x) = 0 if m ∧ n ≥ 1, because for all ∆ ≥ 0,

{W ≤ t − x} ∩ {W > t + ∆ − x} = ∅.
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Therefore, for ι ∈ I,

∂m+n

∂um∂vn χι
(
ζ (u, v; t,∆|x)

)
=

∂m

∂um

(
∂n

∂vn χι
(
ζ (u, v; t,∆|x)

))
=

∂n

∂vn

(
∂m

∂um χι
(
ζ (u, v; t,∆|x)

))
.

First, though, the multivariate product rule (mentioned for example in Constantine and

Savits (1996)) gives that

∂m+n

∂um∂vn χι
(
ζ (u, v; t,∆|x)

)
L̃ue−D(x),ve−D(x) |ι(t − x,∆)

=

m∑
i=0

n∑
j=0

(
m
i

) (
n
j

)
∂i+ j

∂ui∂v j χι
(
ζ (u, v; t,∆|x)

) ∂m+n−(i+ j)

∂um−i∂vn− j L̃ue−D(x),ve−D(x) |ι(t − x,∆).

Then, using the so-called “Faà di Bruno” formula twice,

∂i+ j

∂ui∂v j χι
(
ζ (u, v; t,∆|x)

)
=

∂i

∂ui

(
∂ j

∂v j χι
(
ζ (u, v; t,∆|x)

))
=

∂i

∂ui
*.
,

j∑
p=0

χ
(p)
ι

(
ζ (u, v; t,∆|x)

)
B j,p

(
¯
∇vζ (u, v; t,∆|x)

)+/
-

=

j∑
p=0

i∑
r=0

(
i
r

)
∂r

∂ur χ
(p)
ι

(
ζ (u, v; t,∆|x)

) ∂i−r

∂ui−r B j,p
(
¯
∇vζ (u, v; t,∆|x)

)
=

j∑
p=0

i∑
q=0

χ
(p+q)
ι

(
ζ (u, v; t,∆|x)

)
Bi,q

(
¯
∇uζ (u, v; t,∆|x)

)
B j,p

(
¯
∇vζ (u, v; t,∆|x)

)
.

The notation
¯
∇u means

(
∂s

∂us
)
, s = 1, . . . , i−q+1, and

¯
∇v means

(
∂s

∂vs

)
, s = 1, . . . , j−p+1. In

the third to fourth lines above, we use that for r = 0, . . . , i−1, ∂i−r

∂ui−r B j,p
(
¯
∇vζ (u, v; t,∆|x)

)
=

0. Thus it holds that

∂m+n

∂um∂vn L̃u,v |l (t,∆) =
∫ t

0

∑
ι∈I

m∑
i=0

n∑
j=0

(
m
i

) (
n
j

) j∑
p=0

i∑
q=0

χ
(p+q)
ι

(
ζ (u, v; t,∆|x)

)
Bi,q

(
¯
∇uζ (u, v; t,∆|x)

)
B j,p

(
¯
∇vζ (u, v; t,∆|x)

) ∂m+n−(i+ j)

∂um−i∂vn− j L̃ue−D(x),ve−D(x) |ι(t − x,∆)F l (dx).
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Setting (u, v) = (0, 0) and recalling j =
∑ j−p+1

s=1 s js and i =
∑i−q+1

s=1 s js, (3.12) follows. Now

we are ready to generalize (Landriault et al., 2017, Theorem 3).

Theorem 3. Let n ∈ N, m ∈ N+. Assume D(x) is such that
∫ ∞

0 e−qD(x)F l (dx) ∈ (0, 1] for

all l ∈ I and all q ∈ N+. Then for each l ∈ I, we have:

E
(
Zm

ir |l (t)Zn
l (t + ∆)

)
(3.13)

= vm,n|l (t;∆) +
∫ t

0 ¯
χ(1)>

¯
vm,n(t − x;∆)

∞∑
q=0

(
F (m+n)δ |l ∗ F∗q(m+n)δ

)
(dx).

Proof of Theorem 3. We may express each component of (3.12) as

Mm,n|l (t;∆) =
∫ t

0 ¯
χ(1)>

¯
Mm,n(t − x;∆)F (m+n)δ |l (dx) + vm,n|l (t;∆),

which is a renewal equation by our assumptions on D(x). So

¯
Mm,n(t;∆) =

∫ t

0 ¯
χ(1)>

¯
Mm,n(t − x;∆)

¯
F (m+n)δ (dx) +

¯
vm,n(t;∆)

=

∫ t

0 ¯
Q(m+n)δ (dx)

¯
Mm,n(t − x;∆) +

¯
vm,n(t;∆)

is a Markov renewal equation. That is,

[
Q(m+n)δ (dx)

]
i j = χ j (1)F (m+n)δ |i (dx) = e−(m+n)D(x) χ j (1)Fi (dx);

recall (3.3) given above. Taking Laplace transforms of (3.12) wrt t gives
¯
M̃m,n(s;∆) =

¯
χ(1)>

¯
M̃m,n(s;∆)

¯
F̃ (m+n)δ (s) +

¯
ṽm,n(s;∆). Now,

¯
χ(1)>

¯
M̃m,n(s;∆) being a scalar, we may

write

¯
M̃m,n(s;∆) =

¯
F̃ (m+n)δ (s)

¯
χ(1)>

¯
M̃m,n(s;∆) +

¯
ṽm,n(s;∆),
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which after matrix arithmetic becomes
¯
M̃m,n(s;∆) =

(
¯
I −

¯
F̃ (m+n)δ (s)

¯
χ(1)>

)−1

¯
ṽm,n(s;∆).

Then,

¯
M̃m,n(s;∆) =

(
¯
I −

¯
F̃ (m+n)δ (s)

¯
χ(1)>

)−1

¯
ṽm,n(s;∆)

=

∞∑
i=0

(
¯
F̃ (m+n)δ (s)

¯
χ(1)>

) i

¯
ṽm,n(s;∆)

=
¯
ṽm,n(s;∆) +

∞∑
i=1

(
¯
F̃ (m+n)δ (s)

¯
χ(1)>

) i

¯
ṽm,n(s;∆)

=
¯
ṽm,n(s;∆) +

¯
F̃ (m+n)δ (s)

∞∑
i=1

(
¯
χ(1)>

¯
F̃ (m+n)δ (s)

) i−1

¯
χ(1)>

¯
ṽm,n(s;∆)

=
¯
ṽm,n(s;∆) +

¯
F̃ (m+n)δ (s)

1
1 −

¯
χ(1)>

¯
F̃ (m+n)δ (s) ¯

χ(1)>
¯
ṽm,n(s;∆)

=
¯
ṽm,n(s;∆) +

¯
χ(1)>

¯
ṽm,n(s;∆) ¯

F̃ (m+n)δ (s)

1 −
¯
χ(1)>

¯
F̃ (m+n)δ (s)

.

Componentwise Laplace transform inversion of the final line gives (3.13).

We may also specialize our Theorem 3 in the same two ways we did so with our

Theorem 2; both cases in the following Corollary 3 still generalize (Landriault et al., 2017,

Theorem 3).

Corollary 3. Let n ∈ N, m ∈ N+.

1. Let δ(·) = δ, that is, a constant discount rate. Then, for each l ∈ I,

E
(
Zm

ir |l (t)Zn
l (t + ∆)

)
= vm,n|l (t;∆) +

∫ t

0
e−(m+n)δx

¯
χ(1)>

¯
vm,n(t − x;∆)H l (dx).

2. Let τk
iid
∼ F (·) for k ∈ N+, such that |I| = 1. Also assume

∫ ∞
0 e−qD(x)F (dx) ∈ (0, 1]

for all q ∈ N+. Then,

E
(
Zm

ir (t)Zn(t + ∆)
)
= vm,n(t;∆) +

∫ t

0
vm,n(t − x;∆)

∞∑
q=1

F∗q(m+n)δ (dx).
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In either case, we set E
(
Z0

ir |l (t)
)
≡ 1, t > 0.

The meanings of H l (·) and F∗q(m+n)δ (·) are the same here as in Corollary 2. We

omit the details of proving Corollary 3, since they are essentially the same as the proof

of Corollary 2. Likewise, the two cases in Corollary 3 retrieve (Landriault et al., 2017,

Theorem 3) in the same ways that the cases of Corollary 2 retrieve (Landriault et al., 2017,

Theorem 1). In our Theorem 3 and Corollary 3 (1), the expressions given for the joint

moments of Z ir |l (t) and Z l (t + ∆) depend on the lower joint moments of Z ir |m(t) and

Zm(t + ∆) for all risk classes m ∈ I.

3.6. NUMERICAL EXAMPLES OF TIME-VARYING DISCOUNT RATES

Now we numerically illustrate the failure of the existing discount rate model to

capture other possible scenarios. Kennedy (1992) remarked that the “valuation function”

v(x) ≡ e−D(x) satisfies the differential equation d
dx v(x)+δ(x)v(x) = 0 with initial condition

v(0) = 1. Saying v(0) = 1 of course is equivalent to saying D(x) = 0. Trivially,

δ(x) = − b
a+bx and v(x) = a + bx satisfy said equation, and the initial condition gives

a = 1. If we require δ(u) ≥ 0 for some u ∈ [0,∞), then we must have b ≤ 0 and

u ∈
[
0,−1

b

)
, where we say lim

b↑0
−1

b = ∞. With this choice of δ(u) so constrained, it holds

that D(x) =
∫ x

0 δ(u) du = − log(1 + bx) assumes values in R. On the other hand, if we

regard the operations in v(x) = e−
∫ x

0 δ(u) du as taking place in C, then the only constraint

we have is that of
∫ ∞

0 (v(x))nF l (dx) ∈ (0, 1] for l ∈ I (so that the renewal equations in

Theorems 2 and 3 are proper or defective). In the case of v(x) = 1 + bx, this implies∑n
q=0

(
n
q

)
bq

∫ ∞
0 xqF l (dx) ≤ 1, from which it follows that b ≤ 0 still, albeit without only

holding on the interval t ∈
[
0,−1

b

)
.

To show the effects of having v(x) = 1 + bx instead of v(x) = e−δx , we examine a

special case of Theorem 2 considered by Landriault et al. (2017). Namely, we let there be

just one class of claims produced (|I| = 1), and we let the batch sizes be 1 (B(z) = z). We
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assume the dependency J (t,w, x) = F (t)K (w)PX |W (x |w), where F (dx) = λ2xe−λxdx is

Erlang-2, K (dw) = θe−θw is exponential, and the function l (w) = e−εw. Landriault et al.

(2017) assumed the following parameter values: λ = 3, θ = 0.5, µ1 = 1, and ε = 0.06.

They let D(x) = δx with δ = 0.05, whereas we let D(x) = − log(1 + bx) with multiple

values of b: −2δ, −δ, and− δ2 . The quantity we use to illustrate our point is E(Z (t)) = M1(t)

(which Landriault et al. (2017) also gave explicitly). As we see, multiple departures may

happen from the case of δ(·) = δ. Again, we have used the algorithms of Abate and Valkó

(2004); Trefethen et al. (2006). We point out that by choosing b = −δ here, a constant

discount-rate assumption slightly over-projects the values ofE(Z (t)) given by v(x) = 1−δx,

while such an assumption (v(x) = e−δx) greatly over-projects E(Z (t)) for b = −2δ, and

greatly under-projects E(Z (t)) for b = − δ2 .

1

2

E
(Z

(t
))

10 20 30 40 50
t

D(x) = 0.05x

D(x) = − log(1− 0.1x)

D(x) = − log(1− 0.05x)

D(x) = − log(1− 0.025x)

Figure 3.1. Time-varying discounted IBNR first moments, v(x) = 1 + bx
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More to the point, we now examine the “Stoodley formula” (see Kennedy (1992);

Stoodley (1934)), δ(u) = p + c
1+qecu , which clearly subsumes the constant discount-rate

assumption. To such an end, we examine the same model as that of Figure 3.1, and we set

p = δ = 0.05. Elementary calculations show that now v(x) = 1
1+q e−(p+c)x +

q
1+q e−px . We

choose two values for c: −0.04 and 0.08, and two values for q: 0.25 and 0.6.

1

2
E
(Z

(t
))

10 20 30 40 50
t

c = 0, q = 0

c = −0.04, q = 0.25

c = −0.04, q = 0.6

c = 0.08, q = 0.25

c = 0.08, q = 0.6

Figure 3.2. Time-varying discounted IBNR first moments, v(x) = 1
1+q e−(p+c)x +

q
1+q e−px

In Figure 3.2, evidently failing to include the term with c and q in δ(u) leads to an

underestimation of E(Z (t)) when c = −0.04, and an overestimation when c = 0.08. Further

still, the value of q impacts the amount of over- or underestimation.

3.7. CONCLUDING DISCUSSION

We have extended the methodology of Landriault et al. (2017) both to allow insurers

to reassess the distribution of the time until the next event given howmany claims arise from

the current event, and to allow the IBNR and IR claims to be discounted at a non-constant

rate. Both the work of Landriault et al. (2017) and our generalization thereof implicitly
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assume finiteness of the integer moments of claims; for heavy-tailed claims distributions

such as the Pareto or the Abate-Whitt (Abate and Whitt (1999)) with higher moments all

infinite, modifications could be needed. Given the topic of our Section 2, a natural future

direction for this section would be bringing the CPTA approach of Vatamidou et al. (2013)

which we extended in Section 2 to bear upon our extension of Landriault et al. (2017) in

this section. Another further step would be closer examination of the effects of particular

choices of the function D(x), or of particular distributional assumptions for the random

intervals of batch sizes. The dependence structure we assumed between interevent times

and the batch sizes could be relaxed further; again, the 2017 US hurricane season could

provide motivation for such.
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4. CONCLUSION

4.1. OUR CONTRIBUTIONS

This dissertation has examined two different senses of catastrophic risk modeling

for insurance companies, under two variations of a Markovian dependence scheme. In the

first, we examined Gerber-Shiu functions (on an infinite time horizon) with heavy-tailed

individual claims. In the second, we studied reserving for IBNR claims when the time

until the next event depends on the number of claims from the current event and money

is discounted at a time-dependent rate. In both senses, we have added to the tools at an

insurance company’s disposal for estimating the funds needed in order to remain a healthy

enterprise.

We have extended the non-asymptotic approximation approach of Vatamidou et al.

(2013, 2014a) from ruin probabilities to the Gerber-Shiu function framework in the model

of Li and Sendova (2015). Even after introducing the generality of time-discounting

and nonnegative penalty functions w(·, ·), under mild regularity conditions we show the

method of corrected phase-type approximations still captures the proper tail behavior of the

functions being approximated. For the same case of the compound Poisson risk model, we

numerically demonstrate CPTA performing better for small initial capital than asymptotic

approximations. From our theoretical results, we illustrate the derivation of CPTA for the

mean ruin time. Our work in Section 2 allows one to capture heavy-tailed behavior of

Gerber-Shiu functions for both small and large initial capital without needing asymptotic

expressions. Further, insurance companies may incorporate potentially catastrophic claims

into a risk model charging different premiums depending on the insured.
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We have also extended the results of Landriault et al. (2017) to allow the number of

IBNR claims from an event to impact the time until the next event. Whereas inAlbrecher and

Boxma (2004); Li and Sendova (2015) insurers had only two interevent time distributions

available, we allow any number of such distributions. As well, when calculating aspects of

reserves, insurers are not constrained to assume an economy with a constant discount rate.

We show numerically that indeed such an assumption may fail to predict the true valuation

of IBNR claims, in a number of ways.

4.2. FUTUREWORK

We plan to use CPTA to relax the assumption implicit in Section 3 of all moments

of the claim severity distribution existing. This will benefit reserving for IBNR claims by

introducing catastrophic assumptions to the individual, micro-level claims. In the context

of ruin theory, a natural next step would be extending our Propositions 1, 2, and 3 to the

Li-Sendova risk model. We wish further to allow an arbitrary number of insured classes

(with corresponding premium rates) in our Theorem 1. Doing so would involve more

matrix theory, and for the asymptotic tail behavior, Markov renewal theory as expounded

for example in Janssen and Manca (2006) seems like a tool we expect to use.

Again in the reserving context, we may allow τ1 to have an arbitrary distribution

F0(·) rather than one of the F l (·) (where l ∈ I), which would give rise to a “delayedMarkov

renewal process” (see again Janssen and Manca (2006)) in place of the Markov renewal

process considered in Section 3 above. That way, the insurer does not have to categorize a

“phantom” (current) event as falling within a certain catastrophic level, rather only doing so

after an actual event occurs. As Léveillé and Garrido (2001b) showed the ordinary renewal

case to be embedded in the delayed renewal case, we expect similar outcomes in our more

general Markovian setup.
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In the longer-term, we aspire to “combine” our Sections 2 and 3 to study Gerber-Shiu

types of functionals of the insurer’s surplus evolving over time, allowing for both senses of

catastrophe in the modeling. Ahn et al. (2018) tackle a different, and in some ways simpler,

case of this, with the usual limitations of claims arriving one at a time, according to a Poisson

process. They further constrain claims to be phase-type distributed, with the associated

drawbacks of light-tailed distributions. We would like to bring our catastrophic-relevant

Markovian assumptions to bear in such a bridging of Gerber-Shiu theory and stochastic

claims reserving, making our generalization of the corrected phase-type approximation

methodology of Vatamidou et al. (2013, 2014a) relevant to more than risk theory alone,

and that much closer to use by practicing actuaries.
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