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ABSTRACT 

In today’s society, social networks are a popular way to connect with friends and 

family and share what’s going on in your life. With the Internet connecting us all closer 

than ever before, it is increasingly common to use social networks to meet new friends 

online that share similar interests instead of only connecting with those you already 

know. For the problem of attempting to connect people with similar interests, this paper 

proposes the foundation for a Geo-social network that aims to extract the semantic 

meaning from users’ location history and use this information to find the similarity 

between users. Once the similarity scores are obtained, the results are examined to extract 

the groups of similar users for the Geo-social network. Computing similarity for a large 

number of users and then grouping based on the results is a computationally intensive 

task, but fortunately Apache Spark can be leveraged to execute the comparison and 

clustering of users in parallel across multiple computers, increasing the computation 

speed when compared to a centralized version and working quickly enough to suggest 

friends in real time for a given user. 
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1. INTRODUCTION 

1.1. BACKGROUND 

Today, mobile devices with Internet are extremely common and almost all users 

of these devices utilize some form of location-based service at some point, such as using 

Google Maps to find nearby restaurants, getting directions from your current location or 

checking in on Facebook or any other social network. Along with these devices being so 

frequently used, more people are using GPS devices to record their location trajectories. 

All of this means that there is more data than ever to take advantage of and analyze. By 

looking at this large amount of trajectory data, it is possible to look at two different users 

GPS trajectory data in order to determine if two users would be compatible. 

However, people in various locations will never come up as similar if their GPS 

data alone is considered. By looking at the locations in the real world it is possible to 

extract some semantic meaning of the places visited by the user. When the semantic 

meaning is obtained it is possible to identify users that have an overlap in interests, even 

if their actual geographic location does not overlap [1][2]. By giving a similarity score 

based on this semantic overlap, users can be clustered into groups that will identify 

similar social groups. These social groups can then be used to match similar users 

together for the Geo-Social network. 

For this to be feasible, a similarity comparison between two trajectories that runs 

within a reasonable amount of time is needed. After retrieving the similarity score for all 

of the users in the dataset, a graph where users are connected if their similarity score is 

above a threshold can be created. By examining this graph, it is possible find groups of 

users that are connected to identify users who will most likely be compatible. By using 
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Spark, we can find the similarities between all users, which is a very computationally 

heavy task for a centralized approach. Afterwards, Spark is also used to identify the 

groups within the user dataset. To ensure that the groups contain users who are all very 

similar, the approach to be used will find maximal cliques in the graph. This means that 

all users in the group will be similar to every other user in the clique.  

 

 

1.2. RELATED WORK 

Two works [1] and [2], performed work that the similarity comparison used in 

this paper draws inspiration from, finding similar user based on location history. The 

objective of [1] is to estimate similarity between two users using the semantic meaning of 

the location data. [2] Looks to mine user similarity based on the GPS trajectories taken 

from the real world. The work from each of these papers lend themselves nicely to being 

used for creating a geo-social network and the approach in this paper is similar for the 

similarity comparison stage. One disadvantage to the method used in [2] that is addressed 

in this paper, is the problem of looping locations within the users' location history. The 

Bron & Kerbosch algorithm originally presented in [3], as well as improvements on the 

algorithm presented in [4] are used for finding all maximal cliques within the graph of 

users. 

 

 

1.3. PROBLEM DEFINITION 

The main goal of this work is to give a similarity score to the trajectory data of 

two different users and use the results to identify all cliques within the graph of users to 
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set the stage for creation of a geo-social network. Before continuing, there are some terms 

that will be used frequently and are important to know in order to understand the 

approach. 

A trajectory is a sequence of locations with information about the time spent at 

each location and the time it takes to travel between locations in the sequence. Below is 

an example of a trajectory. 

 

𝑇𝑟𝑎𝑗 = 𝑝1, 𝑝2, 𝑝3, … 𝑝𝑛: 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 = (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒, 𝑠𝑡𝑎𝑦 𝑡𝑖𝑚𝑒, 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒)          (1)             

 

Trajectories tell a lot about the users who submit them and are vital to the 

algorithm. Therefore, it is important to get a firm grasp on the idea of what a trajectory is 

and how it is visualized other works. Below, Figure 1.1 shows an example of some made 

up trajectories to be compared. By looking at these two trajectories and using our 

algorithm we can give a score that will give an idea of how similar the two trajectories 

are. 

 

 

 

Figure 1.1. Two Different Trajectories 
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After finding the similarity score between all users, a graph will be constructed 

where the graphs vertices represent users, and an edge between nodes indicates a 

similarity over the chosen threshold, α. The approach that is used in this paper focuses on 

grouping the users by finding the cliques in the graph. A clique is a subset of vertices, all 

adjacent to each other, within a graph. Figure 1.2. below shows an example graph with 3 

cliques. 

 

 

 

 

Figure 1.2. Example Three Clique Graph 
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2. SEMANTIC TRAVEL MATCHING 

2.1. MAXIMUM TRAVEL MATCHING 

 The approach used in [1] involves finding and measuring the length of the 

maximal travel matches found when comparing two user’s trajectories. A regular travel 

match between two sub-sequences is found when a given constant maximum time 

difference between stay times, 𝑡, and two sub-sequences of trajectories 𝑇1(𝑎1, 𝑎2, … 𝑎𝑛) 

and 𝑇2(𝑏1, 𝑏2, … 𝑏𝑛)  meet the following conditions 

 

1. ∀ 𝑖 𝜖 [1, 𝑘]: 𝑎𝑖 = 𝑏𝑖 

 

2. ∀ 𝑖 𝜖 [2, 𝑘]: 𝑇ℎ𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑖 𝑎𝑛𝑑 𝑎𝑖+1 𝑎𝑛𝑑 

𝑏𝑖 𝑎𝑛𝑑 𝑏𝑖+1 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡.  

 

Furthermore, a travel match is maximal if it has no more locations that match 

within the time constraint to be added on to the start, somewhere in the middle, or the end 

of the travel match. 

Finding the maximum travel match between two sequences tells a lot about how 

similar they are. If two people have a long match in things that they do throughout the 

day and how long they do these things, it is very likely that they share similar interests or 

at the very least a similar lifestyle. One important thing to note is that using the maximum 

travel match to compute the similarity score causes the score to have no upper bound, 

even if two trajectories are matching exactly, they could always be matching with one 

more location added. 
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2.2. SEMANTIC TRAVEL MATCHING 

As discussed previously, the goal is of the algorithm is to be able to compare 

location trajectories that do not share any geographic overlap. Simply checking if the 

names of the locations match may not suffice for finding an actual match. For example, if 

two people are both college students at different schools that spend 10 hours and school 

then return immediately home every day, simply comparing the value of Missouri S&T to 

Mizzou or their GPS values would not indicate a match, although for all intents and 

purposes, these two locations are semantically similar, and certainly indicate a level of 

similarity just below an exact match. To address this problem, a tree to represent a 

semantic location hierarchy will be constructed that can be referenced when comparing 

two different trajectories. The lower level you go on the tree, the closer the semantic 

meaning of the locations and as you climb the tree the descriptions become more general. 

For example, Taco Bell and McDonalds would both be at the same level of the 

tree under a node named Fast Food Restaurants which might be under an even more 

general category labeled Food. Creating a tree that had all possible values we would need 

would take an extremely long time and would be a whole research project on its own, so 

for now a simple semantic hierarchy tree that demonstrates the effectiveness of this 

approach will be used for the current implementation of the algorithm.  

In the future a much more in-depth tree will be a requirement. One project has 

already worked on creating a web that links together the English language together based 

on the semantic similarity of words called WordNet [5]. The use of WordNet will 

eventually replace the sample semantic hierarchy tree in the future when looking to scale 
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outward and accept even more types of location input data, but for the remainder of this 

paper, the simple tree shown in Figure 2.1. below will be used. 

 

 

 

Figure 2.1. Sample Location Hierarchy Tree 

 

 

For the sample tree above, the top node A is null. B, C, and D represent Food, 

Recreation, and Education categories. The next row (in order) represents Fast Food, 

Groceries, Fitness, Baseball, College and K-12. The lowest row (in order) represents 

McDonalds, Burger King, Walmart, Aldis, Gold’s Gym, Rec Center, Yoga Planet, Busch 

Stadium, Batting Cage, Missouri S&T, Southeast Missouri University, Rolla High School 

and Mark Twain Elementary. 

 The semantic travel matching is performed at each level of the tree (aside 

from the level 0 null node). The score obtained at the end of the comparison of each level 

is adjusted based on how far down the tree the current level is. For example, during the 

comparison at the lowest level, Missouri S&T and SEMO would not indicate a match, but 

at the next highest level, their locations would both be simplified to College and would be 

a location match. The score adjustment for each level is shown in the equation below. 
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                               Adjusted Score =  Score ∗ 2𝑙𝑒𝑣𝑒𝑙−1                         (2) 

                                                                         

To measure the similarity of two trajectories, there is a max allowable difference 

in time t and a time passed for each trajectory, φ, which is initially 0. Then starting at the 

initial location for each user, a check is done to see if the locations at the current are the 

same. If they are, add to the matching score and move to the next location, adding stay 

and travel time to each trajectories time passed. If the locations do not match, there are 

two possible paths. The first is to compare the current location of the first trajectory with 

the next location of the second trajectory, incrementing the second trajectory’s time 

passed. The second is if the next location for the second user cannot be reached without 

surpassing max difference in time. The check will move 𝑇2 to the last matching location 

and increment 𝑇1  to the next location, increasing 𝑇1’s time. Once this process is over, the 

algorithm moves up a level of the semantic hierarchy tree and repeats, this time adding 

less points for each match than the lower level.  

 

 

2.3. SEMANTIC TRAVEL MATCHING EXAMPLE 

To demonstrate, a comparison between 𝑇1 and 𝑇2 , which are shown above as the 

top and bottom trajectories respectively in Figure 1.1. above. The comparison will be run 

with an initial matching score = 8 at level = 1, and max time difference of 2. First, the 

algorithm compares Rec Center and Golds Gym and it is a match, and the score is 

increased. The 𝑇1  time is equal to 1.5 and 𝑇2 to 2. Compare Burger King and 

McDonald’s, which are not equal at the current level, so move 𝑇1  to next 𝑇2 location 



  

 

9 

with time of 3.25. Next, comparison between Burger King and SEMO not a match, so we 

move to next 𝑇2 location, surpassing the given t. So now, 𝑇1  goes to MS&T with time 

2.25 and 𝑇2 goes back to McDonalds with time 2. They are not a match so 𝑇2 goes to 

SEMO with time 3.25. SEMO and MS&T do not match so move 𝑇2 to Aldi’s with time 

11.25. The max time difference has been reached and now the algorithm moves back to 

SEMO and move, 𝑇1 to Walmart with time 10.75. Max time difference has been reached 

so move 𝑇2 to Aldi’s with time 11.25. Finally, compare to Walmart and it is not a match 

so finish for this level, with score 8. Now the matching score is adjusted for the current 

level, which keeps it at 8. If continued, the process would then be repeated moving up 

one level one the semantic hierarchy tree. After each level is calculated the score for each 

level is then combined as the final similarity score between the two users. 

It can be seen how this approach would be computationally intensive and 

impractical for a large amount of data with a centralized approach. That is where Spark 

comes in. Multiple comparisons can be computed in parallel using a Spark DataFrame 

with our trajectory comparison algorithm as a user defined function that is executed 

between each pair of users at a given level in our dataset at the same time. In this way, it 

is possible to not only spread out the comparison of users, but also each individual 

hierarchy level between the nodes in the Spark cluster.  

 

 

2.4. ISSUE OF LOOPING LOCATIONS 

Throughout the day, it may be very common for users to visit the same location 

multiple times. For example, the user leaves his home to go to school, then returns home 
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for lunch and heads back to school again until finally heading home for the day. The 

similarity comparison algorithms given in [1] and [2] does not deal with this issue and 

seeing as this would likely be a frequent scenario when analyzing the entire day of users, 

the similarity comparison in this paper has been modified to be able to handle looping 

locations. When constructing the adjacency matrix used to find the maximal length path, 

each repeat location will have its own node in the graph instead of looping caused from 

returning back up the tree. Figure 2.2. shows and example of a looping trajectory. 

 

 

 

Figure 2.2. Looping Location Trajectory 
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3. MAXIMAL CLIQUE FINDING 

3.1. BRON-KERBOSCH ALGORITHM 

After computing the similarity between all users, the graph of users will be 

constructed to leverage graph theory to find the cliques within the users. Each node in the 

graph will indicate a user in the dataset, and an edge between two nodes will indicate a 

similarity score over a certain threshold, α. Within this graph, the goal is to find all the 

groups of users that are fully connected to each other, which indicates that their locations 

throughout the day are semantically similar. 

After first testing a naïve approach for clique finding, the Bron-Kerbosch 

algorithm has proven to be the best method to use when finding all cliques within the user 

similarity graph. This approach was chosen because, although it may have a higher 

complexity than other clique finding algorithms, it is one of the best for finding all 

maximal cliques in practice [4]. Another benefit of using the Bron-Kerbosch algorithm, 

or any clique finding as our method for grouping similar users together, is that this type 

of “clustering” does not require any cluster validation because it is already guaranteed 

that every user in the clique is above the similarity threshold with all other users in the 

group. 

The Bron-Kerbosch algorithm is a simple backtracking procedure that works 

recursively to solve sub problems using three sets of nodes. The three sets are called R, X, 

and P. R contains the nodes that are required to be included in the partial clique. X 

contains the nodes that are going to be excluded from the clique. P contains the nodes 

that have not yet been considered. The algorithm finds maximal cliques that include all 

the vertices in R, some of the vertices in P and none of the vertices in X. In each recursive 
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call to the algorithm, P and X are disjoint sets where the union contains the vertices that 

form a clique when they are added to R. When P and X are both empty, there are no more 

nodes that can be added to R and R is output as a maximal clique [3]. 

In the first call of the algorithm, R and X are set to the empty set and P is the set 

of all vertices in the graph. Each recursive call considers the vertices in P in turn. For 

each vertex v chosen from P, a recursive call is made in which v is added to R and all 

neighbors of v are considered, in order, to find the clique one vertex at a time. Then v is 

moved from P to X to stop it from being considered in future cliques and then moves to 

the next vertex within P.  

If the graph running the Bron-Kerbosch algorithm has a large amount of non-

maximal cliques, the algorithm will degrade to be fairly inefficient due to making a 

recursive call for each clique even if it is not maximal. Since this may happen quite often 

in a graph that models social networks, it makes sense to modify the approach to adjust 

for this issue. The modified approach works by adding a pivot vertex chosen from the 

union of P and X. Since any maximal clique must have either the pivot vertex or a node 

which is not adjacent to the pivot, the number of vertices that need to be searched will be 

lowered in most common cases [4].  

Further specializing the Bron-Kerbosch for finding social groups, an additional 

check that R is greater than two before reporting it as a clique is made. This will ensure 

that only groups are being reported as opposed to every edge in the graph, which would 

be far too many to be useful. Since the goal of each call of the Bron-Kerbosch algorithm 

is to find all cliques a given user is a part of, another modification is made to initialize P 
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as all of the neighbors of the user that is being considered. This is due to the fact that any 

clique a user is in has to be composed entirely of its neighbors.  

 

 

Algorithm 1: Modified Bron-Kerbosch Pivot 

1: BKPiv(R, P, X): 

2: If P and X = {} and Length(R) > 2: 

3:  Return R as a maximal clique 

4: Select a pivot vertex u ∈ P U X 

5: For vertex v in P \ Neighbors(u): 

6:  BKPiv( R U {v}, P ∩ Neighbors(v), X ∩ Neighbors(v)) 

7:  P = P \ {v} 

8:  X = X U {v} 

 

 

3.2. BRON-KERBOSCH EXAMPLE 

Since the Bron-Kerbosch algorithm is key for constructing the geo-social 

network, an example of running through the procedure will be given for the example 

graph given in Figure 3.1. below. In this example, cliques of size two are returned to 

clearly show how the algorithm runs normally, but as mentioned previously, the program 

implementation will not return these “edge” cliques. 
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Figure 3.1. Example Graph for Bron-Kerbosch Algorithm 

 

 

The initial call will have the sets as R = {}, X = {}, P = {1, 2, 3, 4, 5, 6}. The 

pivot u is chosen as 5 from P U X. Now there are 3 nodes that will be iterated over in P \ 

N(u): 5, 2, 1. The first iteration of the loop v = 5. The recursive call is made with R = {5}, 

P = {3, 4, 6}, X = {}. Now, either 3 or 4 will be chosen as the pivot and two second 

recursive calls for 6 and which of 3 or 4 that was not chosen as the pivot. In the end, these 

calls will return the cliques of {3, 4, 5} and {4, 5} as well as adding 5 to X to no longer 

be considered and removing it from P. In the second iteration of the original call v = 2 

will make a recursive call where R = {2}, P = {1, 3, 6}, and X = {}. In the end, this call 

will eventually make three second recursive calls that will return {2, 6}, {2, 3}, and {1, 

2} as cliques. As before, node 2 is then added to X and removed from P to be no longer 

considered. The last iteration will have v = 1. It will make the first recursive call, where R 

= {1}, P = {}, and X = {4}. Since P is empty and X is not, it will not return any cliques 

and the Bron-Kerbosch algorithm completes. 
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3.3. PROGRAM SPECIFIC IMPLEMENTATION DETAILS 

The storage of graph information is put together with the idea of using the Bron-

Kerbosch algorithm. The neighbors for each node are collected and stored in Spark 

broadcast variable so these neighbor lists can be accessed at any time from any node in 

the cluster. The users that are actually a part of the user graph after dropping all 

connections below the similarity threshold are saved in another Spark broadcast variable 

so that only valid nodes are considered. As briefly mentioned before, the neighbors of the 

user being currently analyzed for cliques is found from the broadcast variable and sent as 

P when the clique finding function is called. This ensures that no irrelevant cliques are 

considered. The Bron-Kerbosch algorithm is called using a Spark user defined function 

on each node in the user graph so cliques for each user can be found. Each clique a node 

is a member of is written to a file, so the groups a user is a part of can be easily accessed 

later for creating the Geo-Social network.  

Below in Figure 3.2. is a complete overview of the process the program goes 

through from trajectory input data to outputting the cliques. 

 

 

 

Figure 3.2. Complete Process Overview  
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4. EXPERIMENT AND RESULTS 

4.1. EXPERIMENTAL DESIGN 

To test the approach, the two crucial phases of the similarity grouping are tested 

separately. This is due to the fact that when testing for a large number of users, 

performing some transformations on the data in Spark on a single computer was very 

time consuming, and not representative of the actual time it would take to compute the 

similarity between all users and to use the similarity results to find all maximal cliques 

within the graph. To help avoid some of this issue, the testing was divided into two 

portions. The first testing the similarity comparison and the second testing the clique 

finding approach. Goals for future testing involve utilizing Spark on a cluster so that the 

large transformations can be performed. Comparing the execution of each algorithm on a 

large amount of data with a centralized version is an important result to show that a Spark 

approach is preferred, however, it is not realistic that a Geo-Social network would 

constantly receive 100,000 users at the exact same time that all need to be computed. 

 Another set of tests that are much more applicable for implementing a Geo-

Social network is testing the time it takes to compute the similarity for a single new user 

and to find cliques of the new user. These tests are much more realistic and show that a 

Geo-Social Network is feasible to be run in real time after all of the heavy similarity 

calculations have been done offline. 
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4.2. GRAPH GENERATION 

As real-life input graphs for the clique finding will likely resemble a social 

network, testing on a uniform randomly generated graph is not the best approach. A 

uniform random graph gives a large overestimation of the stress that would be put on the 

clique finding algorithm when compared to real user data due to the substantial number 

of connections between users all over the graph. A uniform random graph does not model 

users and their communities very well and gives the clique finding algorithm little to 

work with in finding meaningful groups. Generating a different type of graph in order to 

test the algorithm properly would be a better approach. A simple graph to model social 

networks and clearly test the effectiveness of the clique finding algorithm is the Relaxed 

Caveman graph [6]. This graph is essentially a ring of cliques linked to form a connected 

graph. Additional connections between cliques are also added to mimic a real network as 

well as test the algorithm with a slightly more complicated graph. We can adjust some 

parameters when generating the relaxed caveman graph, such as the connection 

probability between cliques, the density of these connections and the minimum and 

maximum of the sub-components. 

 

 

4.3. TESTING RESULTS 

Despite not utilizing the full power of Spark by using only a single computer, the 

results of the experiments were still very promising for the Spark implementation. The 

biggest issue are the expensive DataFrame transformations, and when those are removed 

from the equation, the ability of Spark to utilize multiple threads showed over the 

centralized approach. However, this is a very real issue for the future and it will need to 
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be tested on multiple nodes to see if the data transformations are sped up simply by 

scaling out, or if more efficient transformations need to be found. The results for single 

user addition into the network were also favorable and show that running this approach in 

real time for construction of a Geo-Social network is possible.  

4.3.1. Similarity Comparison Results.  Similarity testing for the full set of 

users is an extremely computationally heavy task. In a true Geo-Social network this part 

of the process would take place offline on a large cluster to handle the amount of data and 

calculations that need to be done in order to find the similarity between all users at each 

level of the hierarchy tree. Although the goal was to test for the same increments of users 

as the clique testing, it was only feasible to test up to 50,000 users due to the very long 

run time. The results obtained are in Figure 4.1. Although this would take place offline 

and the time would not be as much of an issue, it would still be good to look for 

improving the efficiency of the similarity comparison itself which at this point is 

somewhat outdated. Using multiple nodes would yield a very large increase in speed due 

to the fact the DataFrame that has to be used to contain all of the rows for each pair of 

users at each level in the tree becomes massive very quickly as the number of users grow. 

It is impossible to store this huge table in main memory on a single computer and leads to 

a slowdown of the algorithm. 

4.3.2. Clique Finding Results.  The clique finding process had less issues than 

the similarity comparison, and the times were quite fast. For very low number of users 

the centralized approach is slightly faster than the Spark version, but as the number of 

users increase it can be quickly seen the benefits of parallelizing and using multiple 

threads. The overhead for setting up the Spark program seems to take most of the time for 
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the test cases examined while finding the cliques for all users is quite fast due to the 

modified Bron-Kerbosch.  

 

 

 

Figure 4.1. Full Similarity Comparison 

 

 

Results for Clique Finding are in Figure 4.2. It is also important to note again that 

the power of multiple nodes is not being used and finding the cliques for each user is a 

task that can be distributed across a cluster because finding the cliques of a given user is 

not dependent on anything besides the list of neighbors, which is stored in a broadcast 

variable that can be accessed from any node. In the future, when the neighbor list is large, 

and a cluster is being used, it would be better to only send the neighbor lists of the users 

being analyzed to the correct node. 
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Figure 4.2. Comparing Spark with Centralized for Clique Finding 

 

 

4.3.3. Single User Addition. The time it takes to add a single user into the  

network is very import to ensure it is realistic to run the Geo-Social network in real time. 

Adding a single user for clique finding takes almost no time given that the neighbors 

have already been found. Increasing the number of users does not increase the time to 

find a particular user’s cliques due to the fact that the goal is still simply to find the 

cliques they are in. Increasing the number of users will only increase the search space 

(neighbors of the given user) by a negligible amount in the context of the Bron-Kerbosch 

algorithm. Results are below in Figure 4.3. 

Adding a single user for similarity takes a bit longer but still a reasonable amount 

of time for a real time application. Increasing the number of users obviously has a much 

higher effect here, due to the fact a comparison must be made with every other user. The 

results can be seen in Figure 4.4. In the future, when using more nodes with Spark, these 
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single comparisons can be spread out between the cluster decreasing the computation 

time.  

 

 

 

Figure 4.3. Single User Clique Finding Results 
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further efforts to decrease the runtime of the algorithm. Looking at possible ways to 

further parallelize the similarity comparison could also be an option for improvement. 

The results are shown in the chart in Figure 4.5. 

 

 

 

Figure 4.4. Single User Similarity Results 
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Figure 4.5. Full Process Single User Addition 
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5. CONCLUSIONS 

5.1. FUTURE WORK 

Through this project, a great deal has been learned about how to use the Spark 

framework to perform our desired computation on a large dataset. Currently, the largest 

limiting factor for computation time is manipulation of the Spark DataFrames to get the 

data in a format to be entered to the algorithms and intermediate processing of the results 

rather than slow execution of the algorithms themselves. If this manipulation can be 

reduced, great improvements in speed would result. These manipulations may be running 

slowly because large datasets are being operated on using a single computer with a 

limited main memory. When the main memory is full, the process slows down 

considerable as a large amount of swapping is needed to work with all of the data.  

As mentioned previously, implementing the program in a cloud environment is 

the next major goal that will make a dramatic difference in the number of users that can 

be analyzed. Since the approach is designed to utilize this framework, the results would 

be greatly improved when the true benefits of Spark are used. 

Additionally, there is another version of the Bron-Kerbosch algorithm that looks 

at the ordering of the recursive calls to minimize the number of calls that are made. The 

order of the recursive calls is found by looking at the degeneracy ordering of the 

subgraph that is being considered. The degeneracy ordering approach can also be 

combined with pivoting to get a further optimized approach for finding cliques in graphs 

that have the structure of a social network. In the future, switching to using this combined 

approach will undoubtedly increase the speed of clique finding. 
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When the program is running more smoothly over multiple nodes, generating 

slightly more complicated graphs to test the clique finding algorithm is also a good step 

forward. Stochastic block model graphs are frequently used for creating graphs 

containing communities, without being as rigid as the relaxed caveman where every 

“community” is a standalone clique [7]. Another benefit of testing on this type of graph, 

is it will allow for multiple cliques in the same community to be grouped together, if 

desired, to obtain different levels of similarity for groups. 

Another approach that could be considered is instead of using the fairly rigid 

clique finding would be using a K-Distance Cliques approach. This algorithm detailed in 

[8] allows cliques to be composed of all users which are reachable with k jumps instead 

of just 1 jump required by a standard clique. This could allow for granularization of 

cliques by being able to identify general communities with higher values of k and more 

specific groups with lower values of k.  

 

 

5.2. FINAL THOUGHTS 

This paper successfully implements a parallel version of the similarity comparison 

algorithm in Spark as well as develops a modified version of the Bron-Kerbosch clique 

finding algorithm. Once the combined Spark program is implemented in a cloud 

environment, the scale which can be handled will increase greatly. The clique finding 

algorithm is working correctly for observed test cases and outputs all cliques that each 

user is a part of. Although there are some issues with the speed of parts of the process, the 

single user addition is fast enough, even on a single node, to run at real time for the 
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creation of a Geo-Social network. With this information it will be possible to construct a 

geo-social network to connect users with similar interests together, even if their locations 

are far apart.  
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