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Mechanistic studies of intracellular delivery of
proteins by cell-penetrating peptides in
cyanobacteria
Betty R Liu1, Yue-Wern Huang2 and Han-Jung Lee1*

Abstract

Background: The plasma membrane plays an essential role in selective permeability, compartmentalization,
osmotic balance, and cellular uptake. The characteristics and functions of cyanobacterial membranes have been
extensively investigated in recent years. Cell-penetrating peptides (CPPs) are special nanocarriers that can overcome
the plasma membrane barrier and enter cells directly, either alone or with associated cargoes. However, the cellular
entry mechanisms of CPPs in cyanobacteria have not been studied.

Results: In the present study, we determine CPP-mediated transduction efficiency and internalization mechanisms
in cyanobacteria using a combination of biological and biophysical methods. We demonstrate that both
Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 strains of cyanobacteria possess red
autofluorescence. Green fluorescent protein (GFP), either alone or noncovalently associated with a CPP comprised
of nine arginine residues (R9/GFP complexes), entered cyanobacteria. The ATP-depleting inhibitor of classical
endocytosis, N-ethylmaleimide (NEM), could block the spontaneous internalization of GFP, but not the transduction
of R9/GFP complexes. Three specific inhibitors of macropinocytosis, cytochalasin D (CytD), 5-(N-ethyl-N-isopropyl)-
amiloride (EIPA), and wortmannin, reduced the efficiency of R9/GFP complex transduction, indicating that entry of
R9/GFP complexes involves macropinocytosis. Both the 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) and
membrane leakage analyses confirmed that R9/GFP complexes were not toxic to the cyanobacteria, nor were the
endocytic and macropinocytic inhibitors used in these studies.

Conclusions: In summary, we have demonstrated that cyanobacteria use classical endocytosis and
macropinocytosis to internalize exogenous GFP and CPP/GFP proteins, respectively. Moreover, the CPP-mediated
delivery system is not toxic to cyanobacteria, and can be used to investigate biological processes at the cellular
level in this species. These results suggest that both endocytic and macropinocytic pathways can be used for
efficient internalization of regular protein and CPP-mediated protein delivery in cyanobacteria, respectively.

Keywords: Cell-penetrating peptide (CPP), Endocytosis, Green fluorescent protein (GFP), Macropinocytosis, Protein
transduction, Red fluorescent protein (RFP)

Background
Cyanobacteria, also known as blue-green algae, are
photosynthetic prokaryotes. They played a key role in
the evolution of life on Earth, converting the early
reducing atmosphere into an oxidizing one as they
performed oxygenic photosynthesis [1]. Cyanobacteria
are thought to be progenitors of chloroplasts via

endosymbiosis [2]. Approximately, 20–30% of Earth's
photosynthetic activity is due to cyanobacteria. The
proteomic composition and dynamics of plasma mem-
branes of cyanobacteria have been extensively character-
ized [2,3]. However, the influence of the structure and
composition of cyanobacterial membranes on cellular
uptake remains largely unknown. Delivery of exogenous
DNA into cyanobacteria was first reported in 1970 [4],
although the internalization mechanisms are still un-
known [1]. Since cyanobacteria play key roles in
supporting life on Earth and have potential in biofuel
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production and other industrial applications [5-7], un-
derstanding how they interact with the environment by
processes such as internalization of exogenous materials,
is becoming increasingly important.
The plasma membrane provides a barrier that hinders

the cellular entry of macromolecules, including DNAs,
RNAs, and proteins. In 1988, two groups simultaneously
identified a protein called transactivator of transcription
(Tat) from the human immunodeficiency virus type 1
(HIV-1) that possesses the ability to traverse cellular mem-
branes [8,9]. The penetrating functional domain of the Tat
protein is comprised of 11 amino acids (YGRKKRRQRRR)
[10]. Subsequently, many peptide analogues of the basic
amino acid-rich domain of the Tat protein were synthe-
sized and evaluated for membrane transduction potential
[11,12]. These positively charged, amphipathic peptides
were termed cell-penetrating peptides (CPPs) or protein
transduction domains (PTDs) [11-13].
Among synthetic peptides, the cellular uptake of

polyarginine was found to be much more efficient than
that of polylysine, polyhistidine, or polyornithine [13,14].
We found that a nona-arginine (R9) CPP peptide can
enter cells by itself or in conjunction with an associated
cargo [15-21]. Cargoes that R9 can carry include pro-
teins, DNAs, RNAs, and inorganic nanoparticles (not-
ably, quantum dots; QDs). R9 can form complexes with
cargoes in covalent, noncovalent, or mixed covalent and
noncovalent manners [22-24]. CPPs can deliver cargoes
up to 200 nm in diameter [11,25], and R9 can internalize
into cells of various species, including mammalian cells/
tissues, plant cells, bacteria, protozoa, and arthropod
cells [16,17,26,27].
Despite many studies using various biological and bio-

physical techniques, our understanding of the mechan-
ism of CPP entry remains incomplete and somewhat
controversial. Studies have indicated that CPPs enter
cells by energy-independent and energy-dependent
pathways [28]. The concentration of CPPs appears to
influence the mechanism of cellular uptake [28]. Our
previous studies indicated that macropinocytosis is the
major route for the entry of R9 carrying protein or DNA
cargoes associated in a noncovalent fashion [15,29,30].
However, we found that CPP/QD complexes enter cells
by multiple pathways [31,32]. Multiple pathways of cel-
lular uptake were also demonstrated with CPP-fusion
protein/cargo complexes associated in a mixed covalent
and noncovalent manner [22,24]. In contrast, our study
of the R9 modified with polyhistidine (HR9) indicated
direct membrane translocation [33].
The cellular entry mechanisms of CPPs in cyanobac-

teria have not been studied. In the present study, we
determined CPP-mediated transduction efficiency and
internalization mechanisms in cyanobacteria using a
combination of biological and biophysical methods.

Results
Autofluorescence
To detect autofluorescence in cyanobacteria, either live
or methanol-killed cells were observed using a fluores-
cent microscope. Both 6803 and 7942 strains of cyano-
bacteria emitted red fluorescence under blue or green
light stimulation (Figure 1, left panel) when alive; dead
cells did not display any fluorescence (Figure 1, right
panel). This phenomenon was confirmed using a con-
focal microscope; dead cyanobacteria treated with either
methanol or killed by autoclaving emitted no red fluor-
escence (data not shown). Thus, red autofluorescence
from cyanobacteria provided a unique character.

Mechanistic studies of protein transduction
To demonstrate protein transduction in cyanobacteria,
both 6803 and 7942 strains were treated with either
green fluorescent protein (GFP) alone or R9/GFP non-
covalently complexed at a molecular ratio of 3:1. After
20 min, the medium was removed, and cells were
washed and observed using a confocal microscope. Sur-
prisingly, green fluorescence was detected in both con-
trol and experimental groups in both strains (Figure 2a).
Red autofluorescence indicated that the cells in both
groups are alive (Figure 2a). To test whether GFP alone
enters cyanobacteria by classical endocytosis, physical
and pharmacological inhibitors, including low tempe-
rature, valinomycin, nigericin, N-ethylmaleimide (NEM),
and sodium azide, were used. Endocytic efficiencies of
GFP were significantly reduced in the 7942 strain treated
with 1 and 2 mM of NEM, while 2 mM of NEM
suppressed GFP uptake in the 6803 strain (Additional
file 1: Figure S1A). All of these inhibitors reduced the
entry of GFP, indicating that endocytosis is the route for
spontaneous GFP internalization (Additional file 1:
Figure S1B). Insofar as NEM was the most effective in-
hibitor of classical endocytosis in both stains (Additional
file 1: Figure S1B), it was used in subsequent experi-
ments.
To block classical energy-dependent endocytosis in

cyanobacteria, NEM was added to cells for 1 min
followed by addition of either GFP alone or R9/GFP
complexes. We found that both strains treated with GFP
emitted red fluorescence but not green fluorescence
(Figure 2b). In contrast, both green and red fluorescence
were detected in the cells treated with R9/GFP com-
plexes (Figure 2b). Relative fluorescent intensities were
analyzed and compared with control cells in the absence
of NEM and R9. NEM treatment decreased green fluor-
escence in cells exposed to GFP alone (Figure 2c), but
did not affect the level of green fluorescence in cells
treated with R9/GFP mixtures (Figure 2c). These results
suggest that GFP cannot cross NEM-treated cell mem-
branes without the assistance of R9. Thus, we
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hypothesize that there is an alternative route of protein
transduction in cyanobacteria in addition to classical
endocytosis.
To identify the alternative route for cellular entry of R9/

GFP complexes in cyanobacteria, we used macropinocytic
inhibitors 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), wort-
mannin, and cytochalasin D (CytD) in cells pretreated
with NEM to block clathrin- and caveolin-dependent
endocytosis. The cells were treated with either R9/GFP as
a control or R9/GFP plus macropinocytic inhibitors. Sig-
nificant reductions in the intensity of cellular green fluor-
escence were observed in treatments with CytD and
wortmannin in the 6803 strain of cells, and with all of the
macropinocytic inhibitors in the 7942 strain of cells
(Figure 3). Wortmannin was the most effective inhibitor
in the 6803 strain, while EIPA was the most effective in-
hibitor in the 7942 strain (Figure 3). These results indicate
that protein transduction of R9 in cyanobacteria involves
lipid raft-dependent macropinocytosis.

Cytotoxicity
To investigate whether treatments with R9 and GFP are
toxic and cause membrane leakage, cytotoxicity was
evaluated using cells treated with BG-11 medium and
100% methanol as negative and positive controls, re-
spectively. In the presence of NEM, cells were incubated
with R9/GFP complexes mixed with CytD, EIPA, or
wortmannin as experimental groups, respectively. The 1-
(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT)
assay was applied. There is a significant correlation (R2

= 0.9949) between cell number and activity of MTT
reduction (Additional file 2: Figure S2A). Further, 100%
methanol, 100% dimethyl sulfoxide (DMSO), and

autoclave treatments were effective in causing cell death
(Additional file 2: Figure S2B). We chose 100% methanol
treatment as a positive control for cytotoxicity analysis.
The 6803 strain treated with R9/GFP complexes mixed
with CytD, EIPA, or wortmannin in the presence of
NEM was analyzed by the MTT assay. No cytotoxicity
was detected in experimental groups, but significant re-
duction in cell viability was observed in the positive
control (Figure 4A). To further confirm the effect of
endocytic modulators on cell viability, the membrane
leakage assay was conducted. No membrane damage
was detected in the negative control and experimental
groups (Figure 4B). These data indicate that R9/GFP and
endocytic modulators were nontoxic to cyanobacteria.

Discussion
In this study, we demonstrate that both 6803 and 7942
strains of cyanobacteria use classical endocytosis for pro-
tein ingestion. Macropinocytosis is used by R9-mediated
delivery system as an alternative route of cellular entry
when classical endocytosis is blocked (Figure 2b, 2c, and 3).
Our finding of macropinocytosis-mediated entry of a CPP
is consistent with studies of protein and DNA delivery in
other eukaryotic cells [29,30,34].
We also demonstrate that cyanobacteria possess

red autofluorescence. Identification and quantification of
cyanobacteria in environmental samples or cultures can
be time-consuming (such as plating, fluorescent staining,
and imaging) and sometimes costly. Schulze et al. re-
cently presented a new and fast viability assay for the
model organism 6803 strain of cyanobacteria [35]. This
method used red autofluorescence of 6803 strain of
cyanobacteria to differentiate viable cells from nonviable

Figure 1 Autofluorescence detection in 6803 and 7942 strains of cyanobacteria. Cells were treated with either BG-11 medium or 100%
methanol to cause cell death. Bright-field and fluorescent images in the RFP channel were used to determine cell morphology and
autofluorescence, respectively. Images were recorded using an Eclipse E600 fluorescent microscope (Nikon) at a magnification of 1,000×.
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cells without tedious preparation [35-39]. A combination
of this new assay with absorption spectra or chlorophyll
concentration measurements was further proposed for
more accurate quantification of the vitality of cyanobac-
teria [35].
Most previous reports have focused on photosynthesis

as the major route by which cyanobacteria obtain nutri-
tion, while only a handful of studies have evaluated
endocytosis as a means of nutrition ingestion [1,40,41].
The first indication of macropinocytosis in cyanobacteria
came from our initial screening of CPP-mediated non-
covalent protein transduction among some representa-
tive organisms [26]. We found that the mechanism of
protein transduction in cyanobacteria may involve both
classical endocytosis and macropinocytosis [26]. While
cyanobacteria contain cell walls and peptidoglycan layers
[3], these structures did not hinder the penetration of
CPPs in cyanobacteria (Figure 3), Gram-negative bac-
teria, Gram-positive bacteria and plants [26,42,43]. Our
study is the first report that cyanobacteria use both
endocytosis and macropinocytosis to internalize exogen-
ous macromolecules (Figures 2 and 3). The sensitivity of
cyanobacteria to macropinocytic inhibitors is strain-
specific: the 6803 strain is more sensitive to wortmannin,

while EIPA is more highly effcetive at reducing protein
transduction in the 7942 strain (Figure 3). There was no
enough evidence yet to explain why NEM-treated cyano-
bacteria decreased green fluorescence in cells exposed to
GFP alone. We hypothesize that the spontaneous intern-
alization of GFP in cyanobacteria may be mediated heavily
by energy-dependent endocytosis, which can be blocked
by the ATP depletion reagent NEM (Figures 2 and 3).
However, NEM could not completely inhibit CPP-
mediated macropinocytosis, which is lipid raft-dependent
[25] and may be slightly energy-dependent [44].
Biofuels have emerged as one of promising sources for

alternative energy. Initial biofuel development was based
on the synthesis of ethanol using fermentative organisms
and polysaccharides [1]. The limited availability of poly-
saccharides led to extensive research on the direct use of
sunlight, the ultimate energy source on this planet.
Photosynthetic microorganisms can accomplish this by
fixing carbon dioxide and converting sunlight energy
into chemical energy as fuel. This raises the possibility of
using engineered cyanobacteria in two ways to improve
phtotosynthetic biofuel production. Cyanobacteria could
be either gene-engineered using recombinant DNA
technology [45,46] or protein-engineered using CPP-
mediated protein delivery method. Cyanobacteria have
an advantage compared to eukaryotic algae in that the
genetic manipulation of cyanobacteria is more straight-
forward and well-developed [1,45]. However, the protein
engineering of cyanobacteria mediated by CPPs is just at
its infancy.

Conclusions
In this study, we have demonstrated that both Syne-
chocystis sp. PCC 6803 and Synechococcus elongatus
PCC 7942 strains of cyanobacteria possess red autofluo-
rescence. Cyanobacteria use classical endocytosis and
macropinocytosis to internalize exogenous GFP and
CPP/GFP proteins, respectively. Moreover, the CPP-
mediated delivery system is not toxic to cyanobacteria,
and can be used to investigate biological processes at the
cellular level in this species.

Methods
Culture of cyanobacteria
Synechocystis sp. PCC 6803 (American Type Culture Col-
lection, Manassas, VA, USA, 27184) and Synechococcus

(See figure on previous page.)
Figure 2 CPP-mediated GFP delivery in cyanobacteria. (a) The 6803 and 7942 strains of cyanobacteria were treated with GFP only or R9/GFP
mixtures for 20 min at room temperature. (b) GFP delivery in the presence of the endocytic inhibitor NEM. Cells were pretreated with NEM, and
then either GFP only or R9/GFP was added to cells for 20 min. Green and red fluorescence were detected in GFP and RFP channels using a Leica
confocal microscope at a magnification of 1,000× (a and b). (c) Histogram of relative fluorescent intensity. Green fluorescence detected in the
cells treated with only GFP served as a control. Fluorescent intensity detected in experimental groups was compared to that of the control group.
Data are presented as mean ± SD from three independent experiments. Significant differences were set at P < 0.05 (*) or 0.01 (**).
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Figure 3 The mechanism of the CPP-mediated GFP delivery in
6803 and 7942 strains of cyanobacteria. Cells were treated with
NEM and R9/GFP mixtures in the absence or presence of CytD, EIPA,
or wortmannin (Wort), as indicated. Results were observed in the
GFP channel using a confocal microscope, and fluorescent
intensities were analyzed by the UN-SCAN-IT software. Data are
presented as mean ± SD from three independent experiments.
Significant differences of P < 0.05 (*) are indicated.
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elongatus PCC 7942 (ATCC, 33912) were grown in BG-11
medium with mild shaking at 50 rpm and regular illumin-
ation at 28°C, as previously described [26].

Plasmid construction and protein preparation
We used a pR9 plasmid containing a hexa-histidine and
an R9 sequence under the control of the T7 promoter,
as previously described [42]. The pQE8-GFP plasmid
consisted of the coding sequence of GFP under the con-
trol of the T5 promoter [42]. Plasmid DNA was purified
using a Nucleobond AX100 Kit (Machery-Nagel, Duren,
Germany).
Both pR9 and pQE8-GFP plasmids were transformed

into Escherichia coli and induced, as previously de-
scribed [47]. The expressed proteins were purified by
one-step immobilized-metal chelating chromatography.
The purified proteins were concentrated and dialyzed
using the Amicon Ultra-4 centrifugal filter devices
(Millipore, Billerica, MA, USA), as previously described
[15]. Proteins were then quantified using a Protein Assay
Kit (Bio-Rad, Hercules, CA, USA).

Protein transduction and mechanism of cellular uptake
The purified R9 peptide was mixed with GFP at a mo-
lecular ratio of 3:1 at room temperature for 10 min. To
investigate the delivery of exogenous proteins into
cyanobacteria, cells were washed with double deionized
water and treated with either GFP alone at a final
concentration of 800 nM or R9/GFP mixtures at a mo-
lecular ratio of 3:1. To determine the transduction of
noncovalent protein complexes, 1 and 2 mM of NEM
(Sigma-Aldrich, St. Louis, MO, USA) was added to
cyanobacteria, and either GFP alone or R9/GFP mixtures
were then added to cyanobacteria for 20 min [26].
To evaluate the role of classical endocytosis, physical and

pharmacological inhibitors, such as low temperature, 2 μM
of valinomycin [48], 2 μM of nigericin [49], 1 and 2 mM of
NEM [50], 10 μM of fusicoccin [51], and 10 mM of sodium
azide [49], were used, as previous described [31-33,52]. To
study macropinocytosis, cells were treated with or without
100 μM of EIPA (Sigma-Aldrich), 10 μM of CytD (Sigma-
Aldrich), or 100 nM of wortmannin (Sigma-Aldrich)
followed by the treatment of R9/GFP mixtures [31-33,52].
CytD is a blocker of the F-actin rearrangement that
disrupts all forms of endocytosis, including clathrin-,

caveolae-dependent endocytosis, and macropinocytosis
[31,33]. EIPA is an inhibitor of the Na+/H+ exchanger and
specifically inhibits macropinocytosis [31,53]. Wortmannin
interrupts the action of phosphoinositide 3-kinase, which
plays the key role in macropinocytosis [53,54]. Protein
transduction was quantified by fluorescent and confocal
microscopy.

Cytotoxicity assay
Cyanobacteria were treated with either BG-11 medium
or 100% methanol [55] for 24 h as a negative or positive
control, respectively. The MTT assay was used to deter-
mine cell viability [16,56]. Cells were treated with 100%
methanol, 100% DMSO, autoclave, or R9/GFP com-
plexes in the presence of endocytic modulators, and then
the MTT assay was performed. For the membrane leak-
age assay, cyanobacteria were treated with BG-11
medium as a negative control, treated with 100% metha-
nol as a positive control, or R9/GFP complexes in the
presence of endocytic modulators. After a 24 h incuba-
tion, cells were washed with double-deionized water
three times and then stained with 5 μM of either SYTO
9 (LIVE/DEAD BacLight Bacterial Viability Kit, Molecu-
lar Probes, Eugene, OR, USA) or SYTOX blue (Invitrogen,
Carlsbad, CA) [57] for 30 min at room temperature.
SYTO 9 stains nucleic acids of live and dead prokaryotes
in green fluorescence. SYTOX blue does not cross the
membranes of live cells, whereas the nucleic acids of
membrane-damaged cells fluoresce bright blue by SYTOX
blue. After washing with double-deionized water, cells
were observed using the TCS SP5 II confocal microscope
system (Leica, Wetzlar, Germany).

Fluorescent and confocal microscopy and
autofluorescence observation
Both bright-field and fluorescent images were observed
using an Eclipse E600 fluorescent microscope (Nikon,
Melville, NY, USA) and recorded using a Penguin 150CL
cooled CCD camera (Pixera, Los Gatos, CA, USA), as
previously described [58]. Confocal fluorescent images
were obtained using both the TCS SL as previously de-
scribed [24,59] and SP5 II confocal microscope systems
(Leica). The parameters of the TCS SL confocal micros-
copy were set as follows: excitation at 488 nm and emis-
sion at 500–530 nm for the detection of GFP, and

(See figure on previous page.)
Figure 4 Cell viability of the R9/GFP delivery system in the presence of uptake modulators. (A) The MTT assay. The 6803 strain of
cyanobacteria was treated with BG-11 medium as a negative control, or treated with 100% methanol as a positive control. In the presence of
NEM, cells were treated with R9/GFP complexes in the presence of CytD, EIPA, or wortmannin (Wort), respectively, and analyzed by the MTT
assay. Significant differences were determined at P < 0.01 (**). Data are presented as mean ± SD from nine independent experiments. (B) The
membrane leakage assay by a two-color fluorescence assay. The 6803 strain of cyanobacteria was treated with the same conditions in (A). SYTO 9
stains nucleic acids of live and dead cells in the GFP channel, while SYTOX blue stains nucleic acids of membrane-damaged cells in the BFP
channel. Blue and green fluorescence were detected in BFP and GFP channels using a Leica confocal microscope at a magnification of 630×.
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excitation at 543 nm and emission at 580–650 nm for
the detection of red fluorescent protein (RFP). Intensities
of fluorescent images were quantified using UN-SCAN
-IT software (Silk Scientific, Orem, UT, USA). The pa-
rameters of the TCS SP5 II confocal microscopy were
set as follows: excitation at 405 nm and emission at
436–480 nm for the detection of blue fluorescent pro-
tein (BFP), and excitation at 488 nm and emission at
498–523 nm for the detection of GFP.
For autofluorescence observation, cyanobacteria were

treated with either BG-11 medium or 100% methanol for
24 h. The cells were then washed with double deionized
water three times followed by microscopic observation.

Statistical analysis
Results are expressed as mean ± standard deviation
(SD). Mean values and SDs were calculated from at least
three independent experiments carried out in triplicates
in each group. Statistical comparisons between the con-
trol and treated groups were performed by the Student's
t-test, using levels of statistical significance of P < 0.05
(*) and P < 0.01 (**), as indicated.

Additional files

Additional file 1: Figure S1. Endocytic inhibition in cyanobacteria. (A)
Endocytic efficiency in cyanobacteria treated with NEM. Both 6803 and
7942 strains were treated with either 1 mM or 2 mM of NEM, followed by
the treatment of GFP. (B) Endocytic efficiency in cyanobacteria treated
with various endocytic modulators. Low temperature, 2 mM of NEM, 10
μM of fusicoccin, 2 μM of valinomycin, 2 μM of nigericin, and 10 mM of
sodium azide were used as the physical and pharmacological inhibitors.
Cells were treated with these inhibitors, followed by the treatment of
GFP. Significant differences were set at P < 0.05 (*) and P < 0.01 (**). Data
are presented as mean ± SD from three independent experiments.

Additional file 2: Figure S2. Cell viability analysis by the MTT assay. (A)
Cell number determined by optical density (OD) at the wavelength of 600
nm linearly correlates with that assessed by the MTT assay at the
wavelength of 570 nm. (B) Physical or chemical treatments reduce cell
viability. The 6803 strain of cyanobacteria was treated with 100%
methanol, 100% DMSO, or autoclave, followed by the MTT assay. Physical
or chemical treatment groups were compared with the group without
any treatment. And chemical treatment groups were compared with the
autoclave group. Significant differences were determined at P < 0.01 (**).
Data are presented as mean ± SD from nine independent experiments.

Abbreviations
BFP: Blue fluorescent protein; CPP: Cell-penetrating peptide;
CytD: Cytochalasin D; DMSO: Dimethyl sulfoxide; EIPA: 5-(N-ethyl-N-
isopropyl)-amiloride; GFP: green fluorescent protein; MTT: 1-(4,5-
dimethylthiazol-2-yl)-3,5-diphenylformazan; NEM: N-ethylmaleimide;
QD: Quantum dot; R9: Nona-arginine; RFP: Red fluorescent protein;
Tat: Transactivator of transcription; SD: Standard deviation.
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