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Abstract. Timoshenko beams have been widely used in structural and mechanical systems. Under dynamic loading, the analytical
solution of a Timoshenko beam is often difficult to obtain due to the complexity involved in the equation of motion. In this paper,
a modal perturbation method is introduced to approximately determine the dynamic characteristics of a Timoshenko beam. In
this approach, the differential equation of motion describing the dynamic behavior of the Timoshenko beam can be transformed
into a set of nonlinear algebraic equations. Therefore, the solution process can be simplified significantly for the Timoshenko
beam with arbitrary boundaries. Several examples are given to illustrate the application of the proposed method. Numerical
results have shown that the modal perturbation method is effective in determining the modal characteristics of Timoshenko beams
with high accuracy. The effects of shear distortion and moment of inertia on the natural frequencies of Timoshenko beams are
discussed in detail.

Keywords: Timoshenko beams, modal perturbation method, modal characteristics

1. Introduction

Beams are one of the basic members of large-scale space structures. The lateral vibration of beams is always
a concern to civil engineers [1,2]. Depending upon the assumptions introduced in the formulation of the equation
of motion, beams can generally be modeled with three theories: Euler-Bernoulli theory, Rayleigh theory, and
Timoshenko theory.

In the Euler-Bernoulli beam theory, the rotary inertia and shear deformation of a beam are neglected in the solution
of lateral vibration. The theory that takes into account the effect of the rotary inertia was first developed by Rayleigh.
Timoshenko extended the Rayleigh theory to include the effects of both rotary inertia and shear deformation. To
date, the Timoshenko beam theory is widely applied to describe the flexural vibration of beams [3,4].

The modal perturbation method [5–8], which was developed by expanding any perturbed term as a power series of
a small parameter, is an approximate technique for evaluating the effect of a small change in properties of a structural
system on its dynamic characteristics and responses. With this method, a set of recurrent formula can be established
for the structural system for the determination of its characteristics. The first-order approximation is usually used to
derive a numerical solution. Although the second- and higher-order approximations are often tempted to improve the
computational accuracy, the third or higher-order analysis in perturbation theory may not be stable and the second-
order approximation does not necessarily render more accurate solutions than the first-order approximation [9]. The
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direct modal perturbation method that relaxes the assumption for small parameters was developed to improve the
stability and accuracy of the conventional perturbation analysis [10]. Numerical simulations have demonstrated
that the direct modal perturbation method is very accurate in determining the natural frequencies, mode shapes and
modal participation factors of discrete systems. In this paper, the direct modal perturbation method [10] is applied to
solve the free vibration problem of a Timoshenko beam. This method utilizes a special Ritz expansion and derivative
relation between original and modified systems to simplify the searching process for dynamic characteristics of the
modified system. In doing so, the approximate solution of the Timoshenko beam can easily be obtained.

2. Differential equation for free vibration of Timoshenko beam

For a uniform Timoshenko beam with a mass per unit length m, Young’s modulus E, and the moment of inertia
of the cross section I , the undamped free vibration equation can be written as

∂4y

∂x4
+

m

EI

∂2y

∂t2
−

(
mr2

EI
+

m

kGA

)
· ∂4y

∂x2∂t2
+
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kGAEI
· ∂4y

∂t4
= 0 (1)

in which G is the shear modulus, and k is the average shear factor depending on the shape of the cross section. Since
the beam has uniform properties along its length, the coefficients of Eq. (1) are all constants.

When the beam vibrates in the form of its ith mode, the transverse displacement y(x, t) can be expressed into
yi(x, t) = φi(x) sin(ωit + αi). Substituting it into Eq. (1) gives the following modal governing equation of the
uniform Timoshenko beam:
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where φ
(k)

i = dkφi(x)
dxk (k = 2, 4), φi(x) is the ith eigen function of the beam, and ris the radius of gyration of the

beam cross section. Eq. (2) can be rearranged into:
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Let a = mr2

EI + m
kGA , b = m2r2

kGAEI , c = m
EI , and λi = ω2

i . Equation (3) can be rewritten as

φ
(4)

i (x) + aλiφ
(2)

i (x) + λi

(
bλi − c

)
φi(x) = 0 (4)

The line over any parameter in Eqs (2)–(4) represents that the parameter is for the Timoshenko beam. When the
effects of the rotary inertia and shear deformation are neglected or a = 0 and b = 0 in Eq. (4), the modal governing
equation of an Euler-Bernoulli beam can be established. That is,

φ
(4)
i (x) − cλiφi(x) = 0 (5)

where λi and φi(x) are the ith eigenvalue and eigen function of the Euler-Bernoulli beam, respectively. The solution
of Eq. (5) can be expressed into:

φi(x) = A sin pix + B cos pix + C sinh pix + D cosh pix (6)

in which p4
i = cλi, the coefficients A, B, C and D can be determined from the boundary conditions of the beam.

3. Direct modal perturbation method

To determine the eigenvalues and eigen functions of a uniform Timoshenko beam described by Eq. (4), the direct
modal perturbation method is introduced to simplify the process of solution. In this case, the Timoshenko beam is
considered as a new or modified system while the Euler-Bernoulli beam that has the same size, shape, and boundary
conditions as the Timoshenko beam is an original system. The eigenvalues and eigen functions of the Timoshenko
beam can be determined approximately using those of the Euler-Bernoulli beam. Following is a derivation of the
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dynamic characteristics of the Timoshenko beam when the perturbation method is applied to the continuous system.
The ith eigenvalue and eigen function of the Timoshenko beam can be expressed into:

φi(x) = φi(x) + ∆φi(x) (7)

λi = λi + ∆λi (8)

The increment ∆φi(x) can be approximately expanded as a sum of the first n lower eigen functions of the original
Euler-Bernoulli beam except its ith eigen function φi(x). That is,

∆φi(x) =
n∑

j=1,j �=i

φj(x)qj (9)

Equation (9) can be considered as a special Ritz expansion, in which q j is the generalized coordinate for Ritz
functionφi(x). After Eqs (7), (8) and (9) have been introduced, Eq. (4) becomes
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where φ
(k)
i = dkφi(x)

dxk . Introducing Eq. (5) into Eq. (10) results in
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By pre-multiplying both sides of Eq. (11) with φk(x)(k = 1, 2, · · · , n) and integrating the resulting equation over
the length of the beam, the k thequation for the unknown eigenvalue increment ∆λ i and the generalized coordinates
qj (j = 1, 2, · · · , n; j �= i) can be formulated as
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The orthogonal condition of the uniform Euler-Bernoulli beam can be expressed into∫ l

0

φk(x)φj(x)dx = ekδkj (13)

in which δkj is the Knonecker Delta function. After two new parameters, dkj =
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0 φk(x)φ(2)
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0
φ2
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Equation (14) can be rearranged into the following non-linear algebraic equation:

b∆λ2
i
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Let qi = ∆λi/λi. Equation (15) can be written in a matrix form when k = 1, 2, · · · , n
(q2

i [X ] + qi[Y ] + [Z]) {q} + {w} = {0} (16)

where
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⎡
⎢⎢⎢⎢⎢⎢⎣

ad11 + (2bλi − c)e1 ad12 · · · 0 · · · ad1n

ad21 ad22 + (2bλi − c)e2 · · · 0 · · · ad2n
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adi1 adi2 · · · beiλi · · · adin

· · · · · · · · · · · · · · · · · ·
adn1 adn2 · · · 0 · · · adnn + (2bλi − c)en

⎤
⎥⎥⎥⎥⎥⎥⎦

[Z] =

⎡
⎢⎢⎢⎢⎣

aλid11 + [bλ2
i + c(λ1 − λi)]e1 · · · aλid1i · · · aλid1n
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{w} = {aλid1i aλid2i · · · aλidii + bλ2
i ei · · · aλidni}T

{q} = {q1 q2 · · · qi · · · qn}T

At this point, the partial differential Eq. (4), has been transformed into a set of nonlinear algebraic equations
by applying the direct modal perturbation method. It can be clearly seen that Eq. (16) consists of n nonlinear
algebraic equations with n unknown variables in the vector{q}. In general, it is easier to solve the nonlinear algebraic
equations than the partial differential equation. The i th modal frequency and corresponding eigen function can then
be obtained by solving the nonlinear algebraic equations iteratively. Obviously, the integrals of d ij and the solution
of the nonlinear algebraic equation are main tasks in the modal perturbation method.

To illustrate the application process of the perturbation solution and evaluate its convergence and accuracy, a
uniform simply-supported Timoshenko beam of span length l is taken as an example. For a corresponding simply-

supported Euler beam,λi = ω2
i = (iπ)4EI

ml4 , φk(x) =
√

2
l sin( iπx

l ), and then dij = − (iπ)2

l2 δij . Thus, Eq. (15)
becomes

b∆λ2
i + ∆λi(adii + 2bλi − c) + λi(adii + bλi) = 0(k = i) (17)

(λk − λi)qk = 0(k = 1, 2, · · · , n; k �= i) (18)

Since λk �= λi for k �= i, qk in Eq. (18) must be zero. This means that the shear deformation and rotating inertia
have no effect on the flexural vibration mode of the simply-supported Timoshenko beam. However, they affect the
natural frequencies of the beam as indicated by a nonzero frequency increment ∆λ i in Eq. (17). The frequency
increment can be determined from
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∆λi =
1
2b

[
(c − adii − 2bλi) −

√
(c − adii − 2bλi)2 − 4bλi(adii + bλi)

]
(19)

When the effects of the shear deformation and rotating inertia are taken into account, the natural frequency of the
Timoshenko beam is reduced or ∆λi in Eq. (19) must be negative. Since ∆φi(x) = 0, φi(x) is equal to φi(x).
Therefore the solution of ∆λi determined from Eq. (19) is accurate as ∆λ i is independent of other modes φk(x)
(k = 1, 2, · · · ,∞, k �= i).

Let us consider the Euler-Bernoulli beam as an extreme case of the corresponding Timoshenko beam when
a = b = 0. In the case, ∆λi must be zero for i = 1, 2, · · · ,∞. This observation can be verified from Eq. (19).
According to the L, ‘Hopital’s rule, the limit of the increase in natural frequency when both a and b approach to zero
at the same rate, e.g., a = γb(γ is a constant), can be evaluated by

lim
a=γb→0

∆λi = lim
b→0

[−(γdii + 2λi) + (γdii + 2λi)
2

]
= 0 (20)

It shows that the solution obtained with the direct modal perturbation method is consistent with the analytical
solution of the simply-supported Euler-Bernoulli beam. From the above discussions, it is clear that the modal
perturbation method results in an exact eigensolution of the simply-supported Timoshenko beam.

4. Iterative process for solving nonlinear algebraic equations

For other boundary conditions of the Timoshenko beam, φ̄i(x) in Eq. (7) generally depends upon all eigen
functions φk(x) (k = 1, 2, · · · ,∞). Therefore, the number of modes must be truncated in order to determine the
approximate eigensolution from Eq. (16). After ∆λ i and the generalized coordinates qk(k = 1, 2, · · · , n; k �= i) in
{q} have been obtained, the solution of dynamic characteristics for the Timoshenko beam can be solved from Eqs (7)
and (8). As Eq. (16) is a nonlinear algebraic equation, an iterative technique must be used to obtain its solution. For
this reason, Eq. (16) is rewritten as

f(q) = {f1(q), f2(q), · · · , fj(q), · · · , fn(q)}T = {0} (21)

where the jth equation in Eq. (21) becomes

fj(q) = q2
i

n∑
k=1

λ2
i xjkqk + qi

n∑
k=1

λiyjkqk +
n∑

k=1

zjkqk + wj = 0 (22)

The iterative formula of the Newton method will be used here. It can be described as follows:

qm+1 = qm − (f ′(qm))−1f (qm) (23)

in which

[f ′(qm)]jk =
∂fj(qm)

∂qk

5. Applications in free vibration characteristics of Timoshenko beams

Table 1 to Table 3 show the natural frequencies of three Timoshenko beams with different boundary conditions that
are commonly seen in engineering practice. The numerical results were obtained by the direct modal perturbation
method (MPM) and the finite element method (FEM), respectively, taking into account the effects of the shear
deformation and rotating inertia. In the MPM analysis, 20 modes of their corresponding Euler-Bernoulli beam were
included. In the FEM analysis, each beam was divided into 10 elements. The FEM computer program used in the
numerical examples is Marc Software. The analytical solutions of the corresponding Euler-Bernoulli beam are also
listed in the tables for comparison. In all calculations, the Young’s modulus E = 2.06 × 10 11 N/m2, the Poisson’s
ratio µ = 0.33, the mass density ρ = 7.85 kg/m3, the cross section b × h = 0.3 m × 0.9 m and the slenderness ratio
η = l/r is equal to 10, 20, 30, and 40, respectively.
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Table 1
Natural frequencies of the simply-supported Timoshenko beam (Hz)

η Method f1 f2 f3 f4 f5 f6

10 MPM 262.2 789.9 1372 1960 2542 3119
FEM 265.7 810.6 1400 1984 2557 3124
Euler-Bernoulli beam 309.3 1237 2783 4948 7732 11133

20 MPM 73.66 262.2 512.1 789.9 1079 1372
FEM 74.09 267.0 527.9 822.5 1133 1450
Euler-Bernoulli beam 77.32 309.3 695.8 1237 1933 2783

30 MPM 33.60 126.6 262.2 424.5 602.7 789.9
FEM 33.70 127.8 267.0 435.9 623.5 822.5
Euler-Bernoulli beam 34.36 137.5 309.3 549.8 859.1 1237

40 MPM 19.08 73.66 157.2 262.2 382.1 512.1
FEM 19.12 74.09 159.0 267.0 391.5 527.9
Euler-Bernoulli beam 19.33 77.32 174.0 309.3 483.2 695.8

Table 2
Natural frequencies of the clamped-clamped Timoshenko beam (Hz)

η Method f1 f2 f3 f4 f5 f6

10 MPM 435.0 921.6 1492 2058 2717 3343
FEM 453.6 944.1 1515 2094 2957 3745
Euler-Bernoulli beam 701.1 1933 3788 6263 9355 13066

20 MPM 148.3 354.1 601.8 873.4 1190 1500
FEM 150.6 359.0 613.5 892.8 1515 1829
Euler-Bernoulli beam 175.3 483.1 947.1 1566 2339 3267

30 MPM 71.82 182.2 326.4 491.8 670.5 857.5
FEM 72.37 183.8 329.9 500.0 690.0 893.6
Euler-Bernoulli beam 77.89 214.7 420.9 695.8 1039 1452

40 MPM 41.98 110.0 203.2 315.7 443.0 582.9
FEM 43.14 114.3 203.3 316.7 446.5 589.3
Euler-Bernoulli beam 43.82 120.8 236.8 391.4 584.7 816.6

It is well known that the modal frequencies of a structural system computed with FEM are the upper limit values
for the natural frequencies of the system. This statement is verified by the numerical results shown in Tables 1–3. As
stated previously, the natural frequencies of the simply-supported Timoshenko beam computed by MPM are exact.
Obviously, the calculated values of the natural frequencies of the simply-supported Timoshenko beam obtained from
FEM are slightly different from the ones from MPM. Therefore, the proposed modal perturbation method could give
results that are more accurate than FEM. At the same time it has been shown from the results in Tables 1 to 3 that
the effect of the shear deformation and rotational inertia decreases as the slenderness ratio (η = l/r) increases. On
the other hand, with the same slenderness ratio, their effect increases as the order of vibration mode becomes higher.
More detailed explanations on the effect of the shear deformation and rotation inertia are discussed in the following
section.

6. The effects of shear deformation and rotation inertia

Let αi be defined as the ratio of the ith eigenvalue of a Timoshenko beam and an Euler-Bernoulli beam. That is,

λi = αiλi (24)

This coefficient can be used to quantify the effect of the shear deformation and rotation inertia of the Timoshenko
beam on its dynamic characteristics. According to Eq. (8), α i can be determined from

αi = 1 +
∆λi

λi
= 1 + qi (25)

Since ∆λi is negative, the coefficient ranges from zero to one. When it approaches to 1, the effect is very small
and negligible. Otherwise the effect needs to be considered.
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Table 3
Natural frequencies of the cantilever Timoshenko beam (Hz)

η Method f1 f2 f3 f4 f5 f6

10 MPM 102.0 468.6 1029 1583 2091 2253
FEM 102.8 485.2 1070 1685 2322 2960
Euler-Bernoulli beam 110.2 690.4 1933 3789 6262 9355

20 MPM 26.68 151.8 374.2 639.9 930.6 1232
FEM 27.05 153.9 382.5 659.1 964.5 1286
Euler-Bernoulli beam 27.54 172.6 483.3 947.2 1566 2339

30 MPM 12.03 72.14 188.2 338.8 513.3 704.5
FEM 12.14 72.67 190.8 346.1 527.9 728.4
Euler-Bernoulli beam 12.24 76.71 214.8 421.0 695.8 1039

40 MPM 6.80 41.15 111.6 206.9 322.1 452.7
FEM 6.85 41.83 112.7 210.1 329.0 464.9
Euler-Bernoulli beam 6.89 43.65 120.8 236.8 391.4 584.7

10 15 20 25 30 35 40
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 Mode 5
 Mode 6

η

Fig. 1. The relation between α and η.

The coefficient αi, defined in Eq. (24), is for the combined effects of the shear deformation and rotation inertia of
a Timoshenko beam, representing the difference between the Timoshenko beam theory and the Euler beam theory.
To understand their individual effect, another coefficient, β i, is defined as the ratio of the ith frequency reductions
due to the shear deformation and rotation inertia effects, respectively. It can be expressed into:

βi = |∆ωs
i /∆ωr

i | (26)

in which ∆ωs
i = ωs

i − ωiand ∆ωr
i = ωr

i − ωi represent the frequency reductions by taking into account the effect
of shear deformation and the effect of rotation inertia, respectively.

The coefficients αi and βi as a function of the slenderness ratio l/r are presented in Figs 1–6 for the simply-
supported, clamped-clamped and cantilever Timoshenko beams, respectively. It can be seen from Figs 1, 3 and 5
that the first eigen value of the Timoshenko beam approaches to that of the Euler beam only when the slenderness
ratio l/r � 30. For all higher-order modes, the frequencies of the Timoshenko beam are quite different from those
of the Euler beam. The higher the order of a mode, the more significant the effects of shear deformation and rotation
inertia will be. This means that, in addition to the slenderness ratio, the order of mode is also an important factor to
determine whether the effects of shear deformation and rotation inertia can be neglected. Furthermore, the excitation
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Fig. 2. The relation between β and η.
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Fig. 3. The relation between α and η.

frequency of a dynamic load must also be a determining factor in the assessment of shear deformation and rotation
inertia effects due to potential resonant effects.

It can be observed from Figs 2, 4 and 6 that the frequency reduction due to the presence of the shear deformation
is greater than that of the rotary inertia. This reduction becomes more pronounced as the order of mode becomes
higher and the slenderness ratio l/r decreases.
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Fig. 4. The relation between β and η.
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Fig. 5. The relation between α and η.

7. Conclusions

In this paper the direct modal perturbation method based on the Ritz expansion has been applied to solve for the
dynamic characteristics of a Timoshenko beam. The eigen functions of its corresponding Euler beam was chosen
as Ritz functions. Therefore the undamped free vibration equation of the Timoshenko beam can be converted into
a set of nonlinear algebraic equations. Numerical results from several examples have shown that the perturbation
method is accurate, computationally efficient, and applicable to Timoshenko beams of any support conditions. The
lower-order natural frequencies determined by this method are more accurate than those of the higher modes. The
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β

η

 Mode 1
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Fig. 6. The relation between β and η.

effects of shear deformation and rotation inertia are negligible when the slenderness ratio of the beam is large. The
difference between the natural frequencies of a Timoshenko beam and its corresponding Euler beam increases as the
order of mode becomes higher.
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