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Synopsis

Following recent work [e.g., J. Park et al., J. Rheol. 56, 1057–1082 (2012); T. Yaoita et al.,
Macromolecules 45, 2773–2782 (2012); and G. Ianniruberto et al., Macromolecules 45, 8058–8066

(2012)], we introduce the idea of a configuration dependent friction coefficient (CDFC) based on

the relative orientation of Kuhn bonds of the test and surrounding matrix chains. We incorporate

CDFC into the “toy” model of Mead et al. [Macromolecules 31, 7895–7914 (1998)] in a manner

akin to Yaoita et al. [Nihon Reoroji Gakkaishi 42, 207–213 (2014)]. Additionally, we incorporate

entanglement dynamics (ED) of discrete entanglement pairs into the new Mead–Banerjee–Park

(MBP) model in a way similar to Ianniruberto and Marrucci [J. Rheol. 58, 89–102 (2014)]. The

MBP model predicts a deformation dependent entanglement microstructure which is physically

reflected in a reduced modulus that heals slowly following cessation of deformation. Incorporating

ED into the model allows “shear modification” to be qualitatively captured. The MBP model is

tested against experimental data in steady and transient extensional and shear flows. The MBP

model captures the monotonic thinning of the extensional flow curve of entangled monodisperse

polystyrene (PS) melts [A. Bach et al., Macromolecules 36, 5174–5179 (2003)] while

simultaneously predicting the extension hardening found in PS semidilute solutions where CDFC is

diluted out [P. K. Bhattacharjee et al., Macromolecules 35, 10131–10148 (2002)]. The simulation

results also show that the rheological properties in nonlinear extensional flows of PS melts are

sensitive to CDFC but not to convective constraint release (CCR) while those for shear flows are

influenced more by CCR. The monodisperse MBP toy model is generalized to arbitrary

polydispersity. VC 2015 The Society of Rheology. [http://dx.doi.org/10.1122/1.4905921]

I. INTRODUCTION

The idea of a configuration dependent friction coefficient (CDFC), which is based on the

relative orientation of a test chain segment to the surrounding matrix chain segments, was

previously introduced by Park et al. (2012). Although related through a Kuhn–Gr€un analysis
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[e.g., Larson (1988)], a better, more fundamentally based proposition is to base CDFC on

the relative orientation of the Kuhn bonds of the test and matrix chains, respectively

[Ianniruberto et al. (2011, 2012) and Yaoita et al. (2012, 2014)]. Since CDFC impacts both

the stretch (Rouse) and terminal relaxation times equally, CDFC can in principle capture the

monotonic thinning of the extensional flow curve of entangled monodisperse polystyrene

(PS) melts [Bach et al. (2003)] while simultaneously predicting the extension hardening

found in entangled monodisperse PS solutions where the effects of CDFC are negligible due

to dilution [Bhattacharjee et al. (2002); Desai and Larson (2014)].

In addition to altering the form of CDFC employed, we shall also address other funda-

mental issues in molecular modelling the rheology of polymer melts. In particular, the

mono and polydisperse MLD models [Mead et al. (1998)] assume a constant entanglement

density in all flow situations. This fundamental assumption is almost certainly wrong.

Theoretically, the assumption of a constant entanglement density is reflected in the fact that

the equilibrium plateau modulus is used to scale the stress in all tube models, i.e., the

GLaMM model [Graham et al. (2003)], all Doi–Edwards type models such as the MLD

model [Mead et al. (1998); Mead (2007)], and the pom-pom model [McLeish and Larson

(1998)]. It is difficult to understand how the equilibrium plateau modulus can be used to

scale stress levels in the highly nonlinear flow regime since reductions in the entanglement

density have been demonstrated in nonequilibrium molecular dynamics simulations of

shear flow [Baig et al. (2010)] and detailed molecular models [Andreev et al. (2013)].

Additionally, interrupted transient step shear rate rheological data on linear and long-chain

branched (LCB) polyethylene melts by Dealy and Tsang (1981) (and references therein)

strongly support the idea of a dynamic entanglement network. These theoretical and experi-

mental results suggest that a fundamental reappraisal is appropriate for the formulation of

molecular constitutive models that span the full range of flows from linear viscoelasticity

to the nonlinear fast flow regime of linear and LCB polymer melts.

In this paper, we develop a new molecular model based on the dynamics of discrete

entanglement pairs (entanglement dynamics: ED) as opposed to traditional mean field

tube descriptions [Desai and Larson (2014)]. Adopting this description is supported by

recent atomistic simulations which reveal the nature of an entanglement to be that of a

topological coupling of a discrete pair of chains [Everaers et al. (2004); Tzoumanekas

and Theodorou (2006); Baig et al. (2010)]. Both the modulus and the terminal disengage-

ment time are functions of the entanglement density and changes to the entanglement

density will directly impact these quantities. This paper seeks to incorporate a quantita-

tive description of entanglement pair dynamics and a Kuhn bond based CDFC into the

mono and polydisperse MLD toy models. This will yield a general molecular constitutive

model at the theoretically and computationally simple toy level that can handle arbitrary

polydispersity in arbitrarily fast flows.

This paper is organized as follows: In Sec. II, we introduce a toy dynamical equation

for entanglement pairs in monodisperse systems. In Sec. II A, we define the specific form

of CDFC we shall use for monodisperse systems. Section III reviews aspects of the

Desai–Larson modified DEMG model {Doi–Edwards–Marrucci–Grizzuti [Pearson et al.
(1991); Mead and Leal (1995); Mead et al. (1995)]} which will serve as a base case for

the current work. Section IV introduces two new effects we anticipate will impact the dy-

namics of highly oriented systems. Section V summarizes the new monodisperse toy mo-

lecular model incorporating all the features presented in Secs. II–IV. Steady and transient

uniaxial extension is simulated and compared with experimental data in Sec. VI. Steady

and transient simulations are also performed for shear flow in Sec. VI A. The results of

our new molecular model are discussed and summarized in Sec. VII.
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II. MODELLING THE ENTANGLEMENT PAIR DYNAMICS FOR
MONODISPERSE SYSTEMS

We begin by constructing a toy dynamical equation for the number of entanglements on a

chain in a monodisperse melt. This is inspired by analogy to the slip-link EDs in the stochas-

tic simulator [Park et al. (2012)] and the discrete slip-link model of Andreev et al. (2013) and

is similar in spirit to transient network models [Mewis and Denn (1983)]. Ianniruberto and

Marrucci (2014) have independently pursued conceptually similar arguments to those pre-

sented below to construct a dynamical equation for the entanglement density

_N tð Þ ¼ Ne � N tð Þ
s1

d tð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
test chain tip diffusion

�b j : Stubeð Þ �
_K tð Þ
K
þ _a tð Þ

a

� �
N tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

convective destruction
of entanglements

þ Ne � N tð Þ
s1

d tð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
matrix tip diffusion

: (1)

Here, NðtÞ, represents the number of entanglement pairs per polymer chain at the cur-

rent time, t while Ne � ðM=MeÞ represents the average equilibrium number of entangle-

ment pairs per chain of molecular weight M with entanglement molecular weight Me.

The nonequilibrium tube disengagement time is s1
dðtÞ. In the second term on the right-

hand side (RHS), b is a parameter that reflects the “efficiency” of the convective con-

straint release mechanism (CCR). The velocity gradient is given by j and the orientation

tensor is defined by Stube � hR
_

R
_

i, where R
_

is the unit end-to-end vector of a tube seg-

ment. The relative stretch of the “partially disentangled” chain variable is defined by

KðtÞ � ½LðtÞ=LeqðtÞ�, where LðtÞ is the current tube contour length and LeqðtÞ is the equi-

librium length. Note here that KðtÞ is different from the relative stretch of a “fully

entangled” chain relative to the initial equilibrium length, which is defined as

kðtÞ � ½LðtÞ=Leq�. Additionally, the ratio between the maximum stretch ratios of both rel-

ative stretches is defined as aðtÞ � ½KmaxðtÞ=kmax�.
What Eq. (1) represents is the idea that entanglements are destroyed by CCR in pro-

portion to the current entanglement density, NðtÞ, times the fractional rate at which they

are destroyed via convection. Entanglements are created by tip diffusion/fluctuations of

the test chain and the matrix chains at a rate in proportion to the difference between the

entanglement density and its equilibrium value, a driving force, divided by the time scale

for the process, s1
dðtÞ.

We now derive the entanglement destruction term in Eq. (1), more specifically the

expression for the fractional rate of convective destruction of entanglements:

fðj : StubeÞ � ½ _KðtÞ=K� þ ½ _aðtÞ=a�g. Since LeqðtÞ is a function of the entanglement

density NðtÞ, i.e., LeqðtÞ �
ffiffiffiffiffiffiffiffiffi
NðtÞ

p
(see Eq. (A3) of Appendix A), differentiating KðtÞ

� ½LðtÞ=LeqðtÞ� with respect to time and simplifying yields

_L tð Þ
L tð Þ ¼

_Leq tð Þ
Leq tð Þ|fflffl{zfflffl}

Internal rearrangements
of the chain contour

due to CR driven disentanglement

þ
_K tð Þ
K tð Þ|ffl{zffl}

Fractional rate
of tube stretch

via all mechanisms

¼ 1

2

_N tð Þ
N tð Þ þ

_K tð Þ
K tð Þ : (2)

The fractional rate of change of the tube contour length ½ _LðtÞ=LðtÞ� has two separate

contributions. The first term on the RHS of Eq. (2) is new and represents the fractional

tube shortening/lengthening rate due to constraint release (CR) driven disentanglement.

The second term on the RHS represents the fractional rate of tube stretching due to affine
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stretch, chain retraction of the chain tips into interior parts of the chain, and CCR driven

tube shortening. All of the effects contained within the second term on the RHS have

been presented in Mead et al. (1998) and discussed in detail there. Only the disentangle-

ment term, ½ _LeqðtÞ=LeqðtÞ� ¼ ð1=2Þ½ _NðtÞ=NðtÞ�, is new. However, even this term is dis-

cussed in Sec. II A 2 of Mead et al. (1998). Note that in the original MLD model the

entanglement density was assumed to be constant, _N ¼ 0.

From Eq. (16) or Eq. (29), we determine that ½ _aðtÞ=a� ¼ �ð1=2Þ½ _NðtÞ=NðtÞ� so we finally

have an expression for ½ _LðtÞ=LðtÞ� in terms of Mead–Banerjee–Park (MBP) model terms

_L tð Þ
L tð Þ ¼

1

2

_N tð Þ
N tð Þ þ

_K tð Þ
K tð Þ ¼ �

_a tð Þ
a
þ

_K tð Þ
K tð Þ : (3)

Thus, calculating ½ _LðtÞ=LðtÞ� is straightforward in the MBP model. Equation (3) for

½ _LðtÞ=LðtÞ� can be used directly in Eq. (9) defining k of the MLD paper [Mead et al.
(1998), p. 7901]

k � j : Sð Þ �
_L tð Þ
L tð Þ ¼ j : Sð Þ �

_K tð Þ
K
þ _a tð Þ

a

� �
� j : Sð Þ �

_K tð Þ
K

� �
: (4)

Generally, jðj : SÞ � ð _KðtÞ=KÞj � jð _aðtÞ=aÞj which when valid reduces Eq. (4) to the

same CCR expression in the original MLD model. We use the expression for k (4) in

the convective destruction of entanglements term in Eq. (1) as well as in the stretch

equation and orientational relaxation equation, both of which include CCR, in the

MBP model.

Note that we have ignored factors of K2 in the denominator of the reptative diffusion

entanglement creation/destruction terms in Eq. (1). We ignore this factor in light of the fact

that we are not considering contour length fluctuations explicitly. Contour length fluctuations

have no such factor scaling the diffusive creation/destruction of entanglements. Tip contour

length fluctuations are presumably responsible for most of the diffusive entanglement crea-

tion/destruction processes. However, for the newly created tip entanglement to diffuse into

the interior of the chain, it takes the reptation time. Hence using the bare reptation time as a

characteristic time scale for entanglement creation is a compromise in this simple toy version

of the model. A tube coordinate is needed to have a proper description of the entanglement

creation/destruction processes. The model of Andreev et al. (2013) provides just such a

description in a detailed way. Experimentally, studies of the re-entanglement kinetics/dynam-

ics from virgin (unentangled), nascent polymer melts provide a viable means to quantitatively

determine the appropriate time scale for the re-entanglement processes described in Eq. (1)

[Yamazaki et al. (2006); Rastogi et al. (2003); Wang et al. (2009)].

The factor b scaling the convective destruction of entanglements term represents a

CCR efficiency factor related to the number of CR events required to generate a single

disentanglement [Ianniruberto and Marrucci (1996)]. This interpretation suggests that

0 < b < 1. The factor b was originally introduced by Ianniruberto and Marrucci (1996,

2001) to ensure a stable monotonic steady shear stress vs shear rate curve and b retains

this interpretation in the current work.

The nonequilibrium tube disengagement time s1
dðtÞ is a function of the entanglement

density, NðtÞ. Physically, this arises because the absolute distance for the chain to diffuse

shortens as the number of entanglements decreases. In Appendix A, we derive the result

s1
d tð Þ ¼ N tð Þ

Ne

� �
sd;0 tð Þ: (5)
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Here, s1
dðtÞ is the terminal tube disengagement time for arbitrary NðtÞ relative to the none-

quilibrium tube disengagement time, sd;0ðtÞ, which will be lowered in fast flows by

CDFC and hence is also a function of time (Sec. II A).

Using Eq. (5) in Eq. (1) the expression for the EDs can now be simplified and rewrit-

ten as

_N tð Þ ¼ 2Ne

sd;0 tð Þ
Ne

N tð Þ � 1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

entanglement creation
via tip diffusion

�b j : Stubeð Þ �
_K tð Þ
K
þ _a tð Þ

a

� �
N tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

CCR induced entanglement destruction

: (6)

Note that the MLD toy model for ED does not explicitly contain tip fluctuations which

are undoubtedly very important in the re-entanglement process [Mead (2011b); Andreev

et al. (2013)]. A more detailed model at the tube coordinate level is needed to properly

capture the effects of tip fluctuations versus reptational effects.

The modulus scales the stress in molecular models and is a function of the entangle-

ment density. It can be written as [Dealy and Wissbrun (1989)]

GN tð Þ � qRT

Me tð Þ ¼
qRT

M

N tð Þ

� � ¼ N tð Þ
Ne

G0
N : (7)

Here, G0
N is the equilibrium plateau modulus. q, R, and T are density, gas constant, and

absolute temperature, respectively. If the entanglement density is significantly lower than

equilibrium, the modulus will be directly impacted (lowered) for an extended period of

time following deformation. This could explain the phenomena of shear modification

which is still unexplained theoretically [Rokudai (1979); Yamaguchi and Wagner (2006);

Leblans and Bastiaansen (1989)]. Shear modification is a deformation-induced reversible

reduction in the dynamic moduli for high molecular weight polydisperse linear and LCB

entangled polymers [Dealy and Wissbrun (1989)]. Shear modification is one of the last

great unsolved theoretical problems in nonlinear molecular rheology.

One of the conundrums with the above EDs model is that in very fast extension virtu-

ally all the entanglements are convected away leaving a modulus that approaches zero.

Not surprisingly the discrete slip-link model by Andreev et al. (2013) has similar issues.

When all entanglements are stripped from the chain, the Peterlin modulus will be applica-

ble [Desai and Larson (2014)]. The Peterlin modulus is that of an unentangled ensemble

of stretched chains in a flow field.

A. Formulation of the expression for Kuhn bond based CDFC on the
stretch and terminal orientational relaxation times

Here, we briefly outline how to calculate the net fractional Kuhn bond orientation and

the reformulated expression for the decrease in the friction coefficient due to net Kuhn

relative bond alignment of the test chain with respect to the matrix chains. Note here that

structural parameters of PS are used since the experimental data of PS melts and solutions

are compared with the predictions by various models studied in this paper.

We start by denoting the net Kuhn bond orientation in the polydisperse MLD toy

model single segment as SKuhn. The net Kuhn bond orientation of the matrix is propor-

tional to the birefringence which, using the freely jointed chain model in a Kuhn–Gr€un

analysis, yields
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SKuhn ¼ 1� 3x

L�1 xð Þ

� �
Stube þ isotropic terms ¼ 1� 3x

L�1 xð Þ

� �
hR
_

R
_

i þ isotropic terms;

(8)

where Stube is the single tube segment orientation. The inverse Langevin function term,

L�1(x), in Eq. (8) can be accurately approximated within 1% [Treloar (1975), p. 178] for

easy calculation

1� 3x

L�1 xð Þ

� �
� 3

5
x2 þ 1

5
x4 þ 1

5
x6; (9)

where x is the fractional chain extension

x � k
kmax

: (10)

Note here that Yaoita et al. (2012) use the simplest approximation f1� ½3x=L�1ðxÞ�g
� x2 in their work. It is also noted that the definition of x will be altered, x � ðK=KmaxÞ,
for models that include entanglement density dynamics.

The maximum relative stretch kmax is calculated as [Mead (2011b)]

kmax ¼ n1=2 ¼ 0:82
Me

C1M0

J

� �1=2

: (11)

Here, J is the number of carbon-carbon sigma bonds in the backbone, J¼ 2 for PS, Me is

the equilibrium average entanglement molecular weight (13 333 Da for PS). In nonequili-

brium flow situations, the entanglement molecular weight is a function of concentration

and the dynamic entanglement density along the chain. C1 is the characteristic ratio, 9.8

for PS [Flory (1969)] and M0 is the monomer molecular weight, 104 Da for PS. n is the

number of Kuhn bonds in an entanglement segment. Note that for PS melts kmax ¼ 4:2, a

relatively small maximum stretch. The maximum stretch will be much larger (kmax > 25)

for the entangled high molecular weight (MW) entangled PS solutions considered by

Bhattacharjee et al. (2002).

Ianniruberto et al. calculated the functional form of the reduced friction versus ma-

trix Kuhn bond orientation for monodisperse PS melts in their 2012 paper [Ianniruberto

et al. (2012), see Fig. 4]. We use the Ianniruberto et al. (2012) CDFC calculation as a

guide

1 tð Þ
1eq

¼ sd;0 tð Þ
sd;eq

¼ ss tð Þ
ss;eq
¼ 0:02239 SKuhn tð Þð Þ�1:65

SKuhn > 0:1; (12)

where 1 is the monomeric friction coefficient, sd is the reptation time, and ss is the lon-

gest Rouse relaxation time. Subscript “eq” indicates equilibrium value and “0” means a

value for a fully entangled chain.

The true form of the dependence of the accelerated relaxation rate can in principle be

determined by the nonlinear extensional stress relaxation experiments of Yaoita et al.
(2012) which are of fundamental importance with respect to CDFC. These experiments

are discussed in detail in Sec. VI and Fig. 7.

Following Yaoita et al. (2012), we define the scalar net fractional Kuhn bond align-

ment SKuhn as
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SKuhn � /p

3

5
x2 þ 1

5
x4 þ 1

5
x6

� �
jStubej (13)

The fractional Kuhn bond orientation, SKuhn, varies between zero and one for perfect ori-

entation. The anisotropic tube orientation in uniaxial extension is denoted by

jStubej ¼ ðSxx � SyyÞ. For shear deformation, the principal values must be used,

jStubej ¼ ½ Sxx � Syyð Þ2 þ 4S2
xy�

1=2
. The mass fraction of polymer scales the fractional

Kuhn bond orientation and is represented by /p such that CDFC for both melts, /p ¼ 1,

and entangled solutions, /p < 1, can be modelled.

III. MODIFICATION OF THE DESAI–LARSON TOY DEMG MODEL TO
INCORPORATE ED, CDFC, AND CCR

Here, we briefly outline how to incorporate the new results in Secs. II and II A into the

Desai–Larson modified DEMG model [Desai and Larson (2014)]. We eliminate the

Desai and Larson tube dilation effect and replace it with the CDFC and EDs results pre-

sented in Secs. II and II A above. This allows both the disengagement time and the stretch

time to be modified by CDFC which should in principle allow an accurate modeling of

steady state extensional viscosity data for both melts and solutions.

One of the key theoretical developments in the Desai–Larson model is the derivation

of a new stretch dynamics equation for the partially disentangled chain that incorporates

the fact that the maximum extension is a function of the entanglement density [Mead

(2011b)]. When MeðtÞ ¼ ½M=NðtÞ� changes (increases) with deformation induced disen-

tanglement, the maximum stretch also increases as described below

Kmax tð Þ ¼ n1=2 ¼ 0:82
Me tð Þ
C1M0

J

� �1=2

¼ 0:82
M

C1M0N tð Þ J
� �1=2

: (14)

There is one new stretching effect to account for in the stretch equation: Stretch short-

ening due to removal of chain back folds. The stretch dynamical equation for the diluted

(partially disentangled) chain, generalized to include CR effects, is [Desai and Larson

(2014), Mead et al. (1998)]

_K tð Þ ¼ � _a tð Þ
a

K

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

stretch reduction

due to disentanglement

þ j : Stubeð ÞK|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
affine stretch

� ks
K� 1

ss

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
chain retraction

� 1

2
K� 1ð Þ j : Stube �

_K
K
þ _a tð Þ

a
þ 1

K2s1
d tð Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

CCR driven tube shortening

; (15)

where

a tð Þ ¼ Kmax tð Þ
kmax

¼ Ne

N tð Þ

� �1=2

and _a tð Þ ¼ � 1

2
Ne½ �1=2 N tð Þ½ ��3=2 _N tð Þ; (16)

and the nonlinearity of the spring is incorporated in a single factor denoted by ks [Cohen

(1991); Desai and Larson (2014)]
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ks tð Þ �
L�1 K tð Þ

Kmax tð Þ

� �
3

K tð Þ
Kmax tð Þ

� 3k2
maxa

2 � K2
� 	

= k2
maxa

2 � K2
� 	

3k2
maxa

2 � 1
� 	

= k2
maxa

2 � 1
� 	 : (17)

We have added a CCR tube shortening term to the Desai–Larson stretch equation (15)

that requires discussion. This is done in Sec. IV below.

The above generalized expression of the stretch dynamics is principally what we take

from the Desai–Larson diluted tube model. We use the EDs model presented in Sec. II to

replace the tube dilation dynamics expressions in the Desai–Larson model.

IV. MODIFICATION OF THE NEW CDFC-ED TOY MLD MODEL TO ACCOUNT
FOR REDUCED LEVELS OF CCR FOR HIGHLY ALIGNED SYSTEMS

In this section, we outline the manner in which the previously presented model can be

modified to account for the idea that CCR effects are different (greatly reduced) in sys-

tems of slightly oriented versus highly oriented chains. These effects will impact CCR

driven reorientation as well as CCR driven stretch relaxation (tube shortening) in fast

flows [Mead et al. (1998)]. These ideas are partly motivated by the work of Desai and

Larson (2014) that showed that CCR appears not to be important to capture the salient

features of fast nonlinear extensional flows. This is a conclusion that we affirm in calcula-

tions with our new model.

The specific effect, we wish to incorporate in our model, is that CCR effects do not

strongly impact highly aligned chains. For example, in the limit of perfectly aligned

chains in fast flow, there are no dynamical (topological) constraints and consequently

CCR will have no effect on the orientation or stretch of the test chain even though

j : Stube is very large [Desai and Larson (2014)]. Of course, this ideal limiting situation

can only be approached in any finite deformation rate flow. We propose an ad hoc empiri-

cism that smoothly transits between the Gaussian and highly oriented extreme situations.

A sketch of these ideas for CCR driven stretch relaxation is shown in Figs. 1 and 2.

We propose the following empirical changes to the stretch and orientation dynamical

equations to account for the ideas presented in the above thought experiment. CCR in

stretching flows relaxes ð1=2ÞðK� 1Þ of the stretch associated with a given entanglement

[Mead (2011a)]. Using the above ideas, we construct an empirical function that smoothly

transits between the Gaussian and highly oriented cases

1

2
K� 1ð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Gaussian tube
shortening

� 1

2
jStubejð Þ K� 1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

highly oriented biased
tube shortening

¼ 1

2
1� jStubejð Þ K� 1ð Þ: (18)

We have included a new empirical term to the tube shortening expression, ð1� jStubejÞ .
Figure 1 illustrates the physical ideas underlying this empirical factor multiplying the

tube shortening term. Note that for jStubej � 1, we assume the chain is unraveled and lin-

ear rather than a zig-zagged cat’s cradle (back folded) conformation. The new term effec-

tively wipes out tube shortening stretch relaxation for fast flows where the tube is highly

oriented. Desai and Larson (2014) have shown that this is a desirable feature to have in

the model for fast uniaxial extension and this underlies the motivation for this ad hoc fac-

tor in the stretch equation.
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Incorporating the new proposed physics into the stretch equation yields

_K tð Þ ¼ � K
a

_a tð Þ
� �

þ j : Stubeð ÞK� ks
K� 1

ss

� �

� 1

2
1� jStubejð Þ K� 1ð Þ j : Stube �

_K
K
þ _a tð Þ

a
þ 1

K2s1
d tð Þ

" #
: (19)

Thus, at high fractional extensions the effect of CCR on stretch smoothly disappears

as jStubej monotonically increases. Thus, CCR can effectively reduce stretch in shear

flows where the orientation is lower than it is in extensional flows.

We also propose an ad hoc modification to the orientation dynamics equation to

account for biased (reduced) reorientation due to nematic (molecular packing) effects in

highly aligned systems. Nematic effects are well established in cross-linked rubbers and

polymer melts [Doi et al. (1989)]. In such highly oriented systems the switch function,

ð1=KÞ, already diminishes the effect of CCR on the reorientation process. We add to this

effect with an ad hoc empirical nematic reorientation suppression factor ð1� SKuhnÞ

1

s tð Þ ¼ 1� SKuhnð Þ 1

K2 tð Þs1
d tð Þ
þ 1

K
j : Stube �

_K
K
þ _a tð Þ

a
þ 1

K2s1
d tð Þ

" #" #
: (20)

FIG. 1. Schematic diagram for tube shortening when jStubej < 1: The tube is crinkled and constraint release

shortens the tube and relaxes stretch and orientation [Mead et al. (1998); Mead (2011a)].

FIG. 2. Schematic diagram for tube shortening when jStubej � 1: Constraint release does not relax any stretch.

Note that the tube is unraveled and linear rather than in a zig-zag cat’s cradle (back folded) conformation

(jStubej � 1 in both cases). Fast, large deformations unravel the chain and generate highly extended nearly linear

conformations [Desai and Larson (2014), see Fig. 1].
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The factor ð1� SKuhnÞ empirically accounts for the idea that the reorientation process

will be biased (reduced) by nematic packing effects due to the net Kuhn bond orientation

of the matrix. Note that we are actually not including a biased reorientation but rather an

increased orientational relaxation time which has a similar effect on the orientation

level. Another way to look at this effect is that CR effects will be ineffectual in highly

aligned systems, i.e., when SKuhn is large (see Figs. 1 and 2). Including the new factor of

ð1� SKuhnÞ along with the switch function will effectively reduce all CCR driven reorien-

tation in fast stretching flows where SKuhn is large.

Note that there will be a sharp distinction between uniaxial extension and shear with

the above two modifications. In uniaxial extension, the orientation and stretch is severe

and the above two modifications will both kick in. Conversely, in shear flows the orienta-

tion and stretch is weak and ð1� SKuhnÞ � 1 such that there are no nematic effects in

melts or solutions.

V. SUMMARY OF THE EQUATIONS IN THE EDS—KUHN BOND CDFC
REFORMULATION OF THE MONODISPERSE MLD TOY MODEL

Here, we briefly summarize the equation set for the new monodisperse MLD “toy”

model [see Desai and Larson (2014), Eqs. (31)–(37) and note the differences]. We are

only considering the monodisperse case here. Generalizing the results to polydisperse

systems is an important goal of this work. This is straightforward and is done in

Appendix B.

We start with the deterministic differential evolution equation for the entanglement

pair orientation, Stube [Desai and Larson (2014); Mead (2007); Larson (1984); Marrucci

(1984)]. We choose the differential approximation to the orientation evolution for coding

simplicity and speed in computing. Here, Ŝtube represents the upper convected time

derivative

Ŝtube tð Þ þ 2 j tð Þ : Stube tð Þð ÞStube þ
1� SKuhn

s tð Þ

� �
Stube tð Þ � 1

3
d

� �
¼ 0: (21)

Relaxation time

1

s tð Þ ¼
1

K2 tð Þs1
d tð Þ
þ 1

K

� �
j : Stube �

_K
K
þ _a tð Þ

a
þ 1

K2s1
d tð Þ

" #
; (22)

where

s1
d tð Þ ¼ N tð Þ

Ne

� �
sd;0 tð Þ (23)

and CDFC

1 tð Þ
1eq

¼ sd;0 tð Þ
sd;eq

¼ ss tð Þ
ss;eq
¼ 0:02239 SKuhn tð Þð Þ�1:65 SKuhn > 0:1; (24)

SKuhn ¼ /p 1� 3xi

L�1 xið Þ

 !
jStubej � /p

3

5
x2 þ 1

5
x4 þ 1

5
x6

� �
jStubej; (25)
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where x � ðK=KmaxÞ and for uniaxial stretch jStubej ¼ ðSxx � SyyÞ while for shear

deformation

jStubej ¼ Sxx � Syyð Þ2 þ 4S2
xy

h i1=2

: (26)

EDs

_N tð Þ ¼ 2Ne

sd;o tð Þ
Ne

N tð Þ � 1

� �
� b j : Stube �

_K
K
þ _a tð Þ

a

� �
N tð Þ: (27)

Stretch dynamics

_K tð Þ ¼ � K
a

_a tð Þ
� �

þ j : Stubeð ÞK� ks
K� 1

ss

� �

� 1

2
1� jStubejð Þ K� 1ð Þ j : Stube �

_K
K
þ _a tð Þ

a
þ 1

K2s1
d tð Þ

" #
; (28)

a tð Þ � Kmax tð Þ
kmax

¼ Ne

N tð Þ

� �1=2

and _ai tð Þ ¼ � 1

2
Ne½ �1=2 N tð Þ½ ��3=2 _N tð Þ: (29)

Nonlinear spring

ks tð Þ �
L�1 K tð Þ

Kmax tð Þ

� �
3

K tð Þ
Kmax tð Þ

� 3k2
maxa

2 � K2
� 	

= k2
maxa

2 � K2
� 	

3k2
maxa

2 � 1
� 	

= k2
maxa

2 � 1
� 	 : (30)

Stress calculator

r tð Þ ¼ 3GN tð Þ
L�1 K tð Þ

Kmax tð Þ

� �
3

K tð Þ
Kmax tð Þ

2
6664

3
7775K2Stube � 3GN tð Þ ks tð ÞK2 tð ÞStube tð Þ; (31)

where the partially disentangled modulus is defined as

GN tð Þ � qRT

M

N tð Þ

� � ¼ N tð Þ
Ne

G0
N: (32)

The fact that the modulus is a function of time, GNðtÞ ¼ ½NðtÞ=Ne�G0
N , clearly demon-

strates that the new model will predict shear modification. For high molecular weight sys-

tems or systems with LCB, the entanglement microstructure will take an extended time

to heal during which the measured dynamic moduli will be lower than their equilibrium

values, G�ðx; tÞ < G�ðx;1Þ. This shear modification can be quite large and last for an

extended period of time as the entanglement microstructure slowly heals via the diffusive

process of reptation [Rastogi et al. (2003); Rokudai (1979)]. The entanglement
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microstructure will heal on a time scale of the disengagement time, sd;0, which can be

very long indeed for high molecular weight or LCB systems.

VI. SIMULATION OF MONODISPERSE LINEAR PS MELTS AND
ENTANGLED SEMIDILUTE SOLUTIONS IN STEADY AND TRANSIENT
UNIAXIAL EXTENSION

In this section, we explore the properties of the new MBP EDs model for monodisperse

systems by numerically solving the system of Eqs. (21)–(32) summarized in Sec. V.

Although the equation set appears complex and formidable, they are all ordinary differen-

tial equations that can be stepped forward in time using the simple Euler method. Because

the Euler method is first order in time care must be taken to take small enough time step

sizes to ensure convergence. Using the Euler method makes the code simple to write and

fast to execute. Computational speed becomes an issue when polydispersity is introduced

particularly so when the integral form of the orientation evolution equation is used

[Mishler and Mead (2013a, 2013b)].

We will execute our study by including/excluding various physical effects to isolate their

significance. The physics we are interested in understanding are CCR, ED (through b), and

CDFC. The simulation software allows us to turn the specific physics “on”/“off” and to

thereby quantify the impact of the specific physics on rheology. We shall be particularly

interested in the following basic models summarized in Table I. The experimental data sets,

which are used to compare with the calculated prediction results, are summarized in Table II.

The first simulations we perform are for the flow curves for steady uniaxial extension

of monodisperse PS melts. For these simulations, we shall choose a value of b ¼ 0:12

(ED on) in Eq. (27). This value is chosen such that the shear stress-shear rate curve is

monotonic (see Fig. 10 of Sec. VI A). A monotonic shear stress-shear rate curve is neces-

sary for stable shear flow [Ianniruberto and Marrucci (2001)]. All values of b < 0:12

yield monotonic shear stress-shear rate curves.

TABLE I. Summary of the family of toy molecular models studied.

Model CCR ED CDFC

DEMG off off (b ¼ 0) Off

DEMG-cdfc off off (b ¼ 0) On

MLD on off (b ¼ 0) Off

MBP on on (b 6¼ 0) On

MBP-xccr off on (b 6¼ 0) On

TABLE II. Experimental data sets compared (input parameter estimations were referred to Desai and Larson

(2014) and Likhtman and McLeish (2002). Me¼ 13 333 Da is used for all PS melts to give kmax¼ 4.2 whereas

Me for solutions are evaluated by dividing by Up
1.2. The values of sd,f given below include the effect of double

reptation.)

Sample GN
0 (kPa) sd,f (s) sS,eq (s) Neq Ref.

PS200K 200 1610 94.3 15 Bach et al. (2003)

PS200K-S 200 1.33 0.065 15 Schweizer et al. (2004)

PS545K 250 54418 779 41 Huang et al. (2013)

PS145K 290 7839 1134 10.7 Yaoita et al. (2012)

20% 1.95 M PS 6.8 6.26 0.17 30.4 Acharya et al. (2008)

7% 8.42 M PS 0.52 31.65 0.6 44.3 Pattamaprom and Larson (2001)
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The first system we shall study is PS200K [130 	C monodisperse PS melt by the work of

Bach et al. (2003)] in steady state extensional flow. The average equilibrium number of

entanglements per chain in this system is 15. The results of a variety of simulations are shown

in Fig. 3 along with the experimental data. The base case for comparison is the DEMG model

which has no ED, CCR, or CDFC. The DEMG line in Fig. 3 shows a ladle shaped flow

curve. The upturn in viscosity is associated with the onset of chain stretching and occurs

when the stretch Weissenberg number is about unity, _ess;eq � 1. Complimentary to the

DEMG model is the MLD toy model which is simply the DEMG model with CCR switched

on. Here again, we see the ladle shaped flow curve, lowered relative to the DEMG model by

the additional relaxation mechanism of CCR. The predicted flow curves of both the DEMG

and MLD models are qualitatively and quantitatively at odds with the experimental data.

FIG. 3. Steady state extensional viscosity as a function of extension rate: Experimental data are for monodisperse

PS200K at 130 	C [Bach et al. (2003)]. Predictions are from various options of the family of models (see figure

legend and Table I). This allows us to determine that CDFC is the essential ingredient required to capture the mon-

otonic extensional flow curve of monodisperse PS melts. The kink in the MBP flow curve begins at _ess;eq � 1.

FIG. 4. The steady state entanglement density, Nð_eÞ, versus extension rate, _e, for the MBP model and the MBP-

xccr model. The system simulated is monodisperse PS200K at 130 	C. For the case where ED is turned off, i.e.,

DEMG-CDFC the entanglement density is a constant equal to the equilibrium value of 15 (data not shown).
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The next simulation we execute is the base DEMG model with CDFC now turned on

(DEMG-cdfc). Its flow curve is now monotonic extension thinning and closely mimics

the experimental data both before and after _e � ð1=ss;eqÞ. This result, and those presented

in what follows, strongly suggest that CDFC is the essential feature needed to achieve a

monotonic thinning extensional flow curve for monodisperse PS melts [Desai and Larson

(2014)].

The simulation results are sensitive to the details of the specific expression for CDFC

used. In particular, the details of the form of the expression for SKuhn used matter in the

simulations. The shape of the flow curve is determined by the specific functional form of

CDFC used [see Eqs. (24)–(26)]. In particular, to achieve a monotonic flow curve CDFC

must be activated slightly before _e � ð1=ss;eqÞ. If CDFC is activated later than

_e � ð1=ss;eqÞ, a “kink” will occur in the flow curve. Precisely, when CDFC is activated

depends on the specific functional form of the CDFC we use.

The next simulation we perform is to include ED in the simulation. In this case, we

choose b ¼ 0:12 with both CCR on and CDFC on, i.e., the MBP model. ED is on for any

1 > b > 0. This generates the black solid curve in Fig. 3. Here, for _e < ð1=ss;eqÞ, we

observe excessive thinning with lower viscosity values relative to those for DEMG-cdfc

which is caused by CCR. The curve also shows an upturn around _e � ð1=ss;eqÞ due to the

onset of stretch. However, for _e > ð1=ss;eqÞ, it becomes a thinning curve again, approxi-

mately parallel to the DEMG-cdfc case. This thinning effect is due to the effects of

CDFC being activated. Hence, the results especially at _e > ð1=ss;eqÞ are approximately

equivalent to the DEMG-cdfc model when we add ED despite the fact that the internal

workings of the two models are entirely different. In particular the average number of

entanglements is dramatically lower when ED is turned on resulting in a lower modulus.

The lower modulus implies a different entanglement microstructure relative to the

DEMG model with CDFC now turned on which predicts a constant entanglement

density.

The final simulation we perform is with b ¼ 0:12, ED on, CCR off, and CDFC on

(MBP-xccr). This is shown as the blue dashed line curve in Fig. 3. As with the DEMG-

cdfc model, the MBP-xccr model generates results very close to the experimental data.

The flow curve shows a much smaller kink right after _e � ð1=ss;eqÞ than that of the MBP

curve and closely mimics the experimental data. The small kink is the result of stretch

being activated prior to CDFC being activated. Choosing a different functional form for

CDFC can in principle eliminate this kink by modifying precisely when CDFC is acti-

vated relative to _e � ð1=ss;eqÞ. Precisely when CDFC is activated is impacted by whether

ED and CCR are on or off. The details of the models, including when CDFC is activated,

are displayed in the figures of Appendix C.

We now address the perplexing question of why the simulations of the “straight”

DEMG-cdfc are very similar to the new MBP-xccr model with b ¼ 0:12, i.e., although

the details of the two models, such as the number of entanglements and the modulus, are

profoundly different, they nevertheless yield approximately equivalent extensional flow

curves in close agreement with experimental data. Figure 4 plots the average number of

entanglements per chain versus extension rate for b ¼ 0:12 with CCR off and CDFC on

(MBP-xccr model). We see that for fast extensional flows the average number of entan-

glements per chain is approximately half that at equilibrium. Physically, the modulus is

the manifestation of the entanglement microstructure [see Eq. (32)] and hence the modu-

lus drops off proportionately. Thus, the new MBP-xccr model predicts significant

changes in the entanglement microstructure in fast extensional flow.

Figure 5 plots the steady state relative stretches, k and K, for the two different models

(DEMG-cdfc and MBP-xccr) versus extension rate. Clearly the relative stretch of the

348 MEAD, BANERJEE, AND PARK



MBP simulations, K, is significantly larger than the relative stretch of the DEMG-cdfc

simulation, k. The reason that these two simulations yield approximately equivalent

extensional flow curves is that the effect of ED on the modulus, Eq. (32), is effectively

canceled by the corresponding increase in stretch. Using the expression for the stress

(31), we argue that for the two models the following products are proportional to the

extensional stress and are approximately equal even though K 6¼ k

GNðtÞK2
MBPxccrðtÞ � G0

Nk2
DEMGcdf cðtÞ: (33)

Here, we have made the assumption that orientation has effectively saturated when

stretch commences. The saturated orientation cancels on both sides of Eq. (33). We have

also assumed that the non-Gaussian factors ks are both close to unity and cancel. Note

that for any given model with ED the following equality holds:

GN tð ÞK2
ED tð Þ ¼ G0

N

N tð Þ
Ne

� �
k2

ED tð Þ Ne

N tð Þ

� �
¼ G0

Nk2
ED tð Þ: (34)

Here, k2
EDðtÞ represents the stretch relative to the equilibrium extension in any model

with ED. Hence, another way to see the approximation in Eq. (33) is to note that both the

DEMG-cdfc and MBP-xccr models yield similar expressions for the extensional stress in

fast steady extension, Eq. (34). However, note that k2
EDðtÞ and k2

DEMGðtÞ are calculated

differently in each model and hence are not equal.

The argument underlying Eq. (33) may very well explain the apparent “success” of

the mono and polydisperse MLD models in predicting nonlinear flows despite the fact

that all MLD models assume a constant entanglement density [Mead (1998, 2011a);

Mishler and Mead (2013a, 2013b)].

In Fig. 6, we examine the transient extensional viscosity versus time for the PS200K

melt. Transient extensional viscosities are more typical of what one encounters in prac-

tice since steady state (Hencky strains greater than �3) extensional viscosities are very

FIG. 5. The relative stretches for MBP, MBP-xccr, and DEMG-cdfc The respective curves are: kð_eÞ vs _e
(DEMG-cdfc) and Kð_eÞ vs _e (MBP and MBP-xccr) for the monodisperse PS200K melt. The relative stretch

Kð_eÞ is increased relative to the base DEMG-cdfc case by virtue of the unraveling of back folds that occurs in

the new model [Desai and Larson (2014)].
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difficult to achieve experimentally. The specific case that we examine is for an extension

rate of 0.01 s�1 which corresponds to a stretch Weissenberg number of _ess;eq � 1. Note

the broad maximum in the MBP curve at a Hencky strain of �1.5. The cause of the maxi-

mum is that EDs [NðtÞ] is controlled by ED and lags the stress, only slowly approaching

its steady state value. As in the case for the steady uniaxial flow curves, the DEMG-cdfc

and MBP-xccr models provide the best fit to the data.

The next transient extensional experiment we examine is stress relaxation after imposing

three Hencky strain units on a PS145K at 120 	C. These experiments were performed by

Yaoita et al. (2012) and provide definitive, hard experimental evidence for the existence of

CDFC. Figure 7 displays the results of our simulations along with the experimental data.

Figure 7 experimentally demonstrates that CDFC accelerates the relaxation following

FIG. 6. Transient extensional viscosity, geðtÞ versus t, for monodisperse PS200K at an extension rate of

0.01 s�1 (_ess;eq � 1). Note the small and broad maximum in the transient viscosity at a Hencky strain of � 1.5

for the MBP model. This is caused because ED lags the stress, i.e., it takes many Hencky strain units to partially

disentangle the melt. Note that the results from the DEMG and DEMG-cdfc models are effectively on top of

each other since this extension rate is below the onset of CDFC threshold.

FIG. 7. Normalized stress relaxation after imposing three Hencky strain units for a monodisperse PS145K melt

at 120 	C at three different steady extension rates. The higher the extension rate, the higher the net Kuhn bond

orientation and the greater the effect of CDFC on the initial rate of stress relaxation. The MBP model captures

this effect.
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cessation of stretch. The higher the initial stress, the higher the net Kuhn bond orientation

and the larger the CDFC effect and hence the faster the initial relaxation rate. The system-

atic increase in the initial rate of relaxation strongly supports the existence of CDFC and

this effect is quantitatively captured in the MBP model. Additionally, for the MBP model,

the entanglement density relaxes on a time scale of sd � 7800 s, much slower than the time

scale shown in Fig. 7. Hence, the modulus is lowered relative to the equilibrium state and

persists even though the deformation has ceased and this effect does not impact the relaxa-

tion processes in Fig. 7. This phenomenon is shear modification.

Finally, we examine another PS melt, PS545k studied by Huang et al. (2013). The

principal difference between this set of experiments/simulations and Fig. 3 is that the av-

erage number of entanglements per chain is very large, Z� 41. Hence, the separation

between the equilibrium stretch and orientational relaxation times is correspondingly

large since sd � 3Zss. However, despite this distinction the salient features of Fig. 8 are

largely similar to those discussed for the PS200K melt in Fig. 3. In particular, we see an

enhanced sensitivity as to precisely when CDFC is activated relative to the onset of

stretch. This sensitivity manifests itself in the size of the kink in the flow curve as dis-

cussed above with respect to Fig. 3. These simulations provide a severe test for the pre-

cise functional form of CDFC used.

Figure 9 shows the steady state experimental extensional flow curves for 20 wt. %

1.95 M PS solution at 21 	C showing monotonic thinning before, and hardening after,

_ess;eq � 1 [Acharya et al. (2008)]. The new MBP model qualitatively captures the salient

ladle shape features of the flow curve data as does the straight DEMG model without ED,

CDFC, or CCR. Once again, the DEMG-cdfc and MBP-xccr provide the best fits to the

experimental data.

Thus the new MBP-xccr model, which includes ED and CDFC, captures both the mono-

tonic thinning behavior of monodisperse PS melts and the thinning/hardening behavior

observed for entangled PS solutions. For solutions, CDFC is effectively diluted out and is

ineffective due to the factor of /p in Eq. (13) a point which is also discussed by Yaoita

et al. (2012). Hence, the results from the DEMG and DEMG-cdfc models are almost identi-

cal since CDFC is diluted out and is essentially inactive in semidilute solutions.

FIG. 8. Steady state extensional viscosity as a function of extension rate. Experimental data are for monodis-

perse PS545K melt at 130 	C [Huang et al. (2013)]. Predictions are from various options of the family of models

(see figure legend and Table I). Once again the DEMG-CDFC and MBPxccr models perform best.
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A. Simulation of monodisperse linear PS melts and solutions in steady and
transient shear flow

Since we are interested in a generally applicable toy molecular model, we examine the

predictions of the new MBP model in steady and transient shear flow. Here, the orienta-

tions will be lower than in fast extensional flows and we anticipate that CCR will be

more important than it is in fast extensional flows.

The first issue we address is determining the range of allowable values for b. We do

this by demanding that the shear stress vs shear rate curve be monotonic such that, con-

sistent with most experiments, shear flow of melts is stable [McLeish and Ball (1986)].

Figure 10 displays the derivative of several shear stress vs shear rate curves for different

values of b. It is evident that the shear stress-shear rate curves are monotonic (all positive

slopes) for all b < 0:12 and exhibit a broad maximum for b > 0:12. Hence, for our simu-

lations, we choose the maximum allowable value for b ¼ 0:12.

FIG. 9. Steady state extensional viscosity as a function of extension rate. Experimental data are for a monodisperse

20% 1.95 M PS solutions at 21 	C [Acharya et al. (2008)]. Predictions are from various options of the family of

models (see figure legend and Table I). Note that the results from DEMG and DEMG-cdfc are on top of each other.

FIG. 10. The (slope of shear stress-shear rate curve) derivative of steady shear stress with respect to _c,

ðdrxy=d _cÞ versus _c for a family of b values. For stable shear flow the shear stress vs shear rate curve must be

monotonic (positive slope everywhere). The maximum value of b that yields a monotonic curve of stress-shear

rate is b ¼ 0:12. The results from b ¼ 0:13 showed negative values around shear rate of 0.01 s�1 (curve not

shown).
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In Fig. 11 we compare the calculated shear flow curve for a 7 wt. % 8.42 M PS solu-

tion with experimental data [Pattamaprom and Larson (2001)]. We also compare the first

normal stress difference with data in Fig. 12. In both cases, all the models approximately

mimic the data. The MBP model improves the agreement with the experimental viscosity

at high shear rates whereas the normal stress differences are under predicted. Note that

the results from the DEMG and DEMG-cdfc models were very similar, which indicates

the effect of CDFC is very weak for solutions as was the case in the extensional flows of

semidilute solutions. The flow curve of MBP-xccr in Fig. 11 is very similar to those of

DEMG models but the discrepancy from the experimental data is a little lower than that

of DEMG models.

Figure 13 shows the simulation results of transient shear viscosity of a PS200K-S melt

[Schweizer et al. (2004)]. All the models display similar trends to those found in steady

shear flow of solutions with the DEMG-cdfc and MBP-xccr models performing best. The

FIG. 11. The shear flow curve, g vs _c, for a monodisperse PS solution 7% 8.42 M PS. Predictions are from vari-

ous options of the family of models (see figure legend and Table I). Note that the results from the DEMG and

DEMG-cdfc models effectively superpose since CDFC is diluted out of this semidilute system.

FIG. 12. The first normal stress difference for a monodisperse PS solution 7% 8.42 M PS is shown, N1 vs _c.

Predictions are from various options of the family of models (see figure legend and Table I). Note that the

results from the DEMG and DEMG-cdfc models are on top of each other since CDFC is diluted out of this

system.
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shear stress overshoot is missed by all models in fast shear flows, _c¼ 30 s�1. This is

caused by the differential form of the orientation evolution equation used in this work

rather than the rigorous integral formulation [Larson (1984); Marrucci (1984)]. Using the

original Doi–Edwards integral evolution equation, employing the universal orientation

tensor will significantly improve these fast transient shear simulations at the expense of

more complex simulation software.

VII. DISCUSSION/SUMMARY

We have constructed a mathematically and computationally simple toy molecular

model that includes ED, CDFC, and CCR into the base DEMG toy model: The MBP

model. This model is a natural next step in the systematic progression of increasingly

detailed and complex molecular models for entangled linear flexible polymers. This point

can be seen by noting that there are three essential components to the constitutive equa-

tion for a monodisperse polymer melt or an entangled semidilute solution. This can be

seen by referencing the stress calculator Eq. (31). {Note that Eq. (31) or Eq. (35) can be

generated directly from the stress-optical rule which is valid in both the linear and nonlin-
ear flow regions [Larson (1988)].}

rðtÞ ¼ 3 GNðtÞ|fflffl{zfflffl}
Entanglement

dynamics

K2ðtÞ|ffl{zffl}
Stretch

dynamics

StubeðtÞ|fflfflffl{zfflfflffl}
Orientation
dynamics

: (35)

The three fundamental components of any monodisperse constitutive relationship are; (1)

A quantitative description of the orientation dynamics, Eq. (21), (2) a quantitative

description of the stretch dynamics, Eq. (28), and (3) a quantitative description of the

EDs, Eq. (27) [which are manifested in Eq. (35) through the nonlinear modulus GNðtÞ
Eq. (32)]. The three essential constitutive equation components are, of course, all coupled

and nonlinear. They also incorporate effects like CDFC in the time scales in their

descriptions.

FIG. 13. Transient monodisperse 200 K-S PS melt at shear rates of 1, 10, and 30 s�1. Since the net Kuhn bond

orientation is low the effect of CDFC is negligible and the DEMG-cdfc model is approximately equal to the

DEMG model. The poor agreement with data at 30 s�1 is due to the use of the differential form of the orienta-

tion evolution equation.
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The original Doi–Edwards model assumed no stretch and no EDs only considering

the orientation dynamics in Eq. (35) [Doi and Edwards (1986)]. Consequently, the orig-

inal family of Doi–Edwards tube and reptation models is restricted to the linear visco-

elastic region. To access more general, nonlinear flow situations, the Doi–Edwards

model evolved naturally and systematically by next including the stretch dynamics to

generate the DEMG model [Pearson et al. (1991); Mead et al. (1995); Mead and Leal

(1995)]. The next step in the evolutionary progression was the MLD model which con-

sidered EDs in the form of CR in the restricted context of a constant net entanglement

density [Mead et al. (1998)]. The new MBP model relaxes the final restriction of a con-

stant entanglement density in order to access nonlinear flow phenomena far from equi-

librium. In the above manner, we can see the logical and systematic progression/

evolution of molecular models starting from the seminal work of de Gennes and

Doi–Edwards.

The new MBP model generates extensional flow curves that are monotonic thinning

(with a small kink near _ess;eq � 1) for monodisperse PS melts qualitatively consistent with

experiment. The results are sensitive to the specific functional form of CDFC used and the

predictions could potentially be improved by modifying the expression for CDFC to fit the

flow curve data [Eqs. (24)–(26)]. We have not performed this exercise but could do so in

principle. We have used a shifted version of the specific functional form of CDFC calcu-

lated by Ianniruberto et al. (2012) which has a sound theoretical basis underlying it. For

monodisperse PS solutions, the effects of CDFC are effectively diluted out and the classical

tube model ladle shaped extensional flow curve is generated. The simulation results

strongly suggest that CDFC is important in the prediction of rheological properties in non-

linear extensional flows of monodisperse PS melts. CCR is detrimental to the predictions in

extensional flows but is important for the rheological properties in shear flows.

We have also provided a plausible explanation as to why the DEMG-cdfc model

yields a monotonic thinning flow curve of monodisperse PS melts that are approximately

equivalent to those predicted by the new MBP-xccr model, i.e., DEMG with ED on,

CDFC on and CCR off. This may partially explain the previous apparent success of the

mono and polydisperse MLD models in predicting phenomena such as the Cox–Merz

rule even though the flow curves calculated assume a constant entanglement density

[Mead (2011b)]. This suspicious coincidence masks the underlying details that are

actually occurring in fast nonlinear flows of entangled polymers. Our new model simulta-

neously captures nonlinear flows and the entanglement microstructure modification that

occurs in these fast flows.

Incorporating ED into the model allows the nonlinear phenomenon of shear modifica-

tion to be captured by the model [Dealy and Wissbrun (1989)]. Shear modification mani-

fests itself in linear polymer melts with high MW and broad molecular weight

distribution (MWD) LCB. Direct measurement of the reduced modulus during or after

shear or extension would provide an excellent test of the new ED model [Mead (2013)].

Note that current molecular constitutive models for polymer systems with LCB do not

predict shear modification despite the fact that this is a prominent nonlinear property

[McLeish and Larson (1998)].

Generalizing the new MBP model to polydisperse systems is straightforward and is

performed in Appendix B. Having a generally applicable model for polydisperse systems

that is easy to code and fast to execute has many practical applications in analytic rheol-

ogy. We shall pursue applications such as MWD determination from transient exten-

sional rheology experiments in future work.

Finally, knowledge of the melt entanglement density following polymer shaping oper-

ations (finite deformations) is crucially important with respect to determining the ultimate
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mechanical properties of the part. Specifically, crystallization processes are severely

impacted by the entanglement density of the melt [Yamazaki et al. (2006); Wang et al.
(2009); Eder et al. (1990)]. The morphology of the resulting crystallites determines the

physical and mechanical properties of the final product [Rastogi et al. (2003)]. Hence,

the information gleaned from molecular models with ED, such as the MBP model, is

directly relevant to polymer processing operations.
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APPENDIX A: DERIVATION

In this Appendix, we derive Eq. (5) in the main text, the relationship between the non-

equilibrium tube disengagement time s1
dðNÞ, the number of entanglements N, and the

equilibrium terminal disengagement time, sd;0. We start with the relationship between the

tube length b and the Kuhn bond length a [Doi and Edwards (1986)]

Nb2 ¼ Mka2: (A1)

Here, N is the number of entanglements (tube segments). The end-to-end distance of

the tube segments and Kuhn bonds within them must be equal. Mk is the number of Kuhn

segments of length a. Hence, the tube length b is related to the number of entanglements

through

b ¼ Mk
1=2

N1=2
a: (A2)

The equilibrium tube contour length, Leq ¼ Nb, is a function of the number of entangle-

ments N

Leq ¼ Nb ¼ N1=2 Mk
1=2a

� 	
: (A3)

Note that Leq is a monotonically increasing function of N.

The terminal tube disengagement time sd is related to the tube length through [Doi

and Edwards (1986)]

sd ¼
Leq

2

p2Dc
: (A4)

Here, Dc ¼ ðkT=M1oÞ is the curvilinear diffusion coefficient and 1o is the monomeric

friction coefficient. We define the equilibrium terminal disengagement time as

sd;0 ¼ ðL2
eq=p

2DcÞ ¼ ðNeMkb2=p2DcÞ, where Ne is the equilibrium number of entangle-

ments. Substituting these expressions into Eq. (A4) above yields the result Eq. (5)

s1
d Nð Þ ¼ N

Ne

� �
sd;0: (A5)

356 MEAD, BANERJEE, AND PARK



APPENDIX B: GENERALIZATION OF THE NEW EDS—CDFC MLD TOY
MODEL TO POLYDISPERSE SYSTEMS

In this Appendix, we outline the manner in which the ideas presented in the main text

can be generalized to describe polydisperse systems. In this section i-j subscripts denote

components of the MWD and not tensor components [Mead (2007)].

The ij entanglement pair dynamics are described by the following equation which gen-

eralizes Eq. (1)

_Nij tð Þ ¼
N0

ij � Nij tð Þ
s1

d;i tð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
i-chain tip diffusion

�b j : Si;tubeð Þ �
_Ki tð Þ
Ki
þ _ai tð Þ

ai

" #
Nij tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

convective destruction of ij

entanglements

þ
N0

ij � Nij tð Þ
s1

d;j tð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
j matrix tip diffusion

:
(B1)

Here, NijðtÞ represents the number of j entanglements on an i chain and N0
ij ¼ wjNe;i

¼ wjðMi=MeÞ represents the equilibrium number of j entanglements on an i-chain and

Ne;i ¼ ðMi=MeÞ is the total equilibrium number of net entanglements on an i chain. Ne;i is

a function of molecular weight and the molecular weight between entanglements which

is assumed not to be affected by polydispersity.

The reptation time of an i-chain is modified by the number of current entanglements

of all other chains on the i-chain [Eq. (5) and Appendix A)

s1
d;i tð Þ ¼ Ni tð Þ

Ne;i

 !
sd;i tð Þ ¼

X
j

Nij tð Þ

Ne;i

0
B@

1
CA

sd;i tð Þ: (B2)

Of course, CDFC as described in Sec. II A will also be present which will reduce sd;iðtÞ
in fast flows.

The first approximation to try for the functional form of the reduced friction CDFC is

that used in our first paper [Park et al. (2012)]

1 tð Þ
1eq

¼ ss;i tð Þ
s0

s;i

¼ sd;i tð Þ
s0

d;i

¼ 1� k SKuhn;i|fflffl{zfflffl}
test chain

Kuhn bond

orientation

:
X

j

wjSKuhn;j|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
net matrix Kuhn
bond orientation

: (B3)

The above expression is written for a polydisperse system where the components are

denoted by subscripts and wj represents the weight fraction of MW component j. The

effect of Kuhn bond concentration is accounted for in the weight fraction of matrix poly-

mers and/or solvent. The relative orientation of the test chain and the matrix is quantified

by the double dot product of the two orientations.

This is one possible algorithm that we propose for CDFC of the polydisperse MLD

model. Other functional forms for the dependence of the friction factor on relative test

chain—matrix Kuhn bond alignment can be tried too. For example, by generalizing Eq.

(24), we see that

1 tð Þ
1eq

¼ ss;i tð Þ
s0

s;i

¼ sd;i

s0
d;i

¼ f SKuhn;i :
X

j

wjSKuhn;j

� �
¼ 0:02239 SKuhn;i :

X
j

wjSKuhn;j

� ��1:65

¼ 0:02239 x2
i Stube;i :

X
j

wjx
2
j Stube;j

" #�1:65

: (B4)
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This function approximates the monodisperse case, Eq. (24). Note that for most common

commercial molecular weight distributions, the effects of CDFC will largely disappear

due to the lower overall level of Kuhn bond orientation in polydisperse systems under or-

dinary flow conditions. The low MW components effectively act as solvent for the high

MW components [Mead (2011b)].

The i-component partially disentangled chain stretch equation remains unchanged

_Ki tð Þ ¼ � _ai tð Þ
ai tð Þ

� �
Ki tð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

stretch reduction
due to disentanglement

þ j : Sið ÞKi|fflfflfflfflfflffl{zfflfflfflfflfflffl}
affine stretch

� ks;i tð Þ Ki � 1

ss;i tð Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

chain retraction

þ 1

2
1� jStube;ij
� 	

Ki � 1ð Þ _U|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CCR tube shortening

;

(B5)

where _U is the fractional rate of matrix entanglement renewal, _U �
P

jwjfðj : Stube;jÞ
�½ _KjðtÞ=Kj� þ ½ _ajðtÞ=aj� þ ð1=K2

j sd;jÞg; and jStube;ij is the magnitude of the i-chain tube

orientation, jStube;ij ¼
P

jwjjStube;ijj. The nonlinear spring factor ks;iðtÞ is defined by Eq.

(30) for each i chain.

The maximum stretch ratio factor aiðtÞ � ½Ki;maxðtÞ=kmax� needs to be calculated to

solve the stretch equation. The easiest way to accomplish this is using the definition of

aiðtÞ along with the known entanglement pair dynamics, NijðtÞ

ai tð Þ � Ki;max tð Þ
kmax

¼ Ne;iX
j

Nij tð Þ

2
64

3
75

1=2

: (B6)

The factor _aiðtÞ in Eq. (B6) can be calculated numerically at each time step rather than

solving the ordinary differential equation for aiðtÞ.
Similarly, the orientation of the ij entanglement pairs obeys the following differential

equation [Mead (2007)]:

Ŝtube;ij tð Þ þ 2 j tð Þ : Stube;ij tð Þ
� 	

Stube;ij þ
1� SKuhn

sd;ij tð Þ

� �
Stube;ij �

1

3
d

� �
¼ 0; (B7)

where the ij entanglement disengagement time sd;ij is

1

sd;ij tð Þ ¼
1

K2
i tð Þsd;i tð Þ

þ 1

Ki

� �
j : Stube;jð Þ �

_Kj tð Þ
Kj
þ _aj tð Þ

aj
þ 1

K2
j tð Þsd;j tð Þ

" #
: (B8)

And SKuhn is the net matrix Kuhn bond orientation, SKuhn ¼
P

iwiSKuhn;i �
P

iwix
2
i

jStube;ij.
Of course, the Kuhn bond conformation dependence (CDFC) of the disengagement and

stretch times is applicable. This is why we write both sd;iðtÞ and ss;iðtÞ as functions of time.

Additionally, the effect of “solventlike” entanglements with respect to stretch proc-

esses needs to be accounted for in polydisperse systems. This can be accomplished in the

manner described in Mishler and Mead (2013a, 2013b), where entanglements with an av-

erage lifetime less than the Rouse time act as solvent with respect to stretch relaxation

processes.

The expression for the stress is more involved and requires some discussion. Consider

the expression for the stress from the polydisperse MLD model without EDs
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rðtÞ ¼ 3
X

i

ðwiG
0
NÞ ks;iK

2
i Stube;i ¼ 3

X
i

ðwiG
0
NÞ|fflfflffl{zfflfflffl}

i chain
modulus

ks;iK
2
i

X
j

wjStube;ijðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Stube;i

: (B9)

Here, G0
N � ðqRT=MeÞ represents the equilibrium value of the modulus and Me is the mo-

lecular weight between entanglements which for the MLD model is a constant. The factor

ks;i represents the effects of the i-component finitely extensible nonlinear spring,

Eq. (30). In Eq. (B9), we have assumed that GN ¼
P

iGN;i ¼
P

iðqiRT=MeÞ. However

qi ¼ wiq so that GN;i ¼ wiðqRT=MeÞ ¼ wiG
0
N , hence Eq. (B9).

We need to generalize this expression to allow for varying degrees of deformation

induced disentanglement, where the molecular weight between entanglements varies from

component to component in the MWD. The nonequilibrium modulus can be written as

GN;i � ½qiRT=Me;iðtÞ�. Here, Me;iðtÞ is the molecular weight between entanglements on the

i-component. In the polydisperse case with varying degrees of disentanglement two things

in the expression for GN change: qi ¼ wiq the number of i-strands per unit volume and the

molecular weight between entanglements on i-component chains MeðtÞ � ½Mi=NiðtÞ�.
With these two changes in mind, we can write the nonequilibrium i-chain modulus

GN;i by analogy to the monodisperse equilibrium case

qiRT

Me;i tð Þ ¼ wi
Ni tð Þ
Ne;i

 !
G0

N ¼ wiG
0
N

X
k

Nik tð Þ

Ne;i

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i chain

modulus

: (B10)

So, using the above expression for the i-chain modulus, we can write the stress for a sys-

tem with arbitrary polydispersity as

r tð Þ ¼ 3
X

i

wi

X
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Nik tð Þ

Ne;i

0
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0
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i chain modulus

ks;i tð ÞK2
i tð Þ

X
j

wjStube;ij tð Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Stube;i

: (B11)

As with the monodisperse case, polydisperse systems are predicted to display shear

modification since NikðtÞ will recover its equilibrium entanglement density Ne;i on repta-

tion time scales which can be extremely long for high molecular weight entanglement

pairs.

We anticipate that for typical commercial polydisperse polymer melts most of the

effects of CDFC discussed in this paper will disappear since the average level of Kuhn

bond orientation will be low. However, this will not be the case for the EDs effects. The

effects of ED such as shear modification will manifest themselves for broad polydisperse

melts with high molecular weight tails [Dealy and Tsang (1981); Rokudai (1979)].

APPENDIX C: INTERNAL DETAILS OF THE MODEL CALCULATIONS

In this Appendix, we detail the inner model workings underlying Fig. 3. In this way,

the mechanisms responsible for the observed uniaxial flow curves can be readily under-

stood. In Fig. 14 the steady state orientation as a function of extension rate is displayed

for the system described in Fig. 3. Similarly, Fig. 15 displays the steady state Kuhn bond
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orientation as a function of extension rate. An inflection point is seen in the curves at

_ess;eq � 1 corresponding to the onset of significant stretch. CDFC effects set in for Kuhn

bond orientations greater than 0.1. Finally, Fig. 16 displays CDFC, ð1=1eqÞ ¼ ðss;i=s0
s;iÞ,

as a function of extension rate and the onset of CDFC effects is clearly shown. All of the

above figures can be correlated to the extensional viscosity flow curve shown in Fig. 3

and obvious conclusions concerning the causes for the various features can be drawn. In

particular, precisely when CDFC is activated relative to _e � ð1=ss;eqÞ is impacted by

whether ED and CCR are on or off. Choosing a different functional form for CDFC can

in principle modify precisely when CDFC is activated relative to _e � ð1=ss;eqÞ.

FIG. 14. Steady state orientation as a function of extension rate for monodisperse PS200K at 130 	C [Bach

et al. (2003)]. Predictions are from various options of the family of models (see figure legend and Table I). This

allows us to determine the orientation levels when stretch and CDFC commence. The equilibrium stretch relaxa-

tion time is ss;eq � 94 s which does not include the effects of CDFC.

FIG. 15. Steady state Kuhn bond orientation as a function of extension rate for monodisperse PS200K at

130 	C. Predictions are from various options of the family of models (see figure legend and Table I). The equi-

librium stretch relaxation time is ss;eq � 94 which doesn’t include the effects of CDFC. CDFC commences

when Kuhn bond orientation is greater than 0.10.
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