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A constitutive model for entangled polydisperse linear flexible polymers with
entanglement dynamics and a configuration dependent friction coefficient.

Part I: Model derivation

D. W. Meada)
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S. Monjezi and J. Parkb)

Chemical and Biochemical Engineering Department, Missouri University of Science and Technology,
Rolla, Missouri 65409

(Received 7 April 2017; final revision received 3 August 2017; published 16 November 2017)

Abstract

A new polydisperse “toy” constitutive model is derived and developed from fundamental principles and ideas governing the nonlinear

rheology of linear flexible polymers [Mead et al., J. Rheol. 59, 335–363 (2015)]. Specifically, the new model is comprised of four

fundamental pieces. First, the model contains a simple differential description of the entanglement dynamics of discrete entanglement pairs.

Second, the model contains a differential description of the ij entanglement pair orientation tensor dynamics. Third, following a similar

development by Mead and Mishler [J. Non-Newtonian Fluid Mech. 197, 61–79 and 80–90 (2013).], a diluted stretch tube is constructed to

describe the relative stretch of each component in the molecular weight distribution (MWD). Fourth, a description of configuration dependent

friction coefficients is generated by generalizing the monodisperse formulation of Ianniruberto et al. [Macromolecules 45, 8058–8066

(2012)]. The polydisperse stress calculator is developed from the orientation, stretch and entanglement density and is fundamentally different

from other molecular models that assume a constant entanglement density. The resulting model is comprised of three differential evolution

equations and is simple to code and fast to execute. The model can simulate arbitrary fast nonlinear flows of arbitrary MWD’s. In the slow

flow linear viscoelastic limit, the model collapses to the double reptation model. This welcome result has positive implications with respect

to our model parameter determination [Ye et al., J. Rheol. 47, 443–468 (2003); Ye and Sridhar, Macromolecules 38, 3442–3449 (2005)] for

making quantitative calculations. VC 2017 The Society of Rheology. https://doi.org/10.1122/1.5009186

I. INTRODUCTION

The linear rheology of linear [1], star [2], branched [3]

and polydisperse blends [4] of entangled flexible polymers

are all quantitatively understood at this point in time. Indeed

entire research monographs have been written on this subject

[5]. With respect to linear viscoelasticity, only the rheology

of arbitrarily branched polymers remains to be quantitatively

explained with tube models [6]. However, this relatively

well understood state of affairs does not extend to the nonlin-

ear molecular rheology of entangled flexible linear polymers.

Since the linear viscoelastic material properties of mono and

polydisperse linear polymer melts are well understood both

theoretically and experimentally, it is only natural and logi-

cal that we now turn our attention to the molecular theory of

the nonlinear viscoelastic material properties of polydisperse

melts.

Although analytic molecular models of the nonlinear rhe-

ology of entangled polymers have been proposed previously

[7–9], they all suffer from fundamental deficiencies that

make them suspect. Given the importance of nonlinear

rheology in any polymer processing operation understanding

the rheology of flexible polymers at the molecular level is of

fundamental importance both theoretically and practically.

In addition to the practical relevance of our new model in the

“forward” direction, we shall subsequently utilize nonlinear

rheological measurements as a tool of analytic rheology by

inverting the proposed nonlinear constitutive relationship to

reveal the underlying molecular weight distribution (MWD)

[5,10]. This feat has never been attempted let alone accom-

plished. To accomplish this feat we require a mathematically

simple analytical model, as opposed to a stochastic simulator

which may very well perform equally well in the forward

direction, but is not invertible [11,12].

However, despite the importance of analytically con-

structed nonlinear molecular constitutive equations for flexi-

ble polymers even the fundamental principles underlying

them have not been fully identified to date. For example, the

two principal nonlinear analytic constitutive equations, the

(Graham–Likhtman–McLeish–Milner) GLaMM [8] and

(Mead–Larson–Doi) MLD models [7,9], both assume a

constant entanglement density as reflected by the fact that

the equilibrium plateau modulus scales the stress. In light

of recent molecular dynamics simulations and theoretical

studies, this fundamental assumption is almost certainly

wrong. Specifically, the molecular dynamics simulations of

a)Electronic mail: meaddavid@hotmail.com
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Baig et al. [13] clearly demonstrate that the entanglement

density of linear polyethylene melts decreases in fast nonlin-

ear shear flows. Given the fundamental importance of the

entanglement density in rheology getting a proper descrip-

tion of it is a theoretical imperative.

One of the fundamental principles underlying the formu-

lation of general molecular constitutive equations of

entangled polydisperse linear flexible polymers is the near

universal adherence to the stress optical rule [14],

nðtÞ ¼ CrðtÞ þ isotropic terms: (1)

Here, nðtÞ is the intrinsic birefringence and rðtÞ is the

deviatoric stress. The stress optical coefficient C is a scalar

constant for a given entangled polymer melt/solution. The

general validity of the stress optical rule in both linear and
nonlinear flows of mono and polydisperse melts establishes

that stress is proportional to the second moment of the seg-

mental end-to-end vector, hRðtÞRðtÞi, times a modulus,

GNðtÞ. A chain segment is the portion of chain trapped

between successive entanglements along the chain. For

monodisperse systems, the “toy” molecular model for

entangled linear polymers can therefore be approximately

written as [15,16]

rðtÞ ¼ �hRFi � �jRjhFihR̂R̂i

� GNðtÞ|fflffl{zfflffl}
Entanglement

dynamics

ksðtÞK2ðtÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Stretch

dynamics

S tubeðtÞ|fflfflffl{zfflfflffl}
Orientation
dynamics

; (2)

where � is the number density of chain segments and hFi
¼ ðkT=bÞL�1ðxÞ is the average tension in the chain segment.

Here, b is the length of a single Kuhn bond and L�1ðxÞ is the

inverse Langevin function. Note that we have invoked the

tension-orientation decoupling approximation in Eq. (2)

which is justified by the general validity of the stress optical

rule. The stress optical rule will be violated whenever the

nonlinear FENE spring factor ks [see Eq. (20)] is signifi-

cantly greater than unity, ks > 1. This occurs when the frac-

tional chain extension exceeds �0.5 [18,19].

Although the above expression is for a monodisperse sys-

tem the same principles will apply to each component in a

polydisperse system. Thus, the three fundamental compo-

nents of any molecular constitutive relationship are: (1) A

quantitative description of the orientation dynamics, S tubeðtÞ
¼ hR̂ R̂i(orientation tensor which is defined as ensemble

average of the unit end-to-end vector of a tube segment). (2)

A quantitative description of the relative stretch dynamics,

KðtÞ ¼ LðtÞ=LeqðtÞ (the relative stretch of the “partially dis-

entangled” chain which is defined as the ratio between the

current tube contour length, L(t), and the equilibrium length,

Leq(t). (3) A quantitative description of the entanglement

dynamics (ED) (which are manifested through the nonlinear

time dependent modulus GNðtÞ). These three essential consti-

tutive equation components are, of course, all coupled and

nonlinear. They also incorporate effects like a configuration

dependent friction coefficient (CDFC) into the time scales of

their descriptions.

The original Doi–Edwards model assumed no stretch and

no ED (i.e., a constant modulus) only considering the orien-

tation dynamics in Eq. (2). Consequently, the original family

of Doi–Edwards tube and reptation models is restricted to

the linear viscoelastic and weakly nonlinear flow regions. To

access more general, strongly nonlinear fast flow situations,

the Doi–Edwards model evolved naturally and systemati-

cally by next including the stretch dynamics to generate the

(Doi–Edwards–Marrucci–Grizzuti) DEMG model [17–19].

The next step in the evolutionary progression of nonlinear

molecular constitutive models was the MLD model which

considered ED in the form of convective constraint release

(CCR) in the restricted context of a constant net entangle-

ment density [7,9]. The newly proposed (Mead–Park) MP

model relaxes the final restriction of a constant entanglement

density in order to access general fast nonlinear flow phe-

nomena for polydisperse melts far from equilibrium. In the

above manner, we can see the logical and systematic pro-

gression/evolution of molecular models starting from the

seminal ideas proposed by de Gennes and Doi–Edwards

[14]. [A genealogic tree for our model starting from the orig-

inal Doi–Edwards model is presented in Appendix A (Fig.

6).] In this paper, we shall continue the natural evolution of

molecular models by extending ideas of ED to polydisperse

melts in general nonlinear flows.

In this paper, as in our previous work [15], we shall con-

tinue to use the term “tube” despite the fact that we believe

that defining entanglements as discrete pairwise couplings

(slip links) between two chains is a more accurate physical

description of chain-chain uncrossability/confinement inter-

actions [11,12]. Indeed, the traditional tube is an unhelpful

concept in the nonlinear rheology of polydisperse systems.

Invoking a mean field tube effectively fixes the entanglement

density at a prescribed level consistent with the “tube

diameter.” Thus the tube concept is not conducive to simple

descriptions of polydisperse pairwise ED since this would

necessitate a continuously varying dynamic tube diameter.

We believe that a simpler and more physical, natural

approach is to describe the viscoelastic properties in terms of

the pairwise ED as the conceptual paradigm rather than a

mean field tube [20]. Hence, when we use the term tube in

this paper we mean a series of discrete, oriented ij entangle-

ment couplings along the chain. It is the orientation, stretch

and survival dynamics of discrete ij entanglement pairs that

provides the theoretical focus of the MP model of polydis-

perse linear polymers.

This paper is organized in the following manner: In Sec.

II, we begin the development of the polydisperse MP model

which has been in part previously published [15,21–23].

Section II A develops the partially disentangled and diluted

stretch tube relative stretch relationship. Section II B derives

the ij entanglement differential orientation tensor evolution

equation. In Sec. II C, we generate the ij entanglement pair

survival dynamical equation. Section II D takes up the issue

of generating a general expression for CDFC. Sections

II A–II D are concatenated in Sec. II E to develop the stress

calculator in the partially disentangled tube. Finally, in Sec.

III we summarize our model derivation and discuss the

model properties. Because the polydispersity model is novel
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in many ways we include a list of terms and their definitions

in Nomenclature. Basic properties of the model, such as pre-

dicting shear modification, are presented in Paper II. Model

parameter determination and validation of our model through

simulation of model polydisperse system will be demon-

strated in Paper III.

II. DERIVATION OF THE POLYDISPERSE MP TOY
MODEL FOR ENTANGLED LINEAR FLEXIBLE
POLYMERS

In our previous paper, we developed a toy constitutive

model for entangled mono and polydisperse linear flexible

polymers that displayed considerable promise in predicting

both extensional and shear flow properties in the highly non-

linear flow regime [15,21]. In this paper, we continue our

study of the constitutive model by detailing how to model

polydisperse systems in arbitrary fast flows. We shall con-

sider model MWDs with P discrete weight fractions,PP
j¼1 wj ¼ 1. Here and throughout this paper subscripts

denote discrete molecular weight components not tensor

component indices unless stated explicitly otherwise.

As alluded to in the Introduction, we shall necessarily

focus on the dynamics of discrete ij entanglement couplings

where both i and j range from one to P. Indeed, as we pro-

ceed we shall see that our model is essentially an elaborate ij

entanglement bookkeeping model where the orientation,

stretch and survival dynamics are meticulously tracked for

all P components in the MWD. With this overview in mind

we proceed to develop the dynamics of each ij entanglement

starting with the relative stretch dynamics in the partially

disentangled and diluted stretch tube.

A. Derivation of the partially disentangled and
diluted stretch tube relative stretch dynamics for
an i-chain in an arbitrary MWD

As pointed out by Mishler and Mead [22,23], construction

of a “na€ıve” polydispersity model is relatively straightfor-

ward given the monodisperse model developed in our previ-

ous publication (see Appendix B of [15]). However, this

na€ıve construction does not take account of the fact that for

systems with broad polydispersity lower molecular weight

components may have an orientational relaxation time less

than the stretch relaxation time of the high molecular weight

component1 (see Fig. 1). In this case, the low molecular

weight components act effectively as “solvent” with respect

to the stretch processes of the longer chains. This fact neces-

sitates the construction of a “diluted stretch tube” to describe

stretching processes for polymer systems with broad MWD’s

in nonlinear flows [22–24].

Before defining the diluted stretch tube we review the basic

concepts and definitions concerning the “tube confinement”

effect. The tube is a set of topological entanglements (slip

links) that persist over a finite timescale. For example, for a

timescale of infinity there are no slip link entanglements since

the material is a liquid and can diffuse slowly throughout its

environment. We shall define two distinct rheological time

scales and construct their corresponding tubes. The first time-

scale we consider is se, the equilibration time of a chain seg-

ment trapped between two discrete entanglements. Any

topological entanglement that survives longer than se is part

of the set of entanglements defining this, the most basic tube.

We call the set of topological entanglements surviving longer

than se the “Primary tube,” which is in an equilibrium entan-

glement matrix. This tube shall serve as our reference tube

which is necessary in order to define a known value of the pla-

teau modulus, Go
N , corresponding to a known entanglement

density [see Fig. 2(A)]. The primary tube is the familiar tube

we know from the linear viscoelastic rheology of mono and

polydisperse linear and branched polymers. The primary tube

is used in this regard to calculate stress in conventional linear

viscoelastic (LVE) models since the equilibrium plateau mod-

ulus associated with this tube is known [1].

The next tube we construct is the “partially disentangled

i-component tube” [see Fig. 2(B)]. The time scale associated

with the entanglements comprising this tube is also se, the

same criterion used to construct the primary tube. The dis-

tinction between the primary tube and the partially disen-

tangled i–tube is that, due to the nonlinear flow, a fraction of

the entanglements comprising the primary tube have been

shed. Hence the primary tube is disentangled by convection

of entanglements off the tube ends at a rate sufficiently fast

that the rate of creation of new entanglements by diffusive

FIG. 1. Qualitative sketch of the orientational and stretch relaxation spectra

for two hypothetical MWDs. Case (A) A narrow MWD ððMw=MnÞ�2Þ
where the stretch and orientational relaxation spectra are widely separated as

envisioned in the original Doi–Edwards model. Case (B) A broad MWD

ððMw=MnÞ� 2Þ typical of most polydisperse commercial polymer systems

where there is a wide overlap of the stretch and orientational relaxation

spectra. Dispersion in the MWD and dispersion in the stretch and orienta-

tional relaxation spectra go hand in hand. Entanglement constraints that do

not survive longer than the stretch relaxation time of the test chain do not

impact the stretch dynamics of the high molecular weight components of a

polydisperse system. This necessitates the construction of a diluted stretch

tube to calculate the stretch of the high molecular weight components in

broad MWD systems (see Fig. 2).

1We are temporarily ignoring the fact that the stretch relaxation time for

blends is known to be affected by the stretch tube dilution [24] (see

Appendix II and the following foot note).
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processes could not keep up. These issues will be discussed

in more detail in Sec. II C where we derive the ij ED equa-

tion. We shall be calculating the stress contributions of each

component in the MWD in the partially disentangled tube

associated with it.

The final tube we construct is based on conventional time

scale arguments. The Diluted stretch tube is defined as a sub-

set of the dynamical constraints from the primary tube. The

dynamical constraints in the i-component diluted stretch tube

are comprised of entanglements that survive longer than a

specific time scale. The particular time scale we are con-

cerned with in stretching processes is the Rouse (stretch)

relaxation time of the i-chain, s0
s;i [see Fig. 2(C)]. Other

j-chains in the MWD matrix that relax their orientation faster

than the stretch time scale, s0
d;j < s0

s;i, appear effectively sol-

ventlike with respect to stretch processes of the i-chain (sd,j

is a tube disengagement or reptative relaxation time of the j-

component). Thus, the borderline case s0
s;i ¼ s0

d;j demarcates

the MWD into two pieces which depend on both the i and

the j MWD component indices (see Fig. 3). The piece with

the higher molecular weight species constitutes the set of

MWD components that act as full entanglements with

respect to stretch of the i-chain (viable dynamic entangle-

ment in the diluted stretch tube). We denote this fraction as

W0
i ¼

P
j>cutðiÞwj.

2 The other piece with the lower molecular

weight species act effectively as solvent or diluent with

respect to stretch of the i-chain. Thus, for every i-chain there

is a conjugate j-chain index that demarcates the split in the

entanglements with respect to stretch of the i-chain. Note

that this split and j demarcation index will be different for

every i-chain. Thus there will be P distinct diluted stretch

tubes to consider when computing the relative stretch of

every i-chain in the MWD. These features manifest them-

selves whenever there is overlap in the stretch and

FIG. 2. Sketch of the hierarchy of three distinct unraveled tubes used in the

calculation scheme for the polydisperse MP model. We use the term tube to

refer to a set of discrete entanglement pairs and not a mean field tube in the

classical sense. The construction of these ij entanglement pair tubes is moti-

vated by the need to calculate the i-chain stretch in the presence of

“solventlike” entanglements and entanglements lost by deformation (con-

vection off the chain ends). The sketch illustrates a bidisperse system of fast

relaxers (dotted links: green in online) and slow relaxers (solid links: red in

online) relative to the stretch relaxation time of the red (i) chains. The par-

tially disentangled tube (B) has fewer red and green entanglements. The par-

tially disentangled and diluted stretch tube (C) has no green (fast) stretch

entanglements. The primary tube (A) is the reference equilibrium entangle-

ment state and is not directly used in MP calculations other than to define

the plateau modulus, Go
N . As in any polydispersity model, careful attention

to the ij entanglement bookkeeping must be made. Me is the equilibrium

average entanglement molecular weight, Mi is the molecular weight of a

polymer chain, M0 is the monomer molecular weight, C1 is the characteris-

tic ratio, n is the number of Kuhn bonds in an entanglement segment. J is the

number of carbon-carbon sigma bonds in the backbone.

FIG. 3. Sketch of Nij(t) (number of j entanglements on a parent i-chain) for

a typical broad MWD for a commercial polymer system with orientational

and stretch relaxation spectra overlap. A given test chain of molecular

weight, Mi, is chosen and the self-consistent cut-off criteria ðs0
s;iðMiÞÞ=

ðW0
i ðMiÞs0

d;jðMcutðiÞÞÞ ¼ 1 is applied which defines a conjugate molecular

weight chain, McutðiÞ, that demarcates for all future calculations the boundary

between solventlike chains with respect to stretch processes of the i chain

and “full” entanglements with respect to i chain stretch processes. Note the

similarity with Fig. 3 of Mishler and Mead [23]. Entanglement fractions

replace weight fractions in the general MP model with variable, deformation

dependent, entanglement densities, Nij(t). For an equilibrium entanglement

density, N0
ij ¼ wjN

0
i and the two figures are effectively identical. The conju-

gate molecular weight McutðiÞ is fixed for all time however the ij-

entanglement distributions NijðtÞ are not fixed, they are dynamic which

makes WiðtÞ dynamic as well.

2Now we consider the stretch tube dilution effect (neglected in the previous

footnote for easier understanding). The effective stretch relaxation time is:

sef f
s;i ¼ s0

s;i=W
0
i (see Appendix B and [24]). Here, the index “0” denotes equi-

librium properties of the denoted variables and 1�W0
i is the equilibrium

“dilution” level of solvent like entanglements with respect to stretch of the

long chains defined by the cutoff criteria s0
s;i=W

0
i s

0
d;j > 1 (see Fig. 3).
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orientational relaxation spectra (see Fig. 1) and are effec-

tively a ubiquitous feature of polydisperse systems.

We have constructed a hierarchy of three slip-link entan-

glement “tubes” required to calculate the i-chain stretch in

arbitrary fast flows with an arbitrary MWD, as schematically

illustrated in Fig. 2. The main difference between our model

and the model by Mishler and Mead [22,23] is that the

diluted stretch tube is also partially disentangled. Our new

model contains a description of the ED such that we need to

count the fraction of viable ij stretch entanglements and not
weight fractions of the MWD to define the diluted stretch

tube. Consequently, the modulus in other partially disen-

tangled and/or diluted tubes will be lower and is calculated

quantitatively relative to Go
N . For the Mishler–Mead diluted

tube we have3

W0
i ¼

X
j>cut ið Þ

N0
ij

N0
i

¼
X

j>cut ið Þ
wj: (3)

Here, N0
ij is the equilibrium number of j-entanglements on an

i-chain and is related to the total number of entanglements

per i-chain at equilibrium by N0
ij ¼ wjN

0
i where wj is the

weight fraction of j-chains and N0
i is the equilibrium number

of entanglements for an i-chain. The j demarcation index

splits the MWD into two pieces based on their relaxation

time relative to the stretch relaxation time of the test chain.

As noted above, Eq. (3) is valid when there are no net ED.

When ED are present we have to generalize Eq. (3) to

account for varying numbers of ij entanglements

Wi tð Þ ¼

X
j>cut ið Þ

Nij tð Þ

Ni tð Þ : (4)

The above expression for WiðtÞ represents the fraction of via-

ble stretch tube entanglements on an i-chain at time t. The

number of j-entanglements on a parent i-chain at time t is

NijðtÞ. The total number of entanglements per i-chain at time

t is NiðtÞ. Note the clear distinction with Eq. (3) for the

Mishler–Mead diluted stretch tube formulation. For the equi-

librium entanglement microstructure, the factor NijðtÞ=NiðtÞ
is simply equal to the weight fraction, wj ¼ N0

ij=N0
i , and the

Mishler and Mead expression for S tube;i is recovered [see

also Eq. (19)]. Hence the factor NijðtÞ=NiðtÞ is a correction to

account for nonequilibrium entanglement microstructure in

the partially disentangled tube. Physically, the factor

NijðtÞ=NiðtÞ accounts for differing amounts of Kuhn bonds

oriented per ij entanglement pair as the entanglement micro-

structure is modified. In particular, NijðtÞ=NiðtÞ represents

the fraction of Kuhn bonds on an i-chain oriented by

j-entanglements. Note that for a monodisperse system NijðtÞ=
NiðtÞ is equal to unity hence this important factor never arose

in our previous monodisperse model [15]. It is important

to note why we chose a constant cutoff McutðiÞ. We tried a

dynamic cutoff criteria, however, there were cases when

WiðtÞ of a chain component became very small, which

resulted in numerical instabilities and a discontinuous time-

evolution of stress curve. Based on our subsequent work

(Paper II and Paper III), we determined that the assumption

of the constant cutoff criteria does not present any problems.

Further investigation of the cutoff criteria will be performed

in the future.

We have generalized the definition of WiðtÞ to describe

the dynamic ij entanglement microstructure which was not

considered explicitly in the work of Mishler and Mead who

defined W0
i in terms of weight fractions which are not

dynamic. Similar modifications have to be made in the defi-

nition of the orientation of the i-component diluted stretch

tube orientation, Sd;iðtÞ, Eq. (5) below,

Sd;i tð Þ �

P
j>cut ið Þ

Nij tð Þ
Ni tð Þ S tube;ij tð Þ

Wi tð Þ : (5)

Once again, entanglement fractions have replaced weight

fractions in the definition of Sd;iðtÞ. The physical motivation

behind this is to capture the orientation dynamics of the

Kuhn bonds captured within the partially disentangled and

diluted stretch tube. Counting the oriented Kuhn bonds is the

fundamental idea underlying Eq. (5).

The i chain partially disentangled and diluted stretch tube

segmental stretch equation under a velocity gradient jðtÞ
[see Fig. 2(C)] is presented below [7,22,23]. The subscript

“d” always refers to the partially disentangled and diluted

stretch tube (except in sd),

_Kd;i tð Þ ¼ j : Sd;i

� �
Kd;i|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

affine stretch

of viable

entanglements

� kd;i tð ÞWi tð Þ Kd;i � 1

ss;i tð Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

chain retraction

� 1

2
1� jSd;ij
� �

Kd;i � 1ð Þ _Ud;i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CCR tube shortening

; (6)

we define

ad;i tð Þ � Kdmax;i tð Þ
kmax;i

¼ N0
iX

j>cut ið Þ
Nij tð Þ

2
64

3
75

1
2

¼ N0
i

Nd;i tð Þ

" #1
2

: (7)

Here, the index “max” represents the maximum stretch of

the stretch variable denoted. The parameter kmax;i represents

3In order to calculate W0
i ¼

P
j>cutðiÞ NijðtÞ=NiðtÞ an iterative procedure is

required to determine the position of the MWD cutoff index j. For the first

iteration we choose W0
i ¼ 1 and determine a new dilution level and cut-off

molecular weight, McutðiÞ. The new value of W0
i is then fed into the cut-off

criteria, s0
s;iðMiÞ=ðW0

i ðMiÞs0
d;jðMcutðiÞÞÞ ¼ 1, and this iterative process is

repeated until convergence is achieved and the j cut-off index for an i-

chain is determined for all future times (Fig. 3). Note that the position of

the j-cut-off index, McutðiÞ, does not change with each further time step and

this procedure need only be done once.
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the maximum relative stretch in the primary tube where the

entanglement density is constant and known [15]. Note that

stretch relaxation due to disentanglement [15,25], _ad;iðtÞ=
ad;iðtÞ, is included in _Ud;i rather than as an independent term

in Eq. (6) [see Eq. (8)]. The fractional rate of diluted stretch

tube matrix relaxation, _Ud;i, defined as

_Ud;i tð Þ¼

X
j>cut ið Þ

Nij tð Þ
Ni tð Þ j :Sd;j�

_Kd;j tð Þ
Kd;j

þ _ad;j tð Þ
ad;j
þ 1

K2
d;j tð Þs1

d;j tð Þ

" #

Wi tð Þ
(8)

and the non-Gaussian chain tension amplification factor is

defined as [16]

kd;i tð Þ �
L�1 Ki;d tð Þ

Kdmax;i tð Þ

 !

3
Kd;i tð Þ

Kdmax;i tð Þ

�
3k2

max;iad;i
2 � Kd;i

2
� �

= k2
max;iad;i

2 � Kd;i
2

� �
3k2

max;iad;i
2 � 1

� �
= k2

max;iad;i
2 � 1

� � : (9)

Here, s1
d;iðtÞ ¼ sd;iðtÞ ð

P
k NikðtÞ=N0

i Þ is the disentanglement

modified tube disengagement time generalized for polydis-

persity from Eq. (A5) of Mead et al. [15], which is affected

by partial disentanglement with CDFC accounted for. The

factor ð
P

k NikðtÞ=N0
i Þ represents the reduced time it takes to

reptate/diffuse into a new tube as the system disentangles

and there are fewer tube segments (slip-links). Of course,

sd;iðtÞ is the equilibrium disengagement time modified by

CDFC, hence the time dependence [see Eq. (18)].

Thus Eq. (6) is effectively a conventional toy model

stretch equation for the i-component partially disentangled

and diluted tube. Equation (6) contains familiar terms such

as affine stretch, chain retraction and constraint release

driven tube shortening. This set of equations defines the par-

tially disentangled and diluted stretch tube and the dynamics

of how it stretches in a flow field.

The above equation set describes how to calculate the

stretch of each i-chain in the MWD in the partially disen-

tangled and diluted stretch tube. However, when we come to

calculate the stress we shall need to account for the contribu-

tions of all the surviving entanglements. This of course is the

partially disentangled tube [Fig. 2(B)]. In order to accomplish

this, we need to relate the stretch in the partially disentangled

and diluted tube, Kd;iðtÞ, to the stretch in the partially disen-

tangled tube, KiðtÞ. This stretch coupling analysis is done in

Appendix B by invoking the principle that the net Kuhn bond

orientation in both tube descriptions must be equal. It turns out

that there are two separate solutions to this problem which we

detail in Appendix B. One solution is due to Auhl et al. [24]

Ki
Kmax;i

3

� �
L�1 Ki

Kmax;i

� �

¼ 1�Wið Þ þWi Kd;i
Kdmax;i

3

� �
L�1 Kd;i

Kdmax;i

� �" #
(10)

and the other to Mishler and Mead [22,23]

Ki
Kmax;i

3

� �
L�1 Ki

Kmax;i

� �

¼ 1�Wið Þ Ki
Kmax;i

3

� �
L�1 Ki

Kmax;i

� �
3xd;i

L�1 xd;ið Þ

" #

þWi Kd;i
Kdmax;i

3

� �
L�1 Kd;i

Kdmax;i

� �" #
; (11)

where Ki is a stretch in the partially disentangled i-stretch

tube [see Fig. 2(B)]. Kd;i is a stretch calculated in the diluted

and partially disentangled i-stretch tube and xd;i ¼ Kd;i=
Kdmax;i is a fractional stretch in that diluted stretch tube [see

Fig. 2(C)]. A previous comparison of the results from Eqs.

(10) and (11) [22,23] showed that the Mishler–Mead stretch

coupling relation (11) performs better than that derived by

Auhl et al. [24]. The distinction between the two stretch cou-

pling relationships (10) and (11) is discussed in detail in

Appendix B. Further studies on comparing Eqs. (10) and

(11) will be presented in our future publication (Paper III).

Thus, description of the stretch in polydisperse systems

essentially requires elaborate bookkeeping measures; count-

ing discrete ij entanglement pairs on the chain when ED and

stretch tube dilution are operational (see Fig. 2 for a qualita-

tive illustration of the model, identification of variables and

the hierarchy of discrete ij entanglement tubes). Tubes are

sets/ensembles of discrete ij entanglement pairs as described

in the Introduction.

B. Derivation of the ij entanglement pair
orientation dynamics

The next equation we derive is the differential orientation

tensor evolution equation for an ij entanglement coupling,

S tube;ijðtÞ. We are specifically interested in a differential form

of the orientation evolution equation (as opposed to the tradi-

tional Doi–Edwards integral formulation) for speed of calcu-

lation. The issue of computational speed will become

significant when we subsequently turn our attention to

inverting the MP model to determine molecular weights

from nonlinear viscoelastic experimental data.

The discrete ij entanglement pair orientation tensor differ-

ential evolution equations for two separate cases are pre-

sented below. The two cases we consider are first, full

j-stretch entanglements on the parent i-chain, and second for

solventlike j-stretch entanglements on an i-chain. A more

complete explanation of the two separate cases is presented

after Eq. (14) below.

The orientation tensor S tube;ijðtÞ for the slow relaxing

stretch full entanglements (j > cutðiÞ) in a flow described by

the velocity gradient jðtÞ evolves as [9,15]

Ŝ tube;ij tð Þ þ 2 j tð Þ : S tube;ij tð Þ
� �

S tube;ij

þ 1� SKuhn

sd;ij tð Þ

� �
S tube;ij �

1

3
d

� �
¼ 0 : (12)

And the orientation tensor S tube;ijðtÞ for the fast relaxing ij

solventlike stretch entanglements (j < cutðiÞ) evolves as
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Ŝ tube;ij tð Þ þ 2 j tð Þ : S tube;ij tð Þ
� �

S tube;ij

þ 1� SKuhn

sd;ij tð Þ

� �
S tube;ij � I ij tð Þ
� �

¼ 0 ; (13)

where Ŝ tube;ijðtÞ is the upper convected time derivative4 and

the tension induced orientation tensor, I ijðtÞ, in the fast relax-

ing entanglements (j < cutðtÞ) is calculated from a Kuhn-

Gr€un analysis and is defined as Eq. 12 in the work by

Mishler and Mead [22,23]

I ij tð Þ � 1� 3xd;i tð Þ
L�1 xd;i tð Þ
� � !

Sd;i tð Þ þ 3xd;i tð Þ
L�1 xd;i tð Þ
� � 1

3
d : (14)

Recall our convention that the first index refers to the par-

ent chain and the second index to the entangling chain.

Hence there is in general no i-j symmetry and we must calcu-

late P2 orientation tensors to specify the orientation of all

chain segments in the discrete MWD. The term Ŝ tube;ijðtÞ
represents the codeformational rate of change of the orienta-

tion of an ensemble of stretchable rods following the convec-

tion and deformation of the fluid particle. The second term in

Eq. (12) subtracts off the rate of stretch of the ensemble of

rods such that the Trace is always unity, as it must be for any

properly defined orientation tensor.

The final term in Eq. (12) represents the rate of relaxation

of the orientation which is assumed to be proportional to the

departure of the system from equilibrium, S tube;ij � ð1=3Þd .

While we believe that this is a reasonable description of j-

entanglements constituting the partially disentangled and

diluted tube, we believe that for those entanglements that are

considered solventlike with respect to stretch of the i-chain

be treated somewhat differently (see Fig. 2). Specifically, we

believe that these fast relaxers with respect to i-chain stretch

partially adopt the orientation of the parent i-chain diluted

stretch tube, Sd;iðtÞ, upon their creation. Herein lies the ori-

gin of the term I ijðtÞ in Eqs. (13) and (14). Rather than hav-

ing a newly created entanglement be born with an isotropic

orientation, ð1=3Þd , we model the process as having the

newly created fast relaxing entanglement be born with partial

orientation of the parent i-chain stretch tube, Sd;iðtÞ. The

degree to which the orientation is transmitted to the new

entanglements will depend on the chain tension through a

conventional Kuhn-Gr€un analysis (e.g., [16]).

The orientational relaxation time used in Eqs. (12) and

(13) has its roots in the MLD model and is expressed as

[7,9]

1

sd;ij tð Þ¼
1

K2
d;i tð Þs1

d;i tð Þ
þexp � Kd;i�1ð Þð Þ

� j : S tube;j�
_Kj tð Þ
Kj
þ _ad;j tð Þ

ad;j
þ 1

K2
d;j tð Þs1

d;j tð Þ

" #
: (15)

Here, exp ð�ðKd;i � 1ÞÞ is the empirical version of the

“switch function” which apportions constraint release driven

relaxation between stretch and orientation [26].

C. Derivation of the ij entanglement pair survival
dynamics

The partially disentangled tube ij entanglement density

evolution equation has been previously presented in equation

B1 of Mead et al. [15]. We briefly review the terms and their

meaning below. The number of j-entanglements on a parent

i-chain, NijðtÞ, evolves as

_Nij tð Þ ¼
N0

ij � Nij tð Þ
s1

d;i tð Þ � b j : S tube;i �
_Ki tð Þ
Ki
þ _ai tð Þ

ai tð Þ

" #

� Nij tð Þ þ
N0

ij � Nij tð Þ
s1

d;j tð Þ : (16)

The term ðN0
ij � NijðtÞÞ=s1

d;iðtÞ represents a driving force,

N0
ij � NijðtÞ, divided by a characteristic time scale, s1

d;iðtÞ for

the i-chain. It follows that the term ðN0
ij � NijðtÞÞ=s1

d;iðtÞ rep-

resents a crude expression for the rate at which new ij entan-

glements are created/destroyed by reptative diffusion of the

i-chain. Similarly, the last term ðN0
ij � NijðtÞÞ=s1

d;jðtÞ repre-

sents the rate which ij entanglements are destroyed/created

by reptative diffusion of the j-chain.

The second term in Eq. (16) above can be explained in a

manner similar to that invoked for the monodisperse case

[15]. Specifically, the term in brackets represents a net con-

vective velocity of the j-entanglements off the ends of the

parent i-chain. The first term, j : S tube;i represents the uncor-

rected affine convection velocity off the chain ends. The

two terms following the affine convection term, �ð _KiðtÞ=
KiðtÞÞ þ ð _aiðtÞ=aiðtÞÞ, represent corrections to the relative

ij entanglement velocity due to chain stretch and chain disen-

tanglement respectively. Note that both of these correction

terms are transient effects and do not impact the steady

state. Finally, the factor b is an entanglement destruction

“efficiency factor” first introduced by Ianniruberto and

Marrucci [27] and has a value of about 0.12. This dimension-

less factor was introduced such that the stress-shear rate curve

is monotonic as it must be for stable shear flow.

The relative i-chain j-entanglement velocity correction

term �ð _KiðtÞÞ=Ki can be simply understood. When there is

stretch but no chain retraction the term �ð _KiðtÞÞ=Ki exactly

cancels j : S i;tube since for affine deformation the relative i-

chain j-entanglement velocity is zero [7].

The derivation of the i-chain disentanglement velocity,

_aiðtÞ=aiðtÞ, is identical to that presented by Mead et al. (see

pages 337–338 of [15]) and will not be repeated here. The

term aiðtÞ physically reflects the dimensionless degree of i-

chain disentanglement as measured by the enhanced extensi-

bility and is defined in Eq. (17) below

ai tð Þ � Kmax;i tð Þ
kmax;i

¼ N0
iX

j

Nij tð Þ

2
64

3
75

1
2

¼ N0
i

Ni tð Þ

" #1
2

: (17)

4The upper convected time derivative is defined as [13]: Ŝ tube;ijðtÞ
� ððDS tube;ijðtÞÞ=DtÞ � ðrvÞT � S tube;ij � S tube;ij � ðrvÞ.
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Hence, _aiðtÞ can be determined either numerically or analyti-

cally from Eqs. (17) and (16).

D. Derivation of the CDFC for a polydisperse
system

In this section, we present the formulation of CDFC for a gen-

eral polydisperse system. The fundamental idea underlying

CDFC was presented by Ianniruberto et al. and we retain and

generalize it here [28]. The idea is to quantify the relative orien-

tation of the i-test chain Kuhn segment to that of the matrix

Kuhn segments. One way to accomplish this is to take the projec-

tion of the test Kuhn segment orientation onto the matrix Kuhn

segment orientation, SKuhn;i :
P

j wjSKuhn;j. So, CDFC will be

some function of the relative orientation, f ðSKuhn;i :
P

j wj

SKuhn;jÞ. We specify the unknown function f by demanding that

it collapse to the monodisperse case described by Ianniruberto

et al. [28]. Hence, CDFC impacts equally both the stretch and

orientational relaxation times [15] in Eqs. (6) and (15)

1 tð Þ
1eq

¼ ss;i tð Þ
s0

s;i

¼ sd;i tð Þ
s0

d;i

¼ f SKuhn;i :
X

j

wjSKuhn;j

� �

¼ 0:02239

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SKuhn;i :

X
j

wjSKuhn;j

s24
3
5�1:64

¼ 0:02239

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i S tube;i :
X

j

wjx2
j S tube;j

s24
3
5�1:64

;

if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SKuhn;i :

X
j

wjSKuhn;j

s
> 0:1: (18)

Here, the parameters are empirical and are based on a corre-

lation developed in [28].

E. Derivation of the stress calculator

The above sections describe how we calculate the orienta-

tion and stretch of ij entanglements. The general non-

Gaussian stress is calculated in the partially disentangled

tube [9,15] [see Fig. 2(B)].

r tð Þ ¼
XP

i¼1

wir i tð Þ¼ 3
X

i

wi

X
k

Nik tð Þ

No
i

0
B@

1
CA

G0
N

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i chain modulus

� ks;i tð ÞK2
i tð Þ

X
j

Nij tð Þ
Ni tð Þ S tube;ij tð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S tube;i

; (19)

where [8]

ks;i tð Þ �
L�1 Ki tð Þ

Kmax;i tð Þ

 !

3
Ki tð Þ

Kmax;i tð Þ

�
3k2

max;iai
2 � Ki

2
� �

= k2
max;iai

2 � Ki
2

� �
3k2

max;iai
2 � 1

� �
= k2

max;iai
2 � 1

� � (20)

and aiðtÞ is defined in Eq. (17) above.

Equation (19) requires some additional explanation.

Starting with the expression for the Kuhn bonds contained in

the i tube, S tube;i. Once again the factor NijðtÞ=NiðtÞ appears

rather than a simple weight fraction wj. We remind the

reader that NijðtÞ=NiðtÞ represents the fraction of Kuhn bonds

on an i-chain oriented by j-entanglements.

In a similar manner the i-chain modulus is corrected from

its equilibrium entanglement microstructure reference value

with a similarly motivated factor, wiðð
P

k NikðtÞÞ=N0
i ÞG0

N .

The term ð
P

k NikðtÞÞ=N0
i represents the fractional decrease

in the net number of entanglements on an i-chain. Hence, we

are calculating the modulus/tension in the partially disen-

tangled tube [Fig. 2(B)] by referring to the plateau modulus

G0
N in the primary tube [Fig. 2(A)]. This is the sole purpose

of defining the primary tube in the equilibrium entanglement

state, i.e., in order to calculate the modulus and hence the

stress in the partially disentangled tube.

Finally, Eq. (20) represents the non-Gaussian stretch

enhancement to the stress and aiðtÞ represents the enhanced

extensibility of the chain in the partially disentangled tube

relative to the primary tube.

III. SUMMARY

Although the tube model has been an important part of the

research effort on polymer rheology for decades until recently

there has been no general theory for the nonlinear rheology of

polydisperse linear melts. The MLD model was the first such

attempt at the nonlinear rheology of polydisperse linear poly-

mers but is very restrictive in that it assumes a constant entan-

glement density. In this paper we have retained the binary,

pairwise description of the entanglement interaction of the

MLD model and introduced ED such that the entanglement

density varies with the flow. As we shall subsequently see in

future papers, this one change leads to some profound new

physical phenomena such as shear modification of linear poly-

mers [29–33]. We also note that there is a polydisperse model

based on the multimode molecular stress function and the

interchain pressure [34], which adopts a different approach

from our model. Comparison with that model is beyond the

scope of this paper but may be considered in the future.

There is one other distinctive feature of the MP constitu-

tive model to point out. Specifically, since the MP model

does not have a constant entanglement density the chains can

disentangle and unravel in fast flows leading to highly

extended chain conformations [25] (see Fig. 4). Nothing akin

to this occurs in constant entanglement density models such

as the MLD and GLaMM model families. The parameter

that crudely characterizes the growth of extended conforma-

tions of an i-chain is ai which is defined in Eq. (17). Thus,

even the simple toy level MP molecular constitutive equation

can yield some detailed information on the entanglement

microstructure that is unavailable with other well-known

constitutive models. These issues are extremely important if

the MP model is to be used to calculate flow induced crystal-

lization effects in polyethylene and polypropylene [35,36].

Although the MP model equation set may superficially appear

quite complex the physical model it represents is actually rather

simple both physically and mathematically. Computationally,
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we integrate the three first order ODE’s, i.e., Eqs. (6), (12), and

(16), using the midpoint method [37] (second order Runge-Kutta

method) which is second order in the time step size, Dt (see Fig.

5). For very broad MWD systems, the fast relaxing entanglement

pairs are integrated analytically using linear viscoelasticity anal-

ysis rather than severely decreasing the time step to capture their

dynamics numerically. The speed and simplicity of the simula-

tion software is important since we shall in the future invert the

MP model to determine the MWD from nonlinear viscoelastic

material functions such as transient extensional viscosity meas-

urements. Application of our new model will be presented in

Papers II, III and subsequent papers [38,39].

Finally, we comment on the conceptual similarity of the new

MP model and pseudo network models introduced decades ago

[40, p. 182]. The principal difference is that pseudo network mod-

els made no attempt to introduce molecularly based entanglement

creation/destruction mechanisms. The MP model specifies the

entanglement creation/destruction mechanisms and prescribes a

molecular time scale for them although the ED equation (16) is

still semiempirical. More detailed molecular descriptions at the

tube coordinate level are planned to embellish the MP model.

Some comment on the number of MP model parameters

and their determination is in order. It is easy to show that the

MP model collapses to the “Double Reptation” model in the

linear viscoelastic limit just as the polydisperse MLD model

does. Consequently, we can use all the MLD model parame-

ter determination literature [42,43] directly in the MP model

to quantitatively determine the molecular parameters. The

number of parameters required to perform quantitative calcu-

lations in the linear and nonlinear flow regimes for the MP

toy model include the set of orientational and stretch relaxa-

tion times corresponding to each discrete slice of the MWD;

fsðTMÞ
d;i g and fsðTMÞ

s;i g[42,43]. The superscripts “TM” refer to

“toy model.” Additionally, we shall demonstrate in Paper III

that in order to incorporate CLF into the model we shall

have to consider different values of the plateau modulus for

each slice of the discrete MWD, fGoðTMÞ
N;i ðMiÞg [42,43].
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NOMENCLATURE

The MP model develops a number of new ideas and concepts

needed to describe polydispersity. In this section, we list all the

terms and their definitions for quick reference (see Fig. 2).

KiðtÞ Relative stretch in the par-

tially disentangled tube

Kd;iðtÞ Relative stretch in the par-

tially disentangled and

diluted stretch tube

ai tð Þ � Kmax;i tð Þ
kmax;i

Dimensionless ratio of the

maximum relative stretches

in the partially disentangled

tube and the primary tube

ad;i tð Þ � Kdmax;i tð Þ
kmax;i

Dimensionless ratio of the

maximum relative stretches

in the partially disentangled

and diluted stretch tube and

the primary tube

Wi tð Þ ¼

P
j>cutðiÞ

Nij tð Þ

Ni tð Þ Fraction of all viable stretch

tube entanglements on the i-th

chain at time t (see Fig. 2)

Sd;i tð Þ �

P
j>cutðiÞ

Nij tð Þ
Ni tð Þ S tube;ij tð Þ

Wi tð Þ Orientation of the partially

disentangled and diluted

stretch tube for the i-th chain

S tube;i ¼
X

j

Nij tð Þ
Ni tð Þ S tube;ij tð Þ Orientation of the partially dis-

entangled tube for the i-th

chain

FIG. 4. Qualitative, two-dimensional illustration of the deformation driven

generation of highly extended conformations. Flows with a high projection

of the velocity gradient on the orientation, j : S, are particularly effective at

driving the disentangling process [see Eq. (16)]. When these convection pro-

cesses overwhelm the diffusive re-entanglement processes disentanglement

occurs resulting in a lower entanglement density and highly extended chain

conformations. The MLD and GLaMM family of models cannot predict this

type of highly extended conformation. It is believed that flow induced melt

crystallization processes are severely impacted by the conformation and

state of entanglement of the long chains [35,36].

FIG. 5. Sketch of the numerical calculation scheme used at each discrete time

step to calculate stress in polydisperse systems using the three tube hierarchy

illustrated in Fig. 2. There are three initial value equations to be integrated at

each discrete time step, Eqs. (12) and (13), (16) and (6). These are integrated

using the midpoint method [37] in the order described above. The stress is cal-

culated from Eq. (19) after the integrations at each time step are complete.

129MODEL FOR ENTANGLED POLYDISPERSE POLYMERS



S tube;ij Orientation tensor for the ij

entanglement pair

SKuhn;i Average orientation tensor

for the Kuhn bonds on the i-

th chain

ks;i tð Þ �
L�1

Ki tð Þ
Kmax;i tð Þ

 !

3
Ki tð Þ

Kmax;i tð Þ

¼
L�1 xið Þ

3xi

Non-Gaussian stress amplifi-

cation factor due to finite

chain extensibility in the par-

tially disentangled tube

kd;i tð Þ �
L�1

Kd;i tð Þ
Kdmax;i tð Þ

 !

3
Kd;i tð Þ

Kdmax;i tð Þ

¼
L�1 xd;ið Þ

3xd;i

Non-Gaussian chain tension

amplification factor due to

finite chain extensibility in

the partially disentangled

and diluted tube

N0
ij The equilibrium number of

j-entanglements on an i-chain

NijðtÞ The dynamic number of

j-entanglements on an i-chain

N0
i �

X
j

N0
ij The total number of entan-

glements on the parent

i-chain at equilibrium

Nd;iðtÞ �
X

j>cutðiÞ
NijðtÞ The total number of entan-

glements on the parent

i-chain for the partially dis-

entangled and diluted stretch

tube. Also known as the

“i-stretch tube” entanglements
_Ud;iðtÞ Fractional rate of destruction

of partially disentangled and

diluted stretch tube

entanglements

s1
d;iðtÞ Tube disengagement time

with the effects of partial dis-

entanglement and CDFC

accounted for

sd;iðtÞ Tube disengagement time in

the equilibrium primary tube

with the effects of CDFC

accounted for

sd;ijðtÞ ij entanglement reptative

relaxation time including the

effects of CDFC

s0
d;i Bare equilibrium tube disen-

gagement time without CDFC

or entanglement effects

s0
s;i Bare stretch relaxation time

without CDFC

ss;iðtÞ Stretch relaxation time

including the effects of CDFC

b Entanglement destruction

efficiency factor approxi-

mately equal to 0.12

j Velocity gradient tensor

wi Weight fraction of i-chains in

a discrete MWD with P slices

G0
N Equilibrium plateau modulus

defined in the primary tube

SL
i
¼ hr̂ ir̂ ii Orientation due to the long-

lived stretch entanglements

only

S i;induced Orientation induced in the

short-lived stretch entangle-

ments by the long-lived

stretch entanglements. This

quantity is determined by a

Kuhn-Gr€un analysis.

APPENDIX A: GENEALOGICAL DIAGRAM FOR MP
MODEL TRACING ITS ORIGINS FROM THE
ORIGINAL DOI–EDWARDS MODEL

APPENDIX B: DERIVATION AND COMPARISON OF
THE STRETCH TUBE COUPLING RELATIONSHIPS;
EQS. (10) AND (11)

In this Appendix, we analytically calculate the stretch

tube coupling relationship, Eqs. (10) and (11) [22–24]. Since

stretch is calculated in the partially disentangled and diluted

tube [see Fig. 2(C)] and stress is calculated in the partially

disentangled tube [Fig. 2(B)] a quantitative relationship

between the stretch levels in each tube must be derived.

Since in our model the diluent stretch entanglements do not

participate in i-chain stretch processes, we are essentially

calculating the induced stretch in these fast relaxing entan-

glements.5 We shall demonstrate that although our model of

FIG. 6. Genealogical Diagram for MP model from Doi–Edwards Model:

Gray boxes indicate the models. White boxes indicate the concepts used in

each model. Note that the purpose of this chart is to demonstrate how and

where our model was derived from not to display all the family models

derived from Doi–Edwards, such as the GLaMM model [8].

5Mishler and Mead [22,23] presented a physically similar two stretch tubes

model. In this Appendix, we generalize the result of Mishler and Mead and

demonstrate the relationship of that model to that of Auhl et al. [24].
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the system is somewhat different from that of Auhl et al.
[24], our general non-Gaussian result collapses identically to

their stretch tube coupling relation for small extensions.

Additionally, we derive the corresponding Mishler–Mead

[22,23] tube coupling relationship and identify the specific

differences and similarities with that of Auhl et al.
We begin with a sketch of the effective stretch entangle-

ments on an i-chain and their noneffective, solventlike

counterparts. Figure 7 illustrates an interior portion of an i-

chain with long-lived discrete entanglements (red O’s) and

solventlike entanglements (black O’s). This physical pic-

ture is consistent with our view the tube as a discrete set of

entanglement pairs (slip links) rather than a mean field

description.

The governing principle we invoke to determine the rela-

tionship between the two relative stretches in the nested

tubes is that the stress associated with the long-lived entan-

glement pairs on an i-chain in either tube description must

be the same, i.e., the net Kuhn bond orientation associated

with the long-lived entanglement pairs contained in both

tubes must be equal for both descriptions to be self-

consistent. To implement this idea we must assign specific

orientation levels in the partially disentangled tube due to

the orientation and stretch of the long-lived diluted tube

entanglements only.

The net partially disentangled tube orientation due only to

the long-lived entanglements on an i-chain can be calculated

approximately as the weighted sum of the oriented long-

lived entanglements and the orientation induced in the short

lived entanglements on the parent i-chain due solely to the

long-lived entanglements

SL
i
¼ hr̂ ir̂ ii � WiSd;i|fflffl{zfflffl}

Long–lived
entanglements

þ 1�Wið ÞS i;induced|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fast relaxing

entanglements

¼ WiSd;i þ 1�Wið Þ 1� 3xd;i

L�1 xd;ið Þ

 !
Sd;i

þ 1�Wið Þ 3xd;i

L�1 xd;ið Þ
1

3
d : (B1)

The induced orientation of the solventlike entanglements

due to the stretch of the long-lived entanglements as defined

by a Kuhn-Gr€un analysis [16], specifically (see Fig. 7) is

S i;induced ¼ 1�
3
jRj
NL

L�1
jRj
NL

� �
0
BBB@

1
CCCAR̂iR̂iþ

3
jRj
NL

L�1
jRj
NL

� �
0
BBB@

1
CCCA1

3
d

¼ 1� 3xi

L�1 xið Þ

 !
Sd;iþ

3xi

L�1 xið Þ
1

3
d : (B2)

Here, R̂i is the unit vector directed along the end-to-end vec-

tor R of an i-chain and jRj=NL ¼ xi is equivalent to the frac-

tional extension.

In Eq. (B2) we are only considering orientation in the fast

relaxing entanglement pairs on an i chain due directly to the

long-lived entanglements. The orientation in these short-

lived entanglement pairs due to subsequent deformation is

described in Eqs. (12) and (13) and is not included in Eqs.

(B1) and (B2). This deformation driven orientation is due to

the dynamics of the short-lived entanglement pairs them-

selves and is not a direct consequence of the stretch of the

long-lived entanglement pairs and hence is not included.

We note that the trace of SL
i

is unity as required for all

properly formulated orientation tensors. Equation (B1) can

be readily understood by recalling that the long-lived entan-

glements that reside in both the primary and diluted tubes

are identical. The long-lived entanglements comprise a frac-

tion Wi of the partially diluted tube entanglements. The

remaining fraction 1�Wi of short-lived entanglements on

the i chain have an induced orientation imparted during the

re-entanglement process due to stretch of the long-lived

entanglements [see Eqs. (12) and (13)].

The i-component stress due to the long-lived entangle-

ment pairs only in the partially disentangled tube [Fig. 2(B)]

is therefore

r i;L ¼ GiKi
Kmax;i

3

� �
L�1 Ki

Kmax;i

� �
Wi þ 1�Wið Þ 1� 3xd;i

L�1 xd;ið Þ

 !" #
Sd;i þ 1�Wið Þ 3xd;i

L�1 xd;ið Þ
1

3
d

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

orientation tensor in partially disentangled tube

: (B3)

FIG. 7. Sketch of a solventlike entanglement with respect to stretch

processes of the i-chain, trapped between two viable stretch entangle-

ments. The fraction of viable stretch entanglements, “O’s” at the both

ends of the tube (red in online), is Wi and that of solventlike entangle-

ments with respect to stretch is 1�Wi. The orientation induced in the

fast relaxing black entanglement “O” by stretch of the red viable

stretch entanglements O’s is determined by a Kuhn-Gr€un analysis.
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We have effectively used Eq. (5) which introduces the

dilution factor Wi into the expression for the orientation

of the diluted tube segments, i.e., Wi tð ÞSd;i tð Þ ¼
P

j>cut

Nij tð Þ=Ni tð Þ
� �

S tube;ij tð Þ. Recall that “solventlike” entangle-

ments on the i-chain are similar to solvent only with respect

to stretch relaxation processes of the i-chain and are

absolutely not solventlike when stress is calculated for the

partially disentangled tube in Eq. (B3). The factor Gi is the i-

chain modulus in the partially disentangled tube, Gi ¼
ðð
P

k NikðtÞÞ=Ni0ÞG0
N [from Eq. (19)].

The corresponding i-component stress calculated in the par-

tially disentangled and diluted stretch tube [Fig. 2(C)] yields

rd;i ¼ WiGið Þ|fflfflffl{zfflfflffl}
Modulus
in diluted

tube

Kd;i
Kdmax;d

3

� �
L�1 Kd;i

Kdmax;i

� �" #
Sd;i|{z}

orientation
tensor

þGi 1�Wið Þ 1
3

d|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
isotropic

‘‘pressure’’

term

: (B4)

In the low deformation limit matching (B3) and (B4)

yields Gið1=3Þd for both equations. We demand that the arbi-

trary isotropic pressure term added in Eq. (B4) be a constant
such that the isotropic terms match only in equilibrium, i.e.,

Peqd ¼ Gið1=3Þd . This is how we assign the isotropic term

in Eq. (B4), i.e., so that the nominally arbitrary pressure

matches in both stress descriptions for low orientations. The

origins of the specific isotropic term in Eq. (B4) lie in the fact

that we are comparing two separate Kramers analyses which

result in differing numbers of segments cutting the plane.

These points are discussed by Mishler and Mead [22,23].

Equating the two separate descriptions of i-component

stress due to the long-lived entanglements only, Eqs. (B3)

and (B4), yields

Ki
Kmax;i

3

� �
L�1 Ki

Kmax;i

� �
Wi þ 1�Wið Þ 1� 3xd;i

L�1 xd;ið Þ

 !" #"

�Sd;i þ 1�Wið Þ 3xd;i

L�1 xd;ið Þ
1

3
d

#

¼ 1�Wið Þ1
3
dþWi Kd;i

Kdmax;i

3

� �
L�1 Kd;i

Kdmax;i

� �" #
Sd;i:

(B5)

Equation (B5) is formulated by stipulating that the stress

generated due only to the long-lived entanglement pairs be

equal in each entanglement tube description. The notion that

stress is held by discrete entanglement pairs that capture the

test i-chain is the basis of the MP model [see Eq. (19)] and

many other slip-link based models [11,12].

We can generate the general relationship between Ki and

Kd;i by taking the Trace of Eq. (B5). Since all properly for-

mulated orientation tensors have a trace of unity we immedi-

ately see that

Ki
Kmax;i

3

� �
L�1 Ki

Kmax;i

� �

¼ 1�Wið Þ þWi Kd;i
Kdmax;i

3

� �
L�1 Kd;i

Kdmax;i

� �" #
: (B6)

Equation (B6) defines the partially disentangled tube rela-

tive stretch of an i-chain, Ki, as a complex nonlinear function,

Ki ¼ fstretchðKd;i;Wi;Kmax;i;Kdmax;iÞ, which can be approxi-

mately and accurately calculated numerically in a simple

manner (see Appendix C). Analysis of Eq. (B6) reveals that

for low fractional extension levels Kd;i=Kdmax;i � 1,

K2
i ¼ ð1�WiÞ þWiK

2
d;i: (B7)

Thus, the above Gaussian relationship between Ki, Kd;i,

and Wi derived by Auhl et al. [24] by an entirely different

self-consistent Kuhn bond statistics method is retrieved in

Eq. (B7) in the small fractional extension limit of Eq. (B6)

[24 see Eq. (5)]. Hence, although Auhl et al. invoked a dif-

ferent model and analysis we arrive at the same result if we

do not demand that the isotropic pressures be equal for all
stretch levels.

Additionally, because the previous analysis generalizes

that of Auhl et al. we also retrieve the same ancillary results

derived by Auhl et al. In particular, we deduce that for small

stretch levels near unity the effective stretch relaxation time

in the diluted tube is related to the longest Rouse relaxation

time of the chain by

sef f
s;i ¼

ss;i

Wi
: (B8)

Importantly, Eq. (B8) is observed experimentally for binary

melts when the two components are widely separated in

molecular weights [24].

Finally, for relative stretch levels near unity equation

(B7) predicts that

Ki ¼ 1þWiðKd;i � 1Þ: (B9)

Thus, stretch in the undiluted tube is significantly muted at

low stretch levels relative to stretch of the diluted tube.

However, if we demand that the isotropic term in Eqs.

(B3) and (B4) be equal for all stretch levels we generate a

different result from that described above [22,23]. In this

case, Eq. (B4) for the stress in the diluted tube [Fig. 2(C)]

becomes
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r i;diluted ¼ WiGið Þ|fflfflffl{zfflfflffl}
Modulus
in diluted

tube

Kd;i
Kdmax;i

3

� �
L�1 Kd;i

Kdmax;i

� �" #
Sd;i|{z}

orientation
tensor

þ GiKi
Kmax;i

3

� �
L�1 Ki

Kmax;i

� �
3xd;i

L�1 xd;ið Þ
1�Wið Þ 1

3
d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

isotropic

‘‘pressure’’

term

:

(B10)

The isotropic factor GiKi Kmax;i=3
� �

L�1 Ki=Kmax;i

� ��
3xd;i=L�1 xd;ið Þ

�
1�Wið Þ 1

3
d in Eq. (B10) is generated such

that Eqs. (B3) and (B9) match identically, i.e., they yield the

same deviatoric and isotropic stress (pressure) for all stretch

levels. Repeating the above analysis and equating Eqs. (B9)

and (B3) and taking the trace yields the generalized (for non-

Gaussian chains) result of Mishler and Mead [22,23]

Ki
Kmax;i

3

� �
L�1 Ki

Kmax;i

� �

¼ 1�Wið Þ Ki
Kmax;i

3

� �
L�1 Ki

Kmax;i

� �
3xd;i

L�1 xd;ið Þ

" #

þWi Kd;i
Kdmax;i

3

� �
L�1 Kd;i

Kdmax;i

� �" #
: (B11)

In the low stretch Gaussian limit (B11) reduces exactly to

the result previously reported by Mishler and Mead

Ki ¼ Kd;i: (B12)

This contrasts starkly with the small stretch prediction of

Auhl et al., Eq. (B9). We find that for systems with general

polydisperse MWD’s the Mishler–Mead stretch tube cou-

pling relation yields vastly better predictions of the observed

rheological behavior than does the Auhl et al. formulation

[24]. The principal reason for the vastly better predictions is

that the Mishler–Mead model does not suppress stretch at

low stretch levels for the diluted stretch tube. Consequently,

in this work we employ the Mishler–Mead formulation

throughout [22,23].

APPENDIX C: DERIVATION OF AN APPROXIMATE
ANALYTIC SOLUTION FOR Ki AS A FUNCTION OF
Kd,i, Wi, Kmax,i AND Kdmax,i FOR THE MP MODEL
USING THE MISHLER–MEAD STRETCH TUBE
COUPLING RELATION Eqs. (10) AND (11)

In this Appendix, we derive an approximate analytical

solution to Mishler–Mead stretch tube coupling equation

(B11) for Ki in terms of Kd;i, Wi, Kmax;i and Kdmax;i. Since

stress is always calculated in the partially disentangled tube

and stretch is calculated in the partially disentangled and

diluted stretch tube an explicit analytic expression for Ki as a

function of Kd;i is very useful for numerical calculations. To

realize this goal we will make use of the Pad�e approximant

for the inverse Langevin function [41]. The Pad�e approxim-

ant for the inverse Langevin function of the fractional exten-

sion ki=kmax is

L�1 ki

kmax

� �
� ki

kmax

� � 3� ki

kmax

� �2

1� ki

kmax

� �2

2
66664

3
77775: (C1)

Substituting Eq. (C1) into the inverse Langevin functions in

Eq. (B6) and simplifying yields

Ki

Kmax;i

� �2 3� Ki

Kmax;i

� �2

1� Ki

Kmax;i

� �2

2
66664

3
77775

¼
Wi Kd;i

Kdmax;i

3

� �
L�1 Kd;i

Kmax;id

� �" #

K2
max;i

3

� �
1� 1�Wið Þ 3xd;i

L�1 xd;ið Þ

 !

� f Kd;i; Wi;Kmax;i;Kdmax;ið Þ: (C2)

Since all stretch calculations are performed in the partially

disentangled and diluted tube, hence the quantity

f ðKd;i; Wi;Kmax;i;Kdmax;iÞ is known. If we define y � ðKi=
Kmax;iÞ then Eq. (C2) can be rearranged into a quadratic

equation in y2 with the function f ðKd;i; Wi;Kmax;i;Kdmax;iÞ as

a known quantity defining the coefficients. Rearranging and

solving explicitly for y2 yields

y2 ¼
3þ fð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ fð Þ2 � 4f

q
2

: (C3)

Note that only the solution to Eq. (C2) with a minus sign

before the discriminant is physically meaningful. In this

manner Ki can be expressed as a simple function of Kd;i, Wi,

Kmax;i and Kdmax;i. We use the above approximate solution to

the Mishler–Mead stretch tube coupling relation throughout

this work.

The veracity of the above analysis turns on the accuracy

of the Pad�e approximation for the inverse Langevin function.

However, it has been established that the expression (C1) is

an accurate approximation for the inverse Langevin function

although other more mathematically complex formulations

have also been presented by Cohen [41].
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