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a b s t r a c t

A combination of severe plastic deformation by equal channel angular pressing (ECAP) and bake
hardening (BH) was used to produce high strength ultrafine-grained AA6061 aluminum alloy. 2, 4 and
8 passes of ECAP were performed, and the bake hardenability of samples was tested by 6% pre-straining
followed by baking at 200 1C for 20 min. The microstructures obtained for various passes of ECAP were
characterized by XRD, EBSD, and TEM techniques. The microstructures were refined from an average
grain size of 20 mm to 212 nm after 8 passes of ECAP. Maximum bake hardenability of 110 MPa, and final
yield stress of 330 MPa were obtained in the specimens processed by 8 passes of ECAP.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The usage of bake hardened (BH) material is an effective way to
reduce the weight of vehicles and obtain higher safety in trans-
portation industry [1–4]. The use of controlled aging during paint
baking of deformed materials is known as the bake hardening (BH)
technique. During the industrial BH process, a low strength
material is required before press forming, and a high strength
material is obtained after the paint baking process [5,6]. Among
aluminum alloys, Al–Mg–Si alloys are widely used to manufacture
body structures of cars, because these alloys attain higher strength
after paint baking [7–9].

In general, BH takes advantage of strain aging when the solute
atoms segregate to the dislocations and lock them. The procedure
to determine the bake hardenability of materials is as follows:
(a) the specimen is pre-strained between 2 to 8% at the room
temperature, (b) aging is carried out at 170–200 1C for about 20 to
30 min, and (c) the aged specimens are tensile tested at the room
temperature. These three steps simulate the forming, panting and
baking the paint in the real industrial process of car bodies.

Another effective way to improve the mechanical properties of
metallic alloys is by producing ultrafine-grained (UFG) or nano-
grained (NG) microstructures [10]. Severe plastic deformation
(SPD) is a practical approach to attain UFG or NG microstructures.
SPD techniques, such as equal channel angular pressing (ECAP),
are widely used to produce NG aluminum alloys [11,12].

A combination of a grain refinement process and BH may result
in significant increase in the strength of metallic alloys [4,13].
There are only a few works about the BH behavior of aluminum
alloys [13], and there is no work concerning the effect of UFG or
NG microstructures produced by SPD on the BH behavior of
AA6061 aluminum alloy. The main goal of this study was to
investigate the effect of UFG structures on the BH behavior and
mechanical properties of baked AA6061 aluminum alloy. For this
propose, UFG samples of AA6061 were produced by different
passes of ECAP process, and then, these samples were subjected
to BH. The BH behavior and mechanical properties of UFG samples
were compared with those of the coarse-grained (CG) samples.

2. Experimental procedure

In this work, AA6061 aluminum alloy was used for experi-
ments. Before the SPD processing, the initial bars were heated to
550 1C for 5 h, followed by water quenching. Afterwards, the
samples were cut to become 10 mm in diameter and 80 mm in
length, which are required dimensions for ECAP process to attain
UFG samples. The ECAP was conducted using a die made of SKD61
steel grade with an angle of 901 between the channels and a
curvature angle of 01. Samples were coated with molybdenum
disulfide (MoS2) lubricant during the ECAP process [12].

After different passes of ECAP, the grain size was characterized by
XRD and EBSD techniques. Williamson–Hall equation was used to
calculate the size of the produced grains [14]. The grain size of the
alloy was also checked by the EBSD technique; EBSD was used to
study the microstructure in areas of approximately 600 mm2 [15].
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To study the BH behavior of AA6061 aluminum alloy, tensile
specimens were cut from the ECAP-processed and un-deformed
samples according to ASTM E8. To simulate the BH process, the
samples were pre-strained for 6%, followed by baking at 200 1C for
20 min. Finally, the baked samples were tensile tested at the room
temperature at a strain rate of 10�3 s�1. The BH amount was
determined from the difference between the flow stress after pre-
straining and the yield stress after baking.

3. Results and discussion

3.1. Microstructures of ECAP-processed samples before BH

The microstructures of samples before the ECAP process had an
average grain size of about 20 mm. The microstructures and
histograms of the samples processed by ECAP, characterized by
EBSD, are shown in Fig. 1(a–c). The results show that the initial CG
samples were significantly refined to produce UFG microstructures
after the ECAP process. After only two passes of ECAP, there is a
significant decrease in the average grain size (�755 nm) of the
sample. With an increase in the number of ECAP passes, the grains
were considerably finer, for example by applying 8 passed of ECAP,
the initial average grain size of 20 mm was reduced to about
212 nm.

The grain size was also measured by XRD method. According to
the XRD patterns, the peak of (2 0 0) was dominant compared
with other peaks [16]. Also, the intensity of as-received samples is
lower than that of ECAP-processed samples. As shown in Fig. 1(d),
by increasing the number of ECAP passes, the intensity increases,
there for more grain-refinement is achieved.

The average grain size of as-received and ECAP-processed samples
determined by XRD and EBSD are summarized in Table 1(a).

3.2. BH behavior of samples

Effect of BH treatment and ECAP on mechanical properties: The
BH curves obtained for samples processed by different passes of

ECAP are shown in Fig. 2. These samples were pre-strained by 6%,
and then baked at 200 1C for 20 min. Fig. 2 shows that the amount
of BH of ECAP-processed samples is higher than that of as-received
one. This indicates by applying 2 and 4 passes of ECAP followed by
BH, there is about 50 and 85 MPa increase in yield stress,
respectively. The maximum bake hardenability (110 MPa) and final
yield stress (330 MPa) were obtained for the specimens subjected
to 8 passes of ECAP and baked at 200 1C. As for the as-received
sample, the measured BH and yield stress were respectively about
20 MPa and 100 MPa. These results show that baking after ECAP is
an effective approach to improve the strength of aluminum alloys;
nevertheless, its effect depends on the number of ECAP passes. The
increase in the strength is also due to the formation of fine and
UFG microstructures in the samples. It is well known that with
grain refinement, the amount of grain boundaries increases. As the
baking treatment is a diffusion control process, the diffusion of
soluble atoms increases by increasing the volume fraction of grain
boundaries [4]. In addition, the precipitation kinetics is increased
due to the higher diffusivity in the UFG structures. Therefore, in
the case of baked AA6061 with UFG microstructure, the effect of
dislocation locking is enhanced and the BH is increased signifi-
cantly. These subjects are discussed in details by Alihosseini et al.
[4] and Dehghani [13].Obviously, a decrease in the grain size from
20 mm (CG state) to 200 nm (UFG state) led to a considerable
increase in the bake hardenability and the final strength of the
materials; this is clearly evident from the stress–strain curves
presented in Fig. 2.

In Fig. 2, the return of yield point after baking indicates that
aging is occurred. This is attributed to the diffusion of solute atoms
to the dislocations generated during pre-straining and in turn to
the formation of solute atmosphere around dislocations, resem-
bling the Cottrell atmosphere. As dislocations are locked in this
way, the higher stress (i.e. yield stress) is required to un-pin them.

Effect of bake hardening process on microstructures: TEM micro-
graphs of the samples processed by 4 and 8 passes of ECAP and
baked at 200 1C for 20 min are shown in Fig. 3. A low density of
very fine precipitates (�25 nm) exists in the micrograph of
samples processed by 4 passes of ECAP, Fig. 3(a). The precipitates

Fig. 1. Microstructures of the samples taken by EBSD after: (a) 2 passes, (b) 4 passes, and (c) 8 passes of ECAP; (d) XRD pattern of the ECAP-processed 6061 samples for the
(2 0 0) peak.
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accumulate especially around the dislocations, and this indicates
that the precipitates preferentially nucleate at the sites where
dislocations are piled-up. Fig. 3(b) shows very high density of
small particles in the micrograph of samples processed by 8 passes
of ECAP. The EDX analyses indicate that the precipitates are
mainly rich in Mg and Si, thus, they were identified to be Mg2Si
precipitates. The general accepted precipitation sequence during
baking/aging is as follows [9,17]: super-saturated solid solution
(SSSS) atomic clusters (spherical)-β″(needle)-β0(rod)-β.
Because of the short time and low temperature of the baking,
the main strengthening phase is β″. The nucleation of precipitates
happens with individual solute clustering of Si and Mg [9,18,19].
The increased diffusivity and strong stress field induced by the
significant amount of dislocation density during the ECAP proces-
sing can promote the kinetics of precipitation.

As reported by Kozeschnik et al. [20], the strengthening due to
BH (ΔσBH) involves two steps as follows:

ΔσBH ¼ΔσCottrellþΔσppt ; ð1Þ
where ΔσCottrell is known as the solute strengthening caused by the
formation of Cottrell atmosphere around dislocations, and Δσppt is
the precipitation hardening. When pre-strained specimens are
aged at low temperatures, the solutes of Mg and Si diffuse to the
dislocations and lock them, and thereby increase the strength
through the formation of Cottrell atmosphere [20]. With respect to
Δσppt , as the aging/baking proceeds, the solute saturation is
reached resulting in the formation of precipitates, i.e. precipitation
hardening. Both ΔσCottrell and Δσppt are responsible for age hard-
ening. As the concentration of dissolved solute atoms reaches
a saturation state, there is a transformation from the cluster
hardening ðΔσCottrellÞ toward precipitation hardening ðΔσpptÞ,
where the nucleation of precipitates occurs. A high density of fine

precipitates can occur in UFG structures resulting in the pinning of
grain boundaries [4,13].This could be a major source of stability for
the produced nanostructure of the material.

As was mentioned before, there are two main factors that affect
BH, and to evaluate their effects separately, it is needed to measure
some important features experimentally, such as size, shape,
volume fraction and distribution of hardening precipitates. Oro-
wan strengthening is one of the well-known strengthening
mechanisms resulting from precipitation hardening [21]. The basic
equation for the Orowan precipitation hardening stress is:

Δσppt ¼
Gb
λ
; ð2Þ

where G is the shear modulus of the matrix material, b is the
burgers vector or lattice parameter of the matrix material, and λ is
the inter-particle spacing. To estimate the amount of precipitation
hardening, if the Orowan equation gives results that are consistent
with the experimental observations, we need to know λ. This
parameter can be measured based on TEM micrograph results
(Fig. 3). Inter-spacing of particles (λ) is the Mg2Si spacing. Accord-
ing the TEM micrographs in Fig. 3, the ratio of Mg2Si particle
spacing in the case of 4 passes (λ4) to that of 8 passes (λ8) is
λ4=λ8 � 2:5. Considering Eq. (2), we can find:

Δσppt
� �

8

Δσppt
� �

4

¼ λ4
λ8
; ð3Þ

where Δσppt
� �

4 and Δσppt
� �

8 are the precipitation hardening
stresses of the samples that were ECAPed 4 and 8 passes, respec-
tively. Substituting the amount of λ4=λ8 in Eq. (3), the value of
Δσppt
� �

8= Δσppt
� �

4 will be also about 2.5. This means that the
precipitation strength of 8 passes ECAPþBH of Al6061 samples
can be about 2.5 times higher than that of 4 passes ECAPþBH. In
another word, the formation of particle of Mg2Si with small
interparticle-spacing of λ can lead to significant increases in the
properties of produced samples.

To calculate the effect of precipitation hardening in different
passes of ECAP, we assumed that G¼ 27:6 GPa and b¼ 0:23 nm
for Al6061 and the interspacing of particles for these passes are
based on the TEMmicrographs in Fig. 3; the calculated precipitation
hardening stresses for these two passes are Δσppt

� �
4 ¼ 34 MPa and

Δσppt
� �

8 ¼ 86 MPa.
Based on Eq. (1): ΔσCottrell ¼ΔσBH�Δσppt , where ΔσBH is the

total BH and can be calculated based on the stress–strain curves
shown in Fig. 2. In Table 1(b), the results for BH gained by solute
strengthening (ΔσCottrell) and precipitation hardening (Δσppt) are
summarized. These results clearly shows that although solute
strengthening decreases by increasing the passes of ECAP, pre-
cipitation hardening increases significantly which results in
increase of total BH. To measure the stresses more precisely
further research is needed that is being carried out currently and
the results will be presented in our future publications.

Table 1
(a) Grain size of as-received and ECAP-processed 6061 Al samples determined by XRD and EBSD.

Number of ECAP passes As-received 2 4 8

Grain size XRD 20 μm 750 nm 330 nm 200 nm
EBSD 20 μm 755 nm 330 nm 212 nm

(b) Amount of BH gained by solute strengthening (ΔσCottrell) and precipitation hardening
(Δσppt).

Number of ECAP passes λ (nm) ΔσCottrell (MPa) Δσppt (MPa) ΔσBH (MPa)

4 200 51 34 85
8 80 24 86 110

Fig. 2. The stress–strain curves of the ECAP-processed 6061 Al alloy after bake
hardening (samples were pre-strained to 6 %, then baked at 200 1C for 20 min).
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4. Conclusions

A combination of SPD by ECAP process and BH treatment was
used to study the effect UFG structures on bake hardenability of
AA6061 aluminum alloy. The results indicated that the combina-
tion of high density of dislocations as well as high volume fraction
of grain boundaries in UFG structures will result in more pre-
cipitation during the BH process, which is a major factor in
increasing the bake hardenability and strength of the material.
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