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Interactive Virtual Laboratory for Experience with a Smart Bridge Test

Elizabeth C. Eckhoff, Vicki M. Eller, Steve E. Watkins, Richard H. Hall,
University of Missouri-Rolla

Abstract

Virtual laboratory experiments can be cost effective, convenient instructional resources
that have appeal to awide range of learning styles. Expensive, time-consuming laboratory tests
can be experienced repeatedly and remotely using interactive simulations and original video
footage or animations. A virtual experiment can incorporate meaningful exercises, procedural
options, and background hyperlinks to create a comprehensive “hands on” environment. Also, it
may be used as preliminary training for the actual experiment.

Aninteractive LabVIEW-based laboratory for aload test ssmulation of an existing
demonstration bridge was created. This smart truss bridge is instrumented with fiber optic strain
sensors situated on the trusses. The user interface incorporates a synchronized image of the
loaded bridge and a graph of the associated strains. A static display mode allows the choice of
load placement and of data for single or multiple sensors. A continuous display mode shows the
dynamic images of the bridge and strains on truss members. Options include the display of
experimental data or of theoretical calculations. Hyperlinks give access to information on the
sensors, the bridge construction, and the theoretical analysis. The program interface can also be
used in the actual experiment to display data. The intended application is alaboratory for an
interdisciplinary class on smart materials and sensors. The LabVIEW program can be easily
modified for tests on other structures such as afull-scale bridge.

l. Introduction

Virtual laboratory experiments are practical and effective educational tools. They may be
used to allow students a more comprehensive, flexible experience and to prepare students for
actual laboratory performance. The benefits include cost effectiveness and convenience. With a
virtual simulation, a procedure can be repeated without cost of materials and labor, wear/damage
on equipment, or loss of classtime. Also, multiple equipment stations are not needed, lengthy
experimental setups are avoided,' and one-time or remote field tests are facilitated. With a
virtual laboratory, the student users control the pace, frequency, and time of the experiment.
Also, distance learners can participate.?
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Virtual laboratories have been found to be beneficia to students, improving their learning
and helping them to understand the coursework. Research at the University of Arizona
examined whether “modern simulation and communication technologies enhance delivery,
learning and retention” and concluded that they were effective, especially for “difficult” topics?
Virtual laboratory experiences can reinforce concepts from lecture material, convey practical
issues associated with actual experiments,™ and illustrate applications absent from textbooks.”
They appeal to different learning preferences through the interactivity of the simulations. Using
the Kolb model of learning styles,® the student preferring concrete experience and reflective
observation will benefit from the repeatability of the experiments. The student preferring
concrete experience and active experimentation can adopt atrial-and-error approach to test
potential theories and relationships. The student preferring abstract conceptualization and active
experimentation can look for expected answers based on the conceptual premises. The student
preferring abstract conceptualization and reflective observation can slow the pace of the
experiment and explore al available information on the experiment.

This paper describes an interactive, LabVIEW-based resource for aload test smulation
of an existing demonstration bridge. This bridge isasmall, laboratory-sized truss structure that
isinstrumented with fiber-optic strain sensors. It isused to demonstrate structural and
measurement concepts in an interdisciplinary engineering class on smart materials and sensors.
The associated virtual laboratory is designed to display simultaneous images and strain datafor
complex experimental and theoretical load tests. Features include multiple options for data
display and testing parameters as well as detailed supplemental information on the sensors,
bridge, and analysis. Consequently, student users can tailor their learning experience per their
interest and preferences. Applications of the interactive software are planned for other
demonstration and field structures.

. The Smart Truss Bridge Project

The smart truss bridge is an instrumented, 2.44-m (8-ft.) structure developed for usein an
interdisciplinary course funded by the National Science Foundation.”® The course activities
consist of multi-disciplinary topics, collaborative exercises, and hands-on applications.” The
technical interest areais smart structures'® which includes the intelligent monitoring of structures
using permanent sensing systems and which requires engineering abilities crossing traditional
boundaries. Thetruss bridge provides an introductory laboratory experience that integrates
materials, structural analysis, and measurement. However, available time with the bridge is
limited. Students with different mgjors, interests, and preferences can benefit from additional,
flexible laboratory experience. A parallel virtual version of the laboratory addresses this need.

The bridge is shown in Figure 1. It consists of two aluminum trusses of four bays each.
End supports, interna girders, and decking complete the design. The structure represents a
scaled version of common steel highway and railroad bridges and provides an educationally-rich
balance of simplicity and complexity.'* It is easily assembled, can be reconfigured, and provides
measurable strains for light loads. The pin-connected members are 1.9-cm (3/4-in.) aluminum
equal angles. The 61-cm (2 ft.) deck pieces are independent for each bay and have atrack to
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guide aweighted cart. The estimated linear capacity of each truss alone exceeds 668 N (150
Ibs.). Ideally, the members experience only axial tension or compression. This smart structure

has permanent fiber-optic sensors on selected members to measure the axial strain.

7,12

Figure 1. Smart Truss Bridge with Weighted Cart and Aluminum Members.

The objectives of the laboratory exercises, both actual and virtual, are to show load-
induced structural strain patterns and to related practical material, structural, and sensing
concepts. The strain in selected members will vary with load magnitude and placement. A pin-
and-roller-supported truss model isillustrated in Figure 2 with member designations. TheV, H,
and D prefixes denote vertical, horizontal, and diagonal orientations, respectively. Sensors
provide experimental datafor membersV1, H2, D3, D4, and H5. To support the experiments, a
theoretical analysis using RISA-2D (Rapid Interactive Structural Analysis) modeling software
was available.”** For example, the normalized strain pattern in member D3 as afunction of load
position is plotted in Figure 3. Note that the strain magnitude will be proportional to weight
within the linear range. The overall tension and compression characteristics of the truss can be
shown graphical asin Figure 4. Experimental datais similar.
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Figure 2: Truss Model with Pin-Connected Members and Pin and Roller Supports.”
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Figure 3: Compressive Strain for 668 N (150 Ibs.) verses Load Position for Member D3.”

Figure 4: Truss Strain Characteristics for a Centered Load. Red membersH1, H2, H3, H4, V1,
V3, D3, and D4 are in compression and blue members H5, H6, D1, and D6 are in tension.

1. Virtual Experiment Design

The virtual LabVIEW-based experiment presents the experimental or theoretical
performance of the smart truss bridge under load. The design was guided by three criteria

e Simultaneous visua and numerical indicators should be displayed,

e Multiple data and display options should be available, and

e  Supplemental information should be readily accessible.
Also, the programming should allow easy modification to incorporate other data and image files.
The visua indicator displays a photograph of the bridge with the weight in position or a drawing
of the bridge with qualitative graphical aspects such as color-coded characteristics of Figure 4.
The numerical indicator plots the strain for a selected member or selected members. The
interactivity options are summarized in Table 1. Any combination of the options may be
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selected. Note that the visual indicator is coordinated with numerical data, i.e. the weight
placement or color coding in the image matches the current display of strain. The simulation
was created with LabVIEW which is a graphical programming language with numerous data
acquisition, processing, and display features.'*

Table 1: Features of Interactive Virtual Laboratory

User Options
Type Experimental Test Theoretical Analysis
Image Photograph of Bridge Graphic of Bridge
M easur ement Single Sensor Multiple Sensors
L oad Stationary Moving
Information Links Bridge (Sensors, Design, etc.) Test/Analysis Details

The user interface for the LabVIEW program is shown in Figure 5. The top screen
displays the image output and the bottom shows the graphical output of the strain data. To the
right of the graph are the user options. Thefirst set of optionsisthe four load choices. Below
the weight optionsis the choice of datatype. The user may choose to display experimental or
theoretical data. The last set of options are the five truss members that can be displayed. The
user may choose one member or any combination of the five. A small graphic depicting the truss
with labeled members is displayed below the truss options to help remind the user what trussis
being selected and displayed. The start, stop, clear, quit, and information options are located
below the graphic and are Boolean parameters that are built into an array. This array isthen sent
to asearch function, testing for a true variable indicating one of the buttons had been pressed.
Thisinformation is then fed into a case loop which then finds the case corresponding to the true
Boolean which tells the program which case to run.

A block diagram of the dataflow is shown in Figure 6. The LabVIEW programming in
Figure 7 shows the “run” case of the program, which is the section where the data and image
files are read and sent to the front panel.* The program used for this virtual experiment consists
of three major parts—awhile loop, a case loop, and the image and datafiles. A while loop was
used to create a programmatic start button. When the run button in LabVIEW is pressed, the
program will not run until the start button on the front panel is pressed, allowing the user to make
data selections. Once the user has made the appropriate selections the start button can then be
pressed and the data is sent to a case loop. In the case loop, the correct image and data files for
the selected options are accessed. In thisway, the program would be easily applied to another
structure or expanded for more options by simply changing the file names. After the correct
strain data folder and image folder are opened that information is then formatted for the
corresponding graphical and imagery output. Once formatted the data is sent to the front panel
to be displayed. Throughout the process the user has the option to stop the program and display
stationary data. If the user stops the data by pressing the stop button on the front panel and then
the start button is again pressed, the datais read from where it was before the stop button was
pressed. The clear button sends a constant zero to the graph and an empty jpeg image to the
Image screen.
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Figure 5: User Interface for Virtual Laboratory.

V.  Usageand Application

The educational goalsfor the virtual laboratory are for studentsto integrate knowledge
from several discipline areas and to understand the material, structural, and measurement
relationshipsin areal bridge. The intended parent course is the smart materials and sensors
course®® and laboratory audience isinterdisciplinary engineering students at the senior-elective
undergraduate or introductory graduate level. Fundamental concepts from the interrelated
topical areas areillustrated with instrumented truss bridge and aload test. The virtual laboratory
may be used as an independent exercise or as a preliminary assignment before testing the actual

smart truss bridge.
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Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition



The software design model is shown in Figure 8.2 |t should incorporate a balance of
simplicity and complexity. Users have conflicting needs for consistent and usable content that is
easy to understand and navigate and complex features that provide a flexible, user-center
learning environment. Consistency and usability are provided by limiting the software module to
just the smart truss bridge and by producing similar control buttons, images, and data displays
for the experimental and theoretical tests. Other linked information is available, but does not
clutter the main user interface. Complex multi-modality features include the simultaneous visual
and data displays and the options for experimental and analytical results. Furthermore,
significant interactivity and adaptability are provided by the other options for display and
supplemental information. Planned companion software for other bridge tests will use a near-
identical user interface to reinforce the overall effectiveness.

Assessment of the software is planned and has two stages.”>!’ Thefirst stageisa
formative investigation in which asmall sampling of students are studied in a controlled
environment. The effectiveness of design with regard to consistency, usability, multi-modality,
interactivity, and adaptability will be evaluated. The second stage is summative and will be done
in the associated course. It will include the Smart Truss Bridge virtual laboratory and companion
virtual laboratories based on other archived field tests.

Goals
Usage Fundamental ' Leamer
Context '_" Concepts Variables
Lsability Interactivity

. Multi-
Design —’l Complexity —ﬂ mcm:llia:ity

Adaptability

Simplicity

Figure 8: Design Philosophy for Multimedia Software.
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V. Conclusions and Future Work

The LabVIEW-based load-test simulation provides students with an interactive learning
resource. Itisavirtual laboratory experiment that presents both experimental and theoretical
load tests on a laboratory-sized bridge. The smart truss bridge is an aluminum truss structure
with fiber optic sensors to measure strain. It provides an introductory laboratory experiencein
the smart structures area that integrates materials, structural analysis, and measurement. The
virtual experiment displays simultaneous images and strain data for complex load tests. Student
users can select from a variety of image, display, and information options to create arich “hands-
on” environment. The LabVIEW environment is useful since it can be programmed with a
variety of display options and interactivity, can be configured for Web-based access or as
executable software, and can access stored image and data files or real-time information.*

Virtual laboratories can enhance learning as a supplement or a preparation for laboratory
experience. The Smart Truss Bridge virtual simulation provides a comprehensive experience
with an archived experiment and a theoretical analysis. The future plansfor this project include
the incorporation of more background information on the bridge and test, the setup of distance
access through the Web site of the associated course, the evaluation and revision of features
through student assessment, and the addition of other ssmulations. In particular, afield test of an
instrumented bridge™® will be setup in a companion simulation.
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