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Abstract 

This work aims to comprehensively study the anisotropy of the hexagonal close-packed 

(HCP)-liquid interface free energy using molecular dynamics (MD) simulations based on the 

modified-embedded atom method (MEAM). As a case study, all the simulations are performed 

for Magnesium (Mg). The solid-liquid coexisting approach is used to accurately calculate the 

melting point and melting properties. Then, the capillary fluctuation method (CFM) is used to 

determine the HCP-liquid interface free energy ( ) and anisotropy parameters. In CFM, a 

continuous order parameter is employed to accurately locate the HCP-liquid interface location, 

and the HCP symmetry-adapted spherical harmonics are used to expand   in terms of its 

anisotropy parameters ( 20 , 40 , 60  and 66 ).  Eight slip and twinning planes (basal, two 

prismatic, two pyramidal, and three twinning planes) are considered as the HCP-liquid interface 

planes.  An average HCP-liquid interface free energy of 122.2 (mJ/m2), non-zero 20 , 40 , and 

66  parameters, and approximately zero 60  parameter for Mg are predicted. Using these 

findings, the first preferred dendrite growth direction in solidification of Mg is predicted as 

[1120] , which is in agreement with experiments. Also, a second preferred dendrite growth 

direction for Mg is predicted as [3362] . 

 

Keywords: Interface free energy; Spherical harmonics; MEAM; Hexagonal close-packed; 

Magnesium. 
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1. Introduction 

Over the years, different computational models at different length and time scales have 

been used to study the solid-liquid coexistence of metals to obtain better understanding of this 

phenomenon as well as the formation and evolution of the subsequent microstructures and defect 

patterns [1].  Among these models, molecular dynamics (MD) is of a special interest because of 

its reasonable computational cost and its capability in accurate calculations of the solid-liquid 

interface properties [2]. The accurate calculation of the solid-liquid properties, such as interface 

free energy ( ) and its anisotropy, is of crucial importance, because these properties are the key 

factors influencing the solid phase selection and crystal nucleation from the melt. Since this 

article aims to study the HCP-liquid coexistence, we will mostly focus our discussion on this 

class of materials and MD simulations only.  

The first work that used MD simulations to study the solid-liquid interface properties is 

the pioneering work of Broughton and Gilmer [3]. They used Lennard-Jones FCC-liquid systems 

at the triple point for their MD simulations and calculated   to be the aggregated work required 

to cleave and combine solid and liquid systems. Their technique later refined by Davidchack and 

Laird [4, 5] and it is called the cleaving technique. However, the major MD effort dealing with 

the HCP-liquid coexistence simulations has been based on the capillary fluctuation method 

(CFM) [6]. CFM is based on equilibrating a coexisting solid-liquid structure at the exact melting 

point of the material, determining the location of the solid-liquid interface, and finding the 

Fourier modes of the solid-liquid interface and using them to determine the solid-liquid interface 

stiffness (   ) [2, 7-9]. Then, the anisotropy of the system is explained by expanding   in 

terms of spherical harmonics for the considered crystal symmetry. Sun et al. [6] extended CFM 

for HCP metals by considering only a basal and two prismatic planes as the HCP-liquid interface 

planes in their simulations to describe the anisotropy of  . They used Mg as their case study and 

embedded-atom method (EAM) [10] as the interatomic potential in their MD simulations; EAM 

is a semi-empirical many-body potential for the atomistic simulations of metallic systems. Until 

now and to the knowledge of the authors, the work of Sun and coworkers is the only MD work to 

determine   and its anisotropy for HCP metals. The other works related to the MD simulations 

of HCP-liquid coexisting systems include the study of the melting [11-13], interface properties 

[14] and kinetic mobility [15, 16]. 
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The first objective of this article is to provide another perspective to the MD calculations 

of   and its anisotropy for HCP metals by using a different class of interatomic potentials, 

MEAM potentials [17], in MD simulations. MEAM adds the directionality of bonding in 

covalent materials to the EAM formalism. Today, the MEAM potential is widely used in the 

computational materials science and engineering community to simulate unary, binary, ternary, 

and multi-component metallic systems [18]. Since only EAM-MD simulations have been used to 

determine the HCP-liquid interface properties, using MEAM-MD simulations in this study 

provides another perspective and more confidence in using MD simulations for this purpose. In 

fact, we recently used MEAM to study the solid-liquid coexistence of body-centered cubic 

(BCC) and face-centered cubic (FCC) metals [19, 20], and we showed that the calculated melting 

properties, solid-liquid interface free energy, and surface anisotropy are in a very good 

agreement with the experimental data. Another objective of this work is to more 

comprehensively study the HCP-liquid coexistence by including all of the deformation planes in 

HCP crystals as the HCP-liquid interface planes (eight different slip and twining planes); this 

was missing in the previous studies. 

In this work, we use one set of MEAM parameters for Mg in all of the MD simulations 

[21]. These MEAM parameters were tested before showing reasonable predictions of a variety of 

low and high temperature properties such as elastic constants, structural energy differences, 

vacancy formation energy, stacking fault energies, surface energies, melting point, specific heat, 

and thermal expansion coefficient. First, the solid-liquid coexistence approach is used to 

accurately calculate the melting point which is crucial for the rest of the simulations. Second, the 

relations for   and    in the concept of CFM for twelve slabs with different crystallographic 

orientations are derived by expanding the anisotropy of   in terms of HCP symmetry-adapted 

spherical harmonics. Third, a continuous order parameter is used to locate the interface location 

in MD simulations of HCP-liquid coexisting slabs, and the interface stiffness is calculated for 

each case. Fourth, statistical average HCP-liquid interface free energy and anisotropy parameters 

for Mg are calculated using the results of MD simulations and HCP symmetry-adapted spherical 

harmonics. And finally, a discussion on the preferred dendrite growth direction and rate during 

the solidification of Mg are provided as the results of the predictions made in this study.  
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2. Melting properties  

2.1. Interatomic potential 

The second nearest-neighbor (2NN) formalism of MEAM [22, 23] is used as the 

interatomic potential for all the MD simulations in this study. In the MEAM formalism,  the total 

energy of a single-element system is given by 

   
 ( )

1

2tot i ij ij
i j i

i ijE F S R 


 
  

 
         (1) 

where iF  is the “embedding energy” function (energy required to embed an atom in the 

background electron density i  at site i ), ijS  is the screening factor between atoms at sites i  

and j , and ij  is the pair interaction between atoms at sites i  and j  with a separation distance 

of ijR . The details of the MEAM formalism have been presented in other publications devoted to 

the development of the potential [24]. MEAM for a single element system has fourteen 

parameters in its formalism which need to be determined for the selected material. We use the 

2NN-MEAM parameters for Mg which were presented previously by Kim et al. [21]; they 

showed that using these parameters results in reasonable calculations of the low and high 

temperature properties of Mg, which are comparable to the experimental and ab initio MD data. 

The properties considered for the development of these MEAM parameters for Mg were: 

cohesive energy, lattice parameters, elastic constants, structural energy differences, vacancy 

formation and migration energies, divacancy formation energy, self-interstitial energy, stacking 

fault energies, surface energies, specific heat, thermal expansion, melting point, latent heat, and 

expansion in melting. Since the focus of this study is to use MEAM for the two-phase solid-

liquid coexistence simulations, it is critical to accurately determine the melting point for the 

potential used in the MD simulations. Therefore, we use the solid-liquid coexisting approach to 

accurately recalculate the melting properties. Hence, we expect a small difference in our 

calculations of the melting point, latent heat, and expansion in melting compared with those 

calculated by Kim et al. [21].  

In our simulations, the large-scale atomic/molecular massively parallel simulator 

(LAMMPS) MD code [25] is used. Periodic boundary conditions and a time step size of 0.002 ps 

are used for all the MD simulations. 
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2.2. Melting properties 

Eight different planes (Fig. 1) are chosen as the HCP-liquid interface in this work. The 

labeling shown in Fig. 1 will be used throughout this work to refer to different crystallographic 

configurations. The configurations shown in Fig. 1 have been identified as the active 

deformation planes for Mg (slip and twinning systems) [26]. To the date, only Basal, Prismatic I 

and II planes (Fig. 1a-c, respectively) have been used to study the HCP-liquid interface 

properties [6]. The method for accurately calculating the melting point of BCC and FCC metals 

using MD simulations has been extensively explained in the literature (e.g., Ref. [27]). The 

method is typically based on constructing an equilibrating two-phase solid-liquid simulation box; 

however, the procedure needs slight modifications for HCP metals. First, a simulation box 

consisting of m n l   periodic solid cells is equilibrated at an estimated melting point of the 

material using previously-calculated lattice parameters (both a  and /c a ). Canonical ensemble 

(NVT) with a Nòse-Hoover thermostat [28, 29] is used for this step, and l  direction is normal to 

the HCP-liquid interface and its length is roughly ten times longer than the other two dimensions. 

The cell sizes m  and n  are chosen to form a nearly square area for the HCP-liquid interface. 

Then, the central half of the simulation box is melted at a high temperature by running a 

dynamics simulation using NVT ensemble, while holding the other half fixed. The melted half of 

the simulation box is equilibrated at the estimated melting point using an isothermal-isobaric 

(NPT) ensemble for 0.5 ns, while the box size at the normal direction is allowed to relax only for 

the melted half. To minimize the pressure in all directions, the entire simulation box is then 

allowed to relax in the normal direction for 1 ns using an NPT ensemble at the estimated melting 

point. Finally, the refined value of the melting point is calculated using an isenthalpic ensemble 

(NPH) simulation lasting for a considerable amount of time (~10 ns), while the size of the box in 

the normal direction is allowed to relax (to minimize the normal pressure). The whole process is 

repeated using the calculated refined temperature until convergence is achieved. The calculated 

melting points utilizing the explained method are presented in Table 1. For the case that the 

interface plane is the Basal plane, the simulations are repeated for two different box sizes. The 

calculated melting points are 937.25 K for the simulation box with 3880 atoms and 937.44 for 

the simulation box with 92160 atoms. The difference between calculations is ~ 0.02%, which is 

negligible in the context of MD simulations; thus, the melting point calculations are size 

independent. We have repeated a similar study to calculate the melting point for other 
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orientations, listed in Table (1), to ensure the size-independency of the reported results.  The 

simulation box for all the eight cases with different interface planes consists of about 100,000 

atoms. The required number of atoms in the simulation box for size-independency of the 

calculated results is also consistent with those used in similar studies [20, 30]. Table 1 shows that 

the variation of the calculated melting point with respect to the interface plane is negligible; thus, 

the melting point calculations are also orientation independent. The melting point of Mg is 

determined to be the average of the calculated melting points reported in Table 1, which is 937.9 

K. 

 

Table 1. Calculated melting point for different choices of the HCP-liquid interface plane. 

Interface Plane Box size (nm) Number of Atoms 
MT (K) 

Basal 3.96 5.14 48.10   38880 937.25 
Basal 5.28 6.85 64.13    92160 937.44 
Prismatic I 5.28 6.41 68.53   92160 938.07 
Prismatic II 6.85 6.41 52.76   92160 938.12 
Pyramidal I 5.28 7.27 67.99   103680 937.90 
Pyramidal II 6.85 6.91 56.95   107184 937.46 
Twinning I 5.28 6.26 76.06   99840 937.80 
Twinning II 6.85 6.71 65.21   119232 938.51 
Twinning III 5.28 8.08 67.97   115200 938.08 

 

The melting point ( MT ), latent heat ( L ), liquid density at the melting point ( l ), and 

expansion in melting ( meltingV ) for Mg calculated by MEAM and two EAM potentials (labeled 

as LEAM and EAM), along with experimental counterparts are listed in Table 2. MEAM and 

EAM both calculate the melting point, latent heat, and expansion in melting in agreement with 

the experiments. However, EAM prediction of the liquid density contains 151.3% error, while 

MEAM also predicts the liquid density in good agreement with experiment (5.1% error). It is 

worth mentioning that, MEAM-MD simulations calculate L , l , and meltingV  at the 

experimental melting-point (923.2 K) to be 10.1 kJ/mol, 0.037 atom/Å3, and 1.80  Å3/atom, 

respectively.  
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Table 2. Melting-point properties of Mg calculated by MEAM-MD compared with the results 
of other MD methods and experiments. The values in the parentheses are the errors comparing 

with the experimental data. 

Method 
MT  (K) L (kJ/mol) 

l (atom/Å3) V (Å3/atom) 

MEAM; present 937.9(1.6%) 10.2(13.3%) 0.037(5.1%) 1.84(64.3%) 
LEAM; [6] 745(19.3%) 7.0(22.2%) 0.073(87.2%) 1.23(9.8%) 
EAM; [6] 914(1.0%) 9.5(5.6%) 0.098(151.3%) 0.65(42.0%) 
Exp.; [26]

 923.2 8.8-9.2 0.039 1.12 

 

3. HCP-liquid interface free energy 

We utilize CFM [2] to determine   and its anisotropy for Mg. The first step in using 

CFM is to construct two-phase solid-liquid coexisting slabs which is schematically shown in Fig. 

2. The local normal to the solid-liquid interface ( n̂ ) forms an angle,  , with its average 

orientation.  CFM is based on the calculations of the interface stiffness (   ) by two methods, 

where    is the second derivative of   with respect to  . The first method uses the symmetry-

adapted spherical harmonics to expand   in terms of its anisotropy parameters and determine the 

relations for the interface stiffness. The second method calculates the interface stiffness using 

MD simulations. Eventually,   and its anisotropy parameters are calculated by comparing the 

interface stiffness determined from the explained methods. CFM results in an accurate 

determination of the anisotropy of  , because interface stiffness is typically an order of 

magnitude more anisotropic than the interface free energy. 

 

3.1. Spherical harmonics 

An arbitrary square integrable function on unit sphere can be expanded in terms of 

spherical harmonics as [31] 

0

( , ) ( , ),
i

ij ij
i j i

f f y   


 

           (2) 

where ijf  are the expansion coefficients, ( , )ijy    are the spherical harmonic functions of order 

i  and j , [0, ]   is the colatitudinal coordinate, and [0,2 ]   is the longitudinal coordinate. 

The crystal symmetry implies that ijf  coefficients are non-zero for only a selection of i  and j .  

HCP crystal belongs to the 6/mmm (D6h) point group symmetry; thus, 6i m  and 2j n , where 
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m  and n  are integers [32]. Consequently, the HCP-liquid interface free energy can be expanded 

by considering the HCP crystal symmetry and the double-series expansion in Eq. (2) as 

0 20 20 40 40 60 60 66 66( , ) [1 y ( , ) y ( , ) y ( , ) y ( , )],                                (3) 

where the expansion includes spherical harmonic functions up to 6i   which has been shown by 

Sun et al. [6] to be sufficient to describe the anisotropy of the HCP-liquid interface free energy. 

In Eq. (3), 20 , 40 , 60 , and 66  are anisotropy parameters, 0  is the average interface free 

energy, and 

2
20

1 5
[3cos( ) 1]

4
y 


  ,  

4 2
40

3 1
[35cos( ) 30cos( ) 3]

16
y  


   , 

6 4 2
60

1 13
[231cos( ) 315cos( ) 105cos( ) 5]

32
y   


    , 

6
66

1 6006
sin( ) cos(6 )

64
y  


 .       (4) 

The four HCP symmetry-adapted spherical harmonics ( 20 40 60, , ,y y y  and 66y ) are plotted 

in Fig. 3.  We use twelve different slabs for the rest of the study, where the slabs orientations are 

listed and labeled in Table 3. For instance, (0001)[1120] orientation means that the interface 

plane is (0001) and the width of the slab is parallel to the [1120]  direction. The third and fourth 

columns of Table 3 show the relations for free energy and stiffness of HCP-liquid interfaces for 

each orientation in terms of the anisotropy parameters.  It is worthy to note that the angles   and 

  for each orientation are measured such that the normal to the HCP-liquid interface coincides 

with the c  axis and the basal plane becomes the HCP-liquid interface. Sun et al. [6] presented 

the relations for the interface stiffness of the first four orientations (Basal, Prismatic I-a and b, 

Prismatic II-a and b) listed in Table 3, which are in agreement with our derivations. 
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Table 3. Relations for free energy ( )  and stiffness ( )    of HCP-liquid interfaces obtained 
from the expansion of   by HCP symmetry-adopted spherical harmonics. 

Interface Orientation 0 0( ) /    0 0( ) /      

Basal (0001)[1120]  * * *
20 40 60

1 3 1

2 2 2
     20 40 60

27
10

2
      

Prismatic I-a (1 100)[1120]  *
20 40 60 66

1 9 5 1

4 16 32 64
        20 40 60 66

1 9 5 35

4 16 32 64
        

Prismatic I-b (1 100)[0001]  20 40 60 66
1 9 5 1

4 16 32 64
        20 40 60 66

5 171 205 5

4 16 32 64
       

Prismatic II-a (1120)[1100]  20 40 60 66
1 9 5 1

4 16 32 64
        20 40 60 66

1 9 5 35

4 16 32 64
        

Prismatic II-b (1120)[0001]  20 40 60 66
1 9 5 1

4 16 32 64
        20 40 60 66

5 171 205 5

4 16 32 64
       

Pyramidal I-a (1 101)[1120]  20 40 60 660.084 0.363 0.166 0.007        20 40 60 660.084 0.363 0.166 0.258        

Pyramidal I-b (1 101)[1102]  20 40 60 660.084 0.363 0.166 0.007        20 40 60 660.750 5.693 6.817 0.026       

Pyramidal II-a (1122)[1100]  20 40 60 660.043 0.490 0.152 0.006        20 40 60 660.043 0.490 0.152 0.208        

Pyramidal II-b (1122)[1 121]  20 40 60 660.043 0.490 0.152 0.002        20 40 60 660.630 8.193 6.485 0.036       

Twinning I (1 102)[1101]  20 40 60 660.150 0.571 0.111 0.002       20 40 60 660.051 12.315 3.417 0.044       

Twinning II (1120)[1 122]  20 40 60 660.185 0.123 0.059 0.012        20 40 60 661.055 3.122 2.128 0.026       

Twinning III (1 103)[1120]  20 40 60 660.290 0.086 0.202 0.0003       20 40 60 660.37 7.141 8.776 0.025        

*
20 20 40 40 60 60 66 66

5 1 13 6006
, , ,       

   
    

 

3.2. Interface stiffness 

Calculating the interface stiffness using MD simulations consists of two major steps: a) 

determining the interface height of the two-phase HCP-liquid coexisting slabs (Fig. 1), where the 

thickness of the slab is small comparing to its width (b W ), and b) calculating the Fourier 

amplitudes of the interface height, ( )A k , and relating it to the interface stiffness using the 

following well-known relation 

2 2
.

| ( ) |
B Mk T

bW A k k
                        (5) 

In Eq. (5), Bk  is the Boltzmann constant, k  is the Fourier wave-length, and the time-averaged 

Fourier amplitudes are used in the relation because of the inherent fluctuations associated with 

all the MD simulations, especially those simulations performed at high temperatures. It must be 

noted here that Eq. (5) is only valid for long wave-length limit (or when 21 / k  is small) [30, 33, 

34], because the relation between 21 / k  and interface stiffness for small-wave-length limit 
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becomes logarithmic rather than linear. Such a logarithmic finite-size effect has been well-

demonstrated in the literature and interested readers are invited to study Refs. [35-40]. Therefore, 

we will use only a finite number of 21 / k  (for long wave-lengths where the relation is still linear) 

in our calculations of interface stiffness as it will be discussed in details later.  

In the present simulations, we use 1251 sampling frames over the 250 ps simulation time 

of the two-phase HCP-liquid coexisting slabs. The total number of frames for the time-averaging 

is 2502 because the calculations are averaged over the two HCP-liquid interfaces at the slab. The 

height of the HCP-liquid interface is located by defining a continuous order parameter ( ) to 

identify the HCP and liquid regions of the slab. This order parameter is defined based on the 

disordering of the atoms compared to their configuration in a perfect HCP crystal at the 

simulation temperature as  

,
d i i

i

d i
i

w r

w r


 




                     (6) 

where 2 2[1 ( ) ]i
d

r
w

d
  , 2 2( ) ( )i i ir x x z z    , d  is the radius of the smoothing cylinder, and 

the summation is over all the atoms in the smoothing distance ir d . Also, 

2
(1/12) | |i HCPr r    

, where the summation is over the twelve first nearest-neighbors, and 

HCPr


 denotes the neighbor atoms position at the perfect HCP crystal. Consequently,   must be 

small in the solid state (~0.15 here) and bigger in the liquid state (~0.42 here). The interface 

location is determined to be the location at which   is in between of its liquid and solid values 

(~0.29 here). For instance, Fig. 4 shows the atoms near the HCP-liquid interface for one of the 

sampling frames, where the atoms are colored based on the value of   at their location, and the 

interface location is shown by a red curve. Once the location of the interface is determined, its 

time-averaged Fourier amplitudes are calculated and substituted into Eq. (5) to determine the 

HCP-liquid interface stiffness. 

The calculated stiffness of interfaces for all the twelve slabs, along with the size and 

number of atoms at each slab, are listed in Table 4. As it was mentioned earlier, b  must be as 

small as possible because the general assumption in CFM is that the solid-liquid interface 

location is constant along the thickness direction. However, b  must be chosen sufficiently large 
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to make the construction of the two-phase coexisting HCP-liquid slab possible. Also, W  must be 

chosen at least fifteen times larger than b  to provide sufficient data points for the calculations of 

the Fourier amplitudes. Nevertheless, we performed a convergence study on the size of the 

simulation slab to make sure that our interface stiffness calculations are size independent. We 

included the Fourier amplitudes for the first thirty modes ( 1,2, ,30k   ) in the interface 

stiffness calculations for all the orientations. The calculated 2/ | ( ) |B Mk T bW A k  versus 2k  data 

for all the twelve orientations are depicted in Fig. 5. The stiffness of interfaces for all the 

orientations are obtained as the mean value of 2/ | ( ) |B Mk T bW A k  divided by 2k , for 

1,2, ,30k    as listed in Table 4 along with their standard statistical uncertainties. The 

calculated average interface stiffness for all the orientations (reported in in Table 5) is used to 

generate the solid lines in Fig. 5 representing the mean values of 2/ | ( ) |B Mk T bW A k  versus 2k  

data. 

 

Table 4. The calculated interface stiffness ( )   with their standard statistical uncertainties. 

Interface plane Slab size (nm) Number of Atoms 2(mJ/m )    

Basal 1.32 28.56 96.20   144000 133.4±2.2 
Prismatic I-a 26.38 1.60 91.38   153600 137.2±2.0 
Prismatic I-b 1.32 26.72 91.38   128000 116.2±1.6 
Prismatic II-a 1.71 32.07 72.54   158400 109.6±1.8 
Prismatic II-b 34.27 1.60 72.54   158400 120.0±2.0 
Pyramidal I-a 39.68 1.21 90.65   129600 129.4±3.0 
Pyramidal I-b 1.32 31.51 90.65   149760 117.4±2.0 
Pyramidal II-a 31.41 1.26 105.77   165880 117.6±1.6 
Pyramidal II-b 1.71 29.51 97.63   196272 114.6±2.8 
Twinning I 1.32 31.29 105.31   172800 117.6±3.2 
Twinning II 1.14 33.56 108.69   165600 117.8±2.8 
Twinning III 1.32 30.29 113.29   180000 121.0±3.2 

 

From Fig. 5, it is clear that most of the presented data are fairly close to their related 

mean lines, which demonstrates the accuracy of the calculations. The standard statistical 

uncertainties for interface stiffness calculations are ~ 2 to 3 mJ/m2. Another significant highlight 

of the current calculations is the large number of Fourier modes (30 modes) used in the 

calculations which is much more than the number of Fourier modes in the previous works [6]. 
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This is mainly owed to the new order parameter   which damps the fluctuations of the 

previously used order parameter (  ). However, using of order parameter   in CFM requires 

determination of the smoothing distance, d , which implies a further computational work. We 

determined d  for each orientation such that: a) the calculated interface stiffness is converged, 

and b) the resulted standard statistical uncertainty is minimum. 

 

3.3. Interface free energy and surface anisotropy 

Equating the relations for the interface stiffness determined by HCP symmetry-adapted 

spherical harmonics (the fourth column of Table 3) with the corresponding calculations of the 

interface stiffness by MD simulations (the last column of Table 4) results in twelve equations to 

solve for 0 ,  20 , 40 , 60 ,  and 66 . From the twelve resultant equations, the equations related 

to Prismatic I-a, I-b, II-a, and II-b need an especial attention. By adding/subtracting the interface 

stiffness equation related to Prismatic I-a and I-b to equations related to Prismatic II-a and II-b, 

respectively, these equations can be written as 

 0 20 40 60

1 5 9 1 5 13
[1 ] 123.4,

4 16 32
   

  
                                         (7a) 

0 66

35 6006
6.9,

64
 


                               (7b) 

0 20 40 60

5 5 171 1 205 13
[1 ] 118.1,

4 16 32
   

  
                   (7c) 

0 66

5 6006
0.95.

64
 


                          (7d) 

It is obvious that only three of these four equations are independent. Therefore, including the 

equations related for at least one other orientation is necessary (other than the equations related 

to Basal, Prismatic I-a, I-b, II-a, and II-b) to determine 0 , 20 , 40 , 60 ,  and 66 . Considering 

Eqs. (7b) and (7d) simultaneously makes it clear that the anisotropy parameter 66  is governed 

by the difference between the stiffness of interfaces for Prismatic I-a and II-a, or I-b and II-b. 

Furthermore, 0 66 (5 / 64) 6006 /    is equal to 0.986 or 0.95 as a result of Eq. (7b) or (7d), 

respectively; the resultant error in this calculation is considered a reasonable error in the concept 

of CFM and MD simulation.  
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To calculate 0 , 20 , 40 , 60 ,  and 66 , we formed fourteen system of equations, each 

consisting of five equations. In each system of equations, we included the Basal equation, Eqs. 

(7a) and (7c), Eq. (7b) or (7d), and one of the remaining seven equations related to the other 

orientations. The calculated mean value of 0 , 20 , 40 , 60 , and 66  along with their standard 

statistical uncertainties are reported in Table 5.  

 

Table 5. The average HCP-liquid interface free energy 0  and anisotropy parameters 20 , 40 , 

60 , and 66  for Mg. 

Potential 2
0 ( / )mJ m    20 (%)  40 (%) 60 (%) 66 (%) 

MEAM; present 122.2±0.1 -3.45±0.34 -0.47±0.04 -0.06±0.03 -0.46±0.01 
EAM; [6] 89.9±1.5 -2.6±1.5 --- --- 0.3±0.1 
 

Also, the HCP-liquid interface stiffness and energy for different orientations are 

calculated by substituting these calculated parameters into the relations in the third and fourth 

columns of Table 3, respectively. The calculated values are listed in Table 6 and labeled as 

“Fitted.” All the fitted calculations of interface stiffness for different cases are in agreement with 

the MD calculations, with minimal differences which are in the range of the standard statistical 

uncertainties of the MD calculated data. Moreover, the HCP-liquid interface free energy for the 

closed packed plane (Basal orientation) is minimum similar to the previous findings for Mg [6] 

and for FCC metals, where 111   found to be minimum [19]. It is worthy to note that after the 

Basal orientation, the next minimum interface free energy belongs to the Twinning III 

orientation, and not to the planes with higher symmetries, such as Prismatic planes. 

To the knowledge of the authors, there are no experimental measurements of 0  and 

anisotropy parameters for Mg. However, 0  has been experimentally measured for other HCP 

elements like Zn [41, 42] and Cd [43, 44]. Considering the previously proven concept that 0  for 

a material is directly related to its melting point and latent heat [19], a qualitative comparison of 

the calculated 0  for Mg with the 0  for other HCP elements is possible. Between Zn and Cd, 

the melting point and latent heat of Zn is closer to Mg. The experimental measurements of 0  for 

Zn are 77 and 87±15 (mJ/m2) depending on the experimental method. Since the melting point 
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and latent heat of Zn is, respectively, 1.33 and 1.16 times lower than those of Mg, it is expected 

that 0  for Mg be at least higher than 0  of Zn, which is in agreement with our calculations. Sun 

et al. [6] calculated 0 , 20 , 40 , 60 , and 66  for Mg using CFM and EAM potential. Those 

results are also listed in the third row of Table 5 for comparison. They only considered the first 

five orientations (Basal, Prismatic I-a, I-b, II-a, and II-b) in their interface stiffness calculations 

which will produce four independent equations, as it was mentioned earlier. Therefore, they 

determined 0 , 20,  and 66  assuming that 40  and 60  are zero. However, they argued that 

including 40  is necessary to get the experimentally observed grain growth direction in Mg 

alloys, and 66  may be positive or negative. The grain growth direction predictions will be 

discussed in details in the next section. Nevertheless, we determine the anisotropy parameters 20  

and 66  to be in the order of Sun and coworkers calculations; i.e., our calculations are, 

respectively, 33% and 53% higher but with much less uncertainties. 

 

Table 6. The HCP-liquid interface stiffness (   ) and free energy ( ) as calculated by fitting 
to the HCP symmetry-adapted spherical harmonics compared to the MD calculated interface 

stiffness. 

Interface plane 
2(mJ/m )    2(mJ/m )  

MD Fitted Fitted 
Basal 133.4±2.2 133.4 119.0 

Prismatic I-a 137.2±2.0 137.0 123.0 
Prismatic I-b 116.2±1.6 116.2 123.8 
Prismatic II-a 109.6±1.8 109.9 123.8 
Prismatic II-b 120.0±2.0 120.0 123.0 
Pyramidal I-a 129.4±3.0 129.2 122.6 
Pyramidal I-b 117.4±2.0 116.8 122.6 
Pyramidal II-a 117.6±1.6 117.5 122.8 
Pyramidal II-b 114.6±2.8 116.3 122.7 

Twinning I 117.6±3.2 118.6 121.7 
Twinning II 117.8±2.8 118.6 122.9 
Twinning III 121.0±3.2 120.0 120.7 
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3.4. Dendrite growth direction and rate 

The anisotropy of the solid-liquid interface free energy can be used to predict the 

preferred dendrite growth directions and rates by considering Gibbs-Thompson relation for the 

local solid-liquid interface equilibrium temperature (T ) as [45]   

22

2
1

ˆ(n)
ˆ( (n) ) ,M

M L i
i i

T
T T mC K

L





   

                    (8) 

where MT  is the melting temperature, m  is the liquidus slope, LC  is the solute composition at the 

liquid interface, L  is the latent heat, iK  are the mean curvatures of the interface, i  are the local 

angles between the normal direction and local principal directions, and 
2

2

ˆ(n)
ˆ(n)

i








 is the 

interface stiffness. Eq. (8) implies that the preferred dendrite direction is the direction at which 

the interface stiffness is minimum, and the dendrite growth rate is related to the inverse of the 

interface stiffness. Although the interface stiffness in Eq. (8) is a tensor in three dimensions, the 

trace of the interface stiffness tensor (TrS ) can approximately predict the dendrite growth 

direction and rate [6], as 

2 2

2 2 2

1 cos
2 ,

sin sin
TrS

   
    
  

   
  

        (9) 

where the relation for   in terms of HCP symmetry-adapted spherical harmonics is given in Eq. 

(3).  The plot of 1/ TrS  in spherical coordinates is shown in Fig. 6, where the anisotropy 

parameters in   are substituted from the present MD data (Table 5). The preferred dendrite 

growth directions are the directions at which 1/ TrS  are locally maximum. Our calculations 

show that the absolute maximum of 1/ TrS  occurs at the basal plane and [1120]  direction, and 

this is the primary preferred growth direction (primary dendrite arms direction). Also, the 

absolute minimum and the least preferred growth direction is [0001] . These findings are in 

agreement with the EAM-MD calculations of Sun at al. [6] who calculated the anisotropy 

parameters as given in the third row of Table 5. In addition, we calculated a local maximum 

approximately in [3362]  direction and a local minimum in [1100]direction, where the absolute 

value of 1/ TrS  in [3362]  direction is bigger than its value in [1100]  direction. Therefore, 

[3362]  is the second preferred dendrite growth direction for Mg.  There is no published 
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experimental work on determining the dendrite growth directions for elemental Mg. The only 

related work is the work of  Pettersen et al. [46] who used Bridgman equipment to conduct a 

directional solidification slab experiment for low gradient to velocity ratio solidification for 

AZ91 alloy. They observed [1120]  as the primary dendrite growth direction similar to our 

prediction for elemental Mg. They also observed four secondary dendrite arms at [2245]  

crystallographic direction for AZ91, while we predicted four secondary dendrite arms all 

approximately in [3362]  direction for elemental Mg. More computational works using the 

present MEAM-MD and CFM method are required to study the variation of the dendrite growth 

directions of Mg by adding 9% weight of Al and 1% weight of Zn to form AZ91 alloy.  

 

4. Conclusions 

A comprehensive study was performed to determine HCP-liquid interface free energy 

and anisotropy for the case study of Mg. In the concept of CFM, MEAM interatomic potentials 

were used in the MD simulations, and the pyramidal and twinning (as well as basal and 

prismatic) orientations were considered for the first time to determine the HCP-liquid interface 

properties. The average interface free energy was calculated to be 0 122.2 0.1   mJ/m2, and the 

HCP-liquid interface anisotropic parameters were calculated to be 20 3.45 0.3 ,4   

40 0.47 0.0 ,4     66 0.46 0.0 ,1     and a negligible 60 . The uncertainty involved with these 

calculations was less than 2% which was achieved because of employing a continuous order 

parameter to accurately locate the HCP-liquid interface. Furthermore, the calculations of the 

HCP-liquid interface free energy and anisotropy predicts the primary dendrite growth direction 

of [1120]  and a secondary dendrite growth direction of [3362] . 
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Fig. 1. The schematic of the eight different HCP-liquid interface planes. 
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Fig. 2. The schematic of the two-phase solid-liquid coexisting slab used in CFM. 
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Fig. 3. Plots of HCP-symmetry adopted spherical harmonics, a) 20y , b) 40y , c) 60y , and d) 66y . 
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Fig. 4. A snapshot of the two-phase HCP-liquid coexisting slab of Mg near the interface. The 
upper half is solid, the lower half is liquid, and the red curve shows the location of the HCP-
liquid interface. 
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Fig. 5. The plot of 2/ | ( ) |B Mk T bW A k  versus 2k  data where the lines are the mean values 

and the interface planes are: a) Basal, b) Prismatic I, c) Prismatic II, d) Pyramidal I, e) 
Pyramidal II, and f) Twinning I, II, and III. 
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Fig. 6. The plot of 1/ TrS  in spherical coordinate system where the anisotropy parameters are 

substituted from the present MD data (Table 5). 
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